Hex Buffers MC14049UB The MC14049UB hex inverter/buffer is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. This complementary MOS device finds primary use where low power dissipation and/or high noise immunity is desired. This device provides logic-level conversion using only one supply voltage, V_{DD} . The input-signal high level (V_{IH}) can exceed the V_{DD} supply voltage for logic-level conversions. Two TTL/DTL Loads can be driven when the device is used as CMOS-to-TTL/DTL converters ($V_{DD}=5.0~V,\,V_{OL}\leq0.4~V,\,I_{OL}\geq3.2~mA$). Note that pins 13 and 16 are not connected internally on this device; consequently connections to these terminals will not affect circuit operation. #### **Features** - High Source and Sink Currents - High-to-Low Level Converter - Supply Voltage Range = 3.0 V to 18 V - Meets JEDEC UB Specifications - V_{IN} can exceed V_{DD} - Improved ESD Protection on All Inputs - These Devices are Pb-Free and are RoHS Compliant - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable ## MAXIMUM RATINGS (Voltages Referenced to V_{SS}) | Symbol | Parameter | Value | Unit | |------------------|--|---------------------------------|------| | V_{DD} | DC Supply Voltage Range | -0.5 to +18.0 | V | | V _{in} | Input Voltage Range (DC or Transient) | -0.5 to +18.0 | V | | V _{out} | Output Voltage Range (DC or Transient) | -0.5 to V _{DD}
+0.5 | V | | I _{in} | Input Current (DC or Transient) per Pin | ±10 | mA | | l _{out} | Output Current
(DC or Transient) per Pin | +45 | mA | | P _D | Power Dissipation, per Package (Note 1) Plastic SOIC | 825
740 | mW | | T _A | Ambient Temperature Range | -55 to +125 | °C | | T _{stg} | Storage Temperature Range | -65 to +150 | °C | | TL | Lead Temperature (8–Second Soldering) | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Temperature Derating: All Packages: See Figure 4. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields referenced to the V_{SS} pin, only. Extra precautions must be taken to avoid applications of any voltage higher than the maximum rated voltages to this high–impedance circuit. For proper operation, the ranges $V_{SS} \leq V_{in} \leq 18 \ V$ and $V_{SS} \leq V_{out} \ \leq V_{DD}$ are recommended. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open. #### MARKING DIAGRAMS SOIC-16 D SUFFIX CASE 751B TSSOP-16 DT SUFFIX CASE 948F A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or = Pb-Free Package (Note: Microdot may be in either location) #### ORDERING INFORMATION See detailed ordering and shipping information on page 3 of this data sheet. Figure 1. Pin Assignment Figure 2. Logic Diagram MC14049UB Figure 3. Circuit Schematic (1/6 of circuit shown) # **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V_{SS}) | Characteristic | | | ., | - 5 | 5°C | | 25°C | | 125°C | | | |--|-----------|-----------------|------------------------|-------------------------|----------------------|---------------------------|---|----------------------|-------------------------|----------------------|------| | | | Symbol | V _{DD}
Vdc | Min | Max | Min | Typ
(Note 2) | Max | Min | Max | Unit | | Output Voltage
V _{in} = V _{DD} or 0 | "0" Level | V _{OL} | 5.0
10
15 | -
-
- | 0.05
0.05
0.05 | -
-
- | 0
0
0 | 0.05
0.05
0.05 | -
-
- | 0.05
0.05
0.05 | Vdc | | V _{in} = 0 or V _{DD} | "1" Level | V _{OH} | 5.0
10
15 | 4.95
9.95
14.95 | -
-
- | 4.95
9.95
14.95 | 5.0
10
15 | -
-
- | 4.95
9.95
14.95 | -
-
- | Vdc | | Input Voltage $ (V_O = 4.5 \text{ Vdc}) $ $ (V_O = 9.0 \text{ Vdc}) $ $ (V_O = 13.5 \text{ Vdc}) $ | "0" Level | V _{IL} | 5.0
10
15 | -
-
- | 1.0
2.0
2.5 | -
-
- | 2.25
4.50
6.75 | 1.0
2.0
2.5 | -
-
- | 1.0
2.0
2.5 | Vdc | | $(V_O = 0.5 \text{ Vdc})$
$(V_O = 1.0 \text{ Vdc})$
$(V_O = 1.5 \text{ Vdc})$ | "1" Level | V _{IH} | 5.0
10
15 | 4.0
8.0
12.5 | -
-
- | 4.0
8.0
12.5 | 2.75
5.50
8.25 | -
-
- | 4.0
8.0
12.5 | -
-
- | Vdc | | Output Drive Current $(V_{OH} = 2.5 \text{ Vdc})$ $(V_{OH} = 9.5 \text{ Vdc})$ $(V_{OH} = 13.5 \text{ Vdc})$ | Source | Іон | 5.0
10
15 | - 1.6
- 1.6
- 4.7 | | - 1.25
- 1.3
- 3.75 | - 2.5
- 2.6
- 10 | -
-
- | - 1.0
- 1.0
- 3.0 | -
-
- | mAdc | | $(V_{OL} = 0.4 \text{ Vdc})$
$(V_{OL} = 0.5 \text{ Vdc})$
$(V_{OL} = 1.5 \text{ Vdc})$ | Sink | I _{OL} | 5.0
10
15 | 3.75
10
30 | -
-
- | 3.2
8.0
24 | 6.0
16
40 | -
-
- | 2.6
6.6
19 | -
-
- | mAdc | | Input Current | | l _{in} | 15 | _ | ± 0.1 | - | ±0.000
01 | ± 0.1 | - | ± 1.0 | μAdc | | Input Capacitance (V _{in} = 0) | | C _{in} | - | - | - | - | 10 | 20 | - | _ | pF | | Quiescent Current (Per Package) | | I _{DD} | 5.0
10
15 | -
-
- | 1.0
2.0
4.0 | -
-
- | 0.002
0.004
0.006 | 1.0
2.0
4.0 | -
-
- | 30
60
120 | μAdc | | Total Supply Current (Note 3 and 4) (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching) | | lτ | 5.0
10
15 | | | $I_{T} = (3.$ | 8 μΑ/kHz) f
5 μΑ/kHz) f
3 μΑ/kHz) f | f + I _{DD} | | | μAdc | ^{2.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. $$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$ where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.002. ^{3.} The formulas given are for the typical characteristics only at 25 $^{\circ}\text{C}.$ ^{4.} To calculate total supply current at loads other than 50 pF: # **SWITCHING CHARACTERISTICS** (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$) | Characteristic | Symbol | V _{DD}
Vdc | Min | Typ
(Note 6) | Max | Unit | |---|------------------|------------------------|-------------|-----------------|------------------|------| | Output Rise Time $t_{TLH} = (0.8 \text{ ns/pF}) \text{ C}_{L} + 60 \text{ ns}$ $t_{TLH} = (0.3 \text{ ns/pF}) \text{ C}_{L} + 35 \text{ ns}$ $t_{TLH} = (0.27 \text{ ns/pF}) \text{ C}_{L} + 26.5 \text{ ns}$ | tт∟н | 5.0
10
15 | -
-
- | 100
50
40 | 160
100
60 | ns | | Output Fall Time $t_{THL} = (0.3 \text{ ns/pF}) C_L + 25 \text{ ns}$ $t_{THL} = (0.12 \text{ ns/pF}) C_L + 14 \text{ ns}$ $t_{THL} = (0.1 \text{ ns/pF}) C_L + 10 \text{ ns}$ | t _{THL} | 5.0
10
15 | -
-
- | 40
20
15 | 60
40
30 | ns | | Propagation Delay Time $t_{PLH} = (0.38 \text{ ns/pF}) \text{ C}_L + 61 \text{ ns}$ $t_{PLH} = (0.20 \text{ ns/pF}) \text{ C}_L + 30 \text{ ns}$ $t_{PLH} = (0.11 \text{ ns/pF}) \text{ C}_L + 24.5 \text{ ns}$ | t _{РLН} | 5.0
10
15 | -
-
- | 80
40
30 | 120
65
50 | ns | | Propagation Delay Time $t_{PHL} = (0.38 \text{ ns/pF}) \text{ C}_L + 11 \text{ ns}$ $t_{PHL} = (0.12 \text{ ns/PF}) \text{ C}_L + 9 \text{ ns}$ $t_{PHL} = (0.11 \text{ ns/pF}) \text{ C}_L + 4.5 \text{ ns}$ | t _{PHL} | 5.0
10
15 | -
-
- | 30
15
10 | 60
30
20 | ns | ## **ORDERING INFORMATION** | Device | Package | Shipping [†] | |------------------|----------------------|-----------------------| | MC14049UBDG | SOIC-16
(Pb-Free) | 48 Units / Rail | | MC14049UBDR2G | SOIC-16 | 2500 / Tape & Reel | | NLV14049UBDR2G* | (Pb-Free) | | | MC14049UBDTR2G | TSSOP-16 | 2500 / Tape & Reel | | NLV14049UBDTR2G* | (Pb–Free) | | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. Figure 4. Typical Voltage Transfer Characteristics versus Temperature ^{5.} The formulas given are for the typical characteristics only at 25°C.6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. **Figure 5. Typical Output Source Characteristics** Figure 6. Typical Output Sink Characteristics Figure 7. Ambient Temperature Power Derating Figure 8. Switching Time Test Circuit and Waveforms # **MECHANICAL CASE OUTLINE** **DATE 29 DEC 2006** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI - THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. - PHOI HUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INC | HES | |-----|--------|--------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | C | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 | BSC | 0.050 | BSC | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0° | 7° | 0° | 7° | | Р | 5.80 | 6.20 | 0.229 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | | 2.
3. | COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE EMITTER BASE EMITTER BASE | 2.
3.
4.
5.
6.
7.
8.
9.
10. | CATHODE
ANODE | 2.
3.
4.
5.
6.
7.
8.
9.
10. | COLLECTOR, DYE #1 BASE, #1 EMITTER, #1 COLLECTOR, #1 COLLECTOR, #2 BASE, #2 EMITTER, #2 COLLECTOR, #2 COLLECTOR, #2 COLLECTOR, #3 | STYLE 4: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. | COLLECTOR, DYN
COLLECTOR, #1
COLLECTOR, #2
COLLECTOR, #3
COLLECTOR, #3
COLLECTOR, #4
COLLECTOR, #4
BASE, #4
EMITTER, #4
BASE, #3
EMITTER, #3
BASE, #2 | | | |----------|---|---|--------------------|---|---|---|--|--------------|-------------------------| | 14. | COLLECTOR | | NO CONNECTION | 14. | | 14. | | SOLDERING | FOOTPRINT | | 15. | EMITTER | | ANODE | 15. | | 15. | BASE, #1 | 8 | X | | 16. | COLLECTOR | 16. | CATHODE | 16. | COLLECTOR, #4 | 16. | EMITTER, #1 | | ^
40 | | | | | | | , | | , | | 6X 1.12 | | STYLE 5: | DDAIN DVE #4 | STYLE 6: | OATHODE | STYLE 7: | COURCE N OU | | | ' | 0.1.12 | | PIN 1. | DRAIN, DYE #1 | PIN 1. | | PIN 1. | SOURCE N-CH | Τ\ | | <u></u> | 16 | | 2. | DRAIN, #1 | 2.
3. | CATHODE
CATHODE | 2. | COMMON DRAIN (OUTPU | | | ↓ └── | 10 | | 3.
4. | DRAIN, #2
DRAIN, #2 | 3.
4. | CATHODE | 3.
4. | COMMON DRAIN (OUTPU'
GATE P-CH | 1) | | <u>*</u> | | | 4.
5. | DRAIN, #2
DRAIN, #3 | 4.
5. | CATHODE | 4.
5. | COMMON DRAIN (OUTPU | Τ\ | | | | | 5.
6. | DRAIN, #3 | 5.
6. | CATHODE | 6. | COMMON DRAIN (OUTPU | | 1 | .58 ∱ | | | 7. | DRAIN, #4 | 7. | | 7. | COMMON DRAIN (OUTPU | | U. | .58 | | | 8. | DRAIN, #4 | 8. | CATHODE | 8. | SOURCE P-CH | ., | | | | | 9. | GATE, #4 | 9. | ANODE | 9. | SOURCE P-CH | | | | | | 10. | SOURCE, #4 | 10. | ANODE | 10. | COMMON DRAIN (OUTPU | T) | | | | | 11. | , | 11. | | 11. | COMMON DRAIN (OUTPU | | | | | | 12. | SOURCE, #3 | 12. | ANODE | 12. | COMMON DRAIN (OUTPU | T) | | | | | 13. | GATE, #2 | 13. | ANODE | 13. | GATE N-CH | | | | | | 14. | SOURCE, #2 | 14. | ANODE | 14. | COMMON DRAIN (OUTPU | T) | | | —— ↓ PITCH | | 15. | GATE, #1 | 15. | ANODE | 15. | COMMON DRAIN (OUTPU | T) | | | <u>+-+</u> - | | 16. | SOURCE, #1 | 16. | ANODE | 16. | SOURCE N-CH | | | | | | | | | | | | | | 8 | 9 ++ 7 | | | | | | | | | | , | DIMENSIONS: MILLIMETERS | | DOCUMENT NUMBER: | 98ASB42566B | B42566B Electronic versions are uncontrolled except when accessed directly from the Document Repos
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-------------|---|-------------|--|--| | DESCRIPTION: | SOIC-16 | | PAGE 1 OF 1 | | | ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. 0.10 (0.004) D -T- SEATING PLANE TSSOP-16 CASE 948F-01 ISSUE B **DATE 19 OCT 2006** #### NOTES - JIES: DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD EL ROLL OF GATE BURDS SUAL NO. - MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. - DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. - DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIN | IETERS | INC | HES | | |-----|----------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | С | | 1.20 | | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 | BSC | 0.026 BSC | | | | Н | 0.18 | 0.28 | 0.007 | 0.011 | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | Κ | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | Г | 6.40 BSC | | 0.252 | BSC | | | М | 0 ° | 8° | 0 ° | 8 ° | | #### **SOLDERING FOOTPRINT** G #### **GENERIC MARKING DIAGRAM*** 168888888 XXXX XXXX **ALYW** 188888888 XXXX = Specific Device Code Α = Assembly Location = Wafer Lot L Υ = Year W = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-------------|---|-------------|--|--| | DESCRIPTION: | TSSOP-16 | | PAGE 1 OF 1 | | | **DETAIL E** ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative