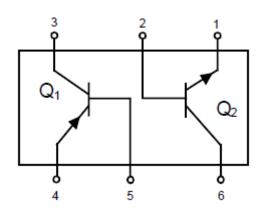


DESCRIPTION

The MBT3946D device is a spin-off of our popular SOT-23/SOT-323 three-leaded device. It is designed for general purpose amplifier applications and is housed in the SOT-363 six-leaded surface mount package. By putting two discrete devices in one package, this device is ideal for low-power surface mount applications where board space is at a premium.

The MBT3946D is available in SC-88 package.


FEATURES

- h_{FE}, 100–300
- Low V_{CE(sat)}, < 0.4 V
- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- RoHS compliance
- Available in SC-88 package

ORDERING INFORMATION

Package Type	Part Number			
SC-88	MBT3946D			
Note 3,000pcs/ Reel				
AiT provides all RoHS Compliant Products				

PIN DESCRIPTION

MBT3946D*
*Q1 PNP Q2 NPN

REV1.0 - MAR 2013 RELEASED -

ABSOLUTE MAXIMUM RATINGS

V _{CEO} , Collector-Emitter Voltage	NPN / PNP	40Vdc / -40Vdc
V _{CBO} , Collector-Base Voltage	NPN / PNP	60Vdc / -40Vdc
V _{EBO} , Emitter-Base Voltage	NPN / PNP	6.0Vdc / - 5.0Vdc
Ic, Collector Current-Continuous	NPN / PNP	200mAdc / -200mAdc

Stresses above may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the Electrical Characteristics are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL CHARACTERISTICS

Parameter	Symbol	Max	Unit
Total Package Dissipation ^{NOTE1}			
T _A = 25°C	P_D	150	mW
Thermal Resistance, Junction to Ambient	Rеја	833	°C/W
Junction and Storage Temperature	TJ, TSTG	-55 to +150	°C

NOTE1: Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint

REV1.0 - MAR 2013 RELEASED - - 2 -

ELECTRICAL CHARACTERISTICS

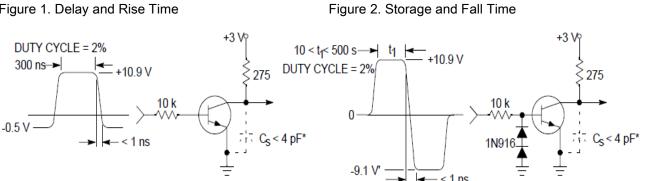
T_A = 25°C, unless otherwise noted

Parameter	Symbol	Conditions	Min	Max	Unit		
OFFCHARACTERISTICS							
Collector–Emitter	V	$I_{C} = 1.0 \text{mAdc}, I_{B} = 0$	NPN	40	-	\/a a	
Breakdown VoltageNOTE2	V (BR)CEO	$I_{C} = -1.0 \text{mAdc}, I_{B} = 0$	PNP	-40	-	Vdc	
Collector-Base	V	$I_C = 10\mu Adc$, $I_E = 0$	NPN	60	-	Vda	
Breakdown Voltage	V _(BR) CBO	$I_C = -10\mu Adc$, $I_E = 0$	PNP	-40	-	Vdc	
Emitter-Base	V	$I_E = 10\mu Adc$, $I_C = 0$	NPN	6.0	-	Vdo	
Breakdown Voltage	$V_{(BR)EBO}$	$I_E = -10 \mu Adc, I_C = 0$	PNP	-5.0	-	Vdc	
Book Cutoff Current		V _{CE} = 30Vdc, V _{EB} = 3.0Vdc	NPN	ı	50		
Base Cutoff Current	I _{BL}	V _{CE} = -30Vdc, V _{EB} = -3.0Vdc	PNP	-	-50	nAdc	
Callage Cutoff Cumant		V _{CE} = 30Vdc, V _{EB} = 3.0Vdc	NPN	-	50		
Collector Cutoff Current	I _{CEX}	V _{CE} = -30Vdc, V _{EB} = -3.0Vdc	PNP	-	-50	nAdc	
ONCHARACTERISTICS	OTE2						
		I _C = 0.1mAdc, V _{CE} = 1. 0Vdc		40	-		
	h _{FE}	$I_C = 1.0 \text{mAdc}, V_{CE} = 1.0 \text{Vdc}$		70	-	- -	
		$I_C = 10$ mAdc, $V_{CE} = 1.0$ Vdc	NPN	100	300		
		$I_C = 50$ mAdc, $V_{CE} = 1.0$ Vdc		60	-		
DO Comment Onlin		$I_C = 100 \text{mAdc}, V_{CE} = 1.0 \text{Vdc}$		30	-		
DC Current Gain		$I_C = -0.1$ mAdc, $V_{CE} = -1.0$ Vdc	PNP	60	-		
		$I_C = -1.0$ mAdc, $V_{CE} = -1.0$ Vdc		80	-		
		$I_C = -10$ mAdc, $V_{CE} = -1.0$ Vdc		100	300		
		$I_C = -50$ mAdc, $V_{CE} = -1.0$ Vdc		60	-		
		$I_C = -100 \text{mAdc}, V_{CE} = -1.0 \text{Vdc}$		30	-		
	V _{CE} (SAT)	$I_C = 10$ mAdc, $I_B = 1.0$ mAdc	NIDNI	-	0.2	Vdc	
Collector–Emitter		I_C = 50mAdc, I_B = 5.0mAdc	NPN	ı	0.3		
Saturation Voltage		$I_C = -10$ mAdc, $I_B = -1.0$ mAdc	DND	-	- 0.25		
		$I_C = -50$ mAdc, $I_B = -5.0$ mAdc	PNP	-	-0.4		
	V _{BE} (SAT)	$I_C = 10$ mAdc, $I_B = 1.0$ mAdc	NDN	0.65	0.85	- Vdc	
Base-Emitter		I _C = 50mAdc, I _B = 5.0mAdc	NPN	-	0.95		
Saturation Voltage		$I_C = -10$ mAdc, $I_B = -1.0$ mAdc	DVS	-0.65	-0.85		
		$I_C = -50$ mAdc, $I_B = -5.0$ mAdc	PNP	-	-0.95		

NOTE2: Pulse Test: Pulse Width≤300µs; Duty Cycle≤2.0%.

REV1.0 - MAR 2013 RELEASED - - 3 -

T_A = 25°C, unless otherwise noted


Parameter	Symbol	Conditions			Max	Unit	
SMALL-SIGNAL CHARAG	CTERISTICS	S					
Current-Gain-Bandwidth	f⊤	I _C =10mAdc,V _{CE} =20Vdc,f = 100MHz	NPN	300	-		
Product		I_C =-10mAdc, V_{CE} =-20Vdc, f = 100MHz	PNP	250	- MHz		
		V _{CB} = 5.0Vdc, I _E = 0,f = 1.0MHz	NPN	1	4.0	nE	
Output Capacitance	C_{obo}	V _{CB} = -5.0Vdc, I _E = 0,f = 1.0MHz	PNP	ı	4.5	pF	
I 1 O	0	$V_{EB} = 0.5 Vdc, I_C = 0, f = 1.0 MHz$	NPN	-	8.0	pF	
Input Capacitance	C_ibo	$V_{EB} = -0.5 Vdc, I_C = 0, f = 1.0 MHz$	PNP	-	10.0		
		V_{CE} = 10Vdc, I_{C} =1.0mAdc, f = 1.0kHz	NPN	1.0	10		
Input Impedance	h _{ie}	V _{CE} = -10Vdc,I _C =-1.0mAdc,f = 1.0kHz	PNP	2.0	12	ΚΩ	
		V _{CE} =10Vdc,I _C =1.0mAdc,f = 1.0kHz	NPN	0.5	8.0	X10 ⁻⁴	
Voltage Feedback Ratio	h _{re}	V_{CE} =-10Vdc, I_{C} =-1.0mAdc, f = 1.0kHz	PNP	0.1	10		
Small-Signal Current		V _{CE} =10Vdc,I _C =1.0mAdc,f = 1.0kHz	NPN	100	400		
Gain	h _{FE}	V_{CE} =-10Vdc, I_{C} =-1.0mAdc, f = 1.0kHz	PNP	100	400	-	
	h _{oe}	V _{CE} =10Vdc,I _C =1.0mAdc,f = 1.0kHz	NPN	1.0	40	μmhos	
Output Admittance		V _{CE} =-10Vdc,I _C =-1.0mAdc,f = 1.0kHz	PNP	3.0	60		
Noise Figure	NF	V_{CE} =5.0Vdc, I_{C} =100 μ Adc, Rs=1.0k Ω , f=1.0kHz	NPN	5.0	-		
		V_{CE} =-5.0Vdc, I_{C} =-100μAdc, R_{S} =1.0k Ω , f =1.0kHz	PNP	4.0	-	dB	
SWITCHING CHARACTE	RISTICS						
D T'	ta	V_{CC} =3.0Vdc, V_{BE} = -0.5Vdc	NPN	-	35		
Delay Time		V _{CC} =-3.0Vdc, V _{BE} = 0.5Vdc	PNP	-	35	ns	
Rise Time	tr	I _C =10mAdc, I _{B1} =1.0mAdc	NPN	1	35		
		I _C =-10mAdc, I _{B1} =-1.0mAdc	PNP	ı	35		
	t _s	V _{CC} = 3.0Vdc, I _C =10mAdc	NPN	-	200)	
Storage Time		V_{CC} = -3.0Vdc, I_C =-10mAdc	PNP	-	225		
Fall Time	,	I _{B1} = I _{B2} = 1.0mAdc	NPN	-	50	ns	
Fall Time	t _f	$I_{B1} = I_{B2} = -1.0 \text{mAdc}$	PNP	-	75		

REV1.0 - MAR 2013 RELEASED - - 4 -

TYPICAL CHARACTERISTICS

NPN

Figure 1. Delay and Rise Time

^{*} Total shunt capacitance of test jig and connectors

Figure 3. Capacitance

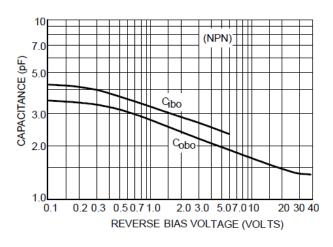
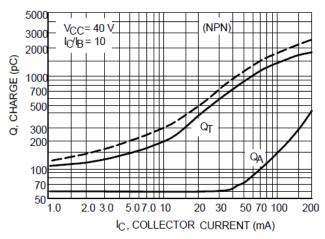



Figure 4. Charge Data

REV1.0 - MAR 2013 RELEASED -- 5 -

Figure 5. Turn±On Time

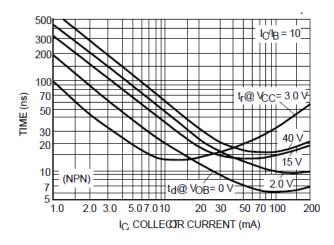


Figure 6. Rise Time

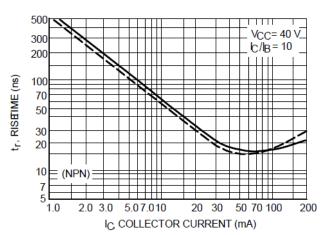


Figure 7 Storage Time

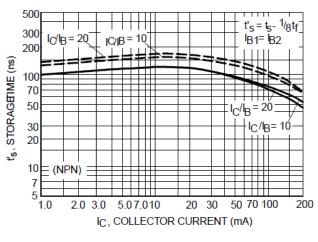
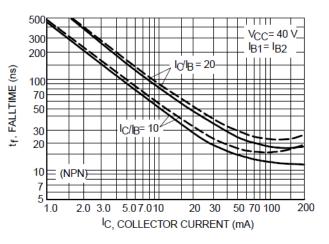



Figure 8 Fall Time

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

V_{CE} = 5.0Vdc, T_A = 255°C, Bandwidth =1.0 Hz

Figure 9. Noise Figure

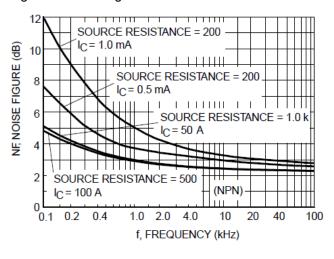
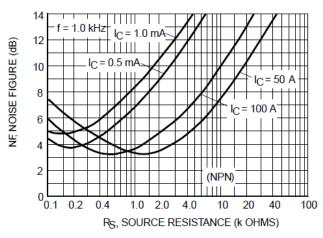



Figure 10. Noise Figure

REV1.0 - MAR 2013 RELEASED - - 6 -

h PARAMETERS $V_{CE} = 10Vdc$, f = 1.0kHz, $T_A = 25$ °C

Figure 11. Current Gain

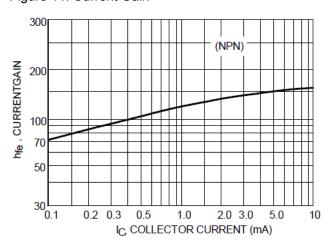


Figure 13. Input Impedance

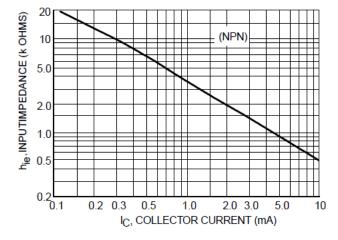


Figure 12. Output Admittance

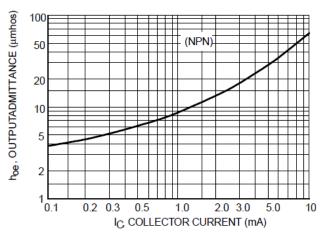
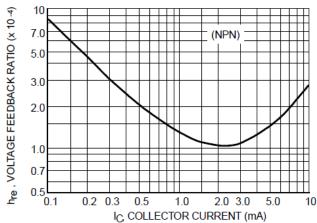



Figure 14. Voltage Feedback Ratio

REV1.0 - MAR 2013 RELEASED - - 7

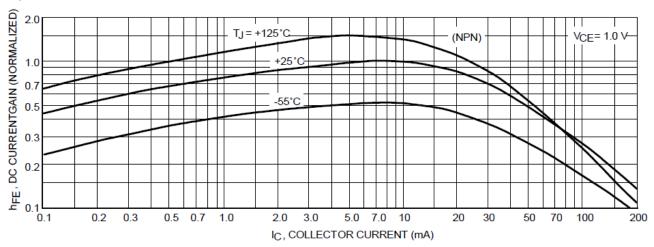


Figure 16. Collector Saturation Region

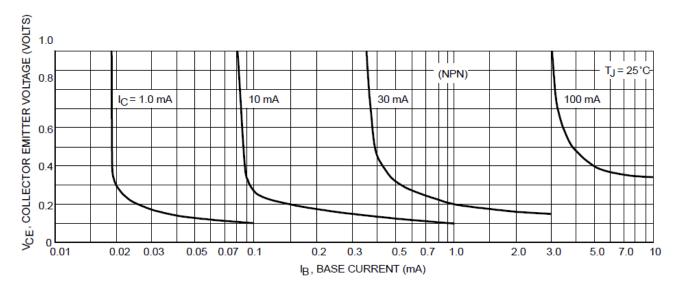


Figure 17. "ON" Voltages

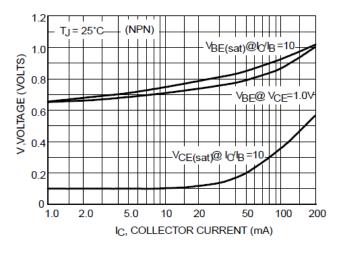
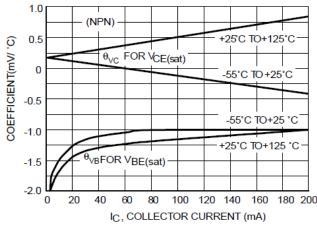
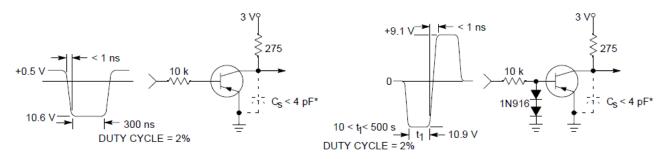




Figure 18. Temperature Coefficients

PNP

Figure 19. Delay and Rise Time Equivalent Test Circuit Figure 20. Storage and Fall Time Equivalent Test Circuit

^{*} Total shunt capacitance of test jig and connectors

T_J = 25°C T_J = 125°C

Figure 21. Capacitance

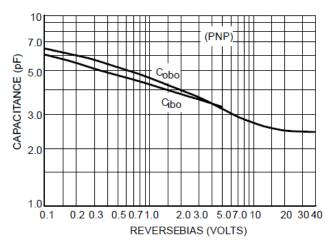


Figure 22. Charge Data

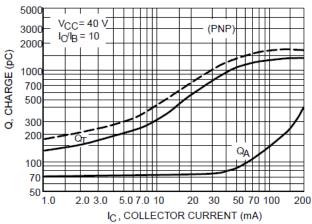


Figure 23. Turn-On Time

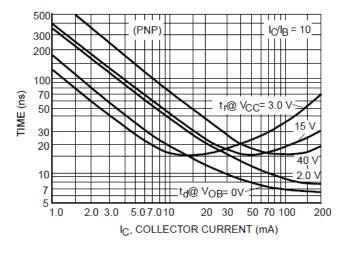
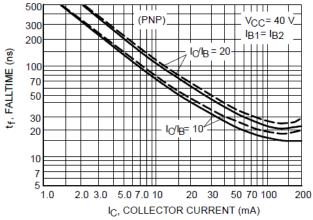



Figure 24. Fall Time

REV1.0 - MAR 2013 RELEASED -

TYPICAL AUDIO SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE VARIATIONS

 $V_{CE} = \pm 5.0 \text{Vdc}$, $T_A = 25^{\circ}\text{C}$, Bandwidth = 1.0 Hz

Figure 25

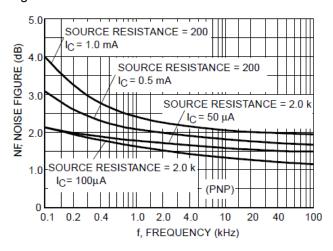
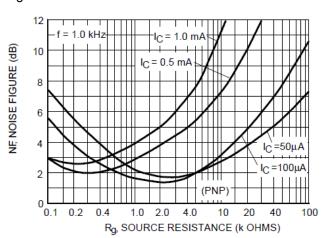



Figure 26

h PARAMETERS $V_{CE} = \pm 10 \text{Vdc}, f = 1.0 \text{kHz}, T_A = 25 ^{\circ}\text{C}$

Figure 27. Current Gain

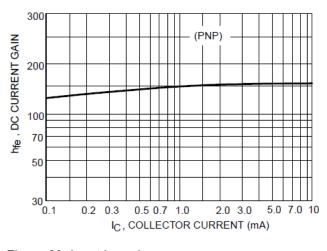


Figure 28. Output Admittance

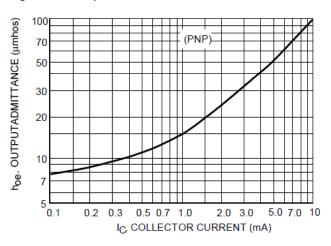


Figure 29. Input Impedance

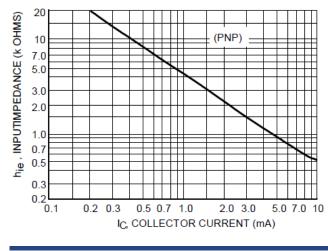
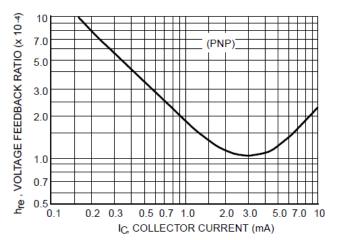



Figure 30. Voltage Feedback Ratio

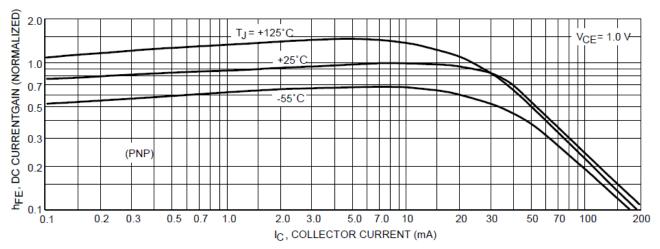


Figure 32. Collector Saturation Region

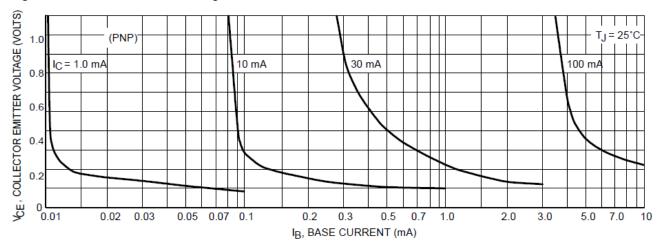
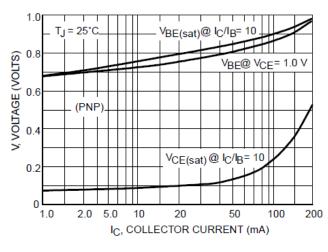
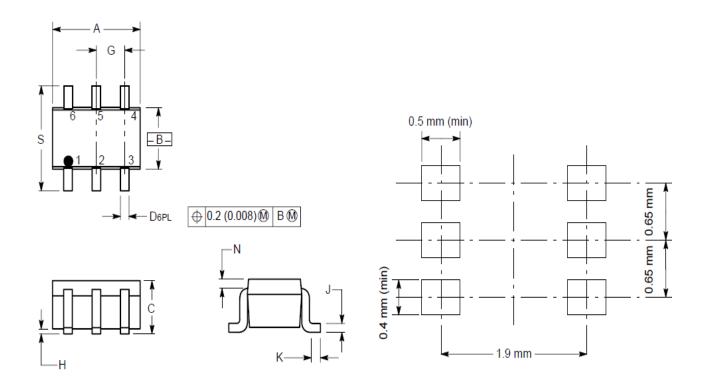


Figure 33. "ON" Voltages




Figure 34. Temperature Coefficients

REV1.0 - MAR 2013 RELEASED - - 11 -

PACKAGE INFORMATION

Dimension in SC-88 Package (Unit: mm)

DIM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
Α	0.071	0.087	1.80	2.20	
В	0.045	0.053	1.15	1.35	
С	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10	0.30	
G	0.026 BSC		0.65 BSC		
Н	-	0.004	-	0.10	
J	0.004	0.010	0.10	0.25	
K	0.004	0.012	0.10	0.30	
N	0.008	0.008 REF		REF	
S	0.079	0.087	2.00	2.20	

REV1.0 - MAR 2013 RELEASED - - 12 -

IMPORTANT NOTICE

AiT Semiconductor Inc. (AiT) reserves the right to make changes to any its product, specifications, to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

AiT Semiconductor Inc.'s integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life support applications, devices or systems or other critical applications. Use of AiT products in such applications is understood to be fully at the risk of the customer. As used herein may involve potential risks of death, personal injury, or servere property, or environmental damage. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

AiT Semiconductor Inc. assumes to no liability to customer product design or application support. AiT warrants the performance of its products of the specifications applicable at the time of sale.

REV1.0 - MAR 2013 RELEASED - - 13 -