SOT Temperature Sensors with Period/Frequency Output

General Description

The MAX6576/MAX6577 are low-cost, low-current temperature sensors with a single-wire output. The MAX6576 converts the ambient temperature into a square wave with a period proportional to absolute temperature (°K). The MAX6577 converts the ambient temperature into a square wave with a frequency proportional to absolute temperature. The MAX6576 offers accuracy of $\pm 3^{\circ}$ C at $\pm 25^{\circ}$ C, $\pm 4.5^{\circ}$ C at $\pm 85^{\circ}$ C, and $\pm 5^{\circ}$ C at $\pm 125^{\circ}$ C. The MAX6577 offers accuracy of $\pm 3^{\circ}$ C at $\pm 85^{\circ}$ C, and $\pm 4.5^{\circ}$ C at $\pm 125^{\circ}$ C.

Both devices feature a single-wire output that minimizes the number of pins necessary to interface with a microprocessor. The period/frequency range of the output square wave can be selected by hard-wiring the two time-select pins (TS0, TS1) to either V_{DD} or GND. The MAX6576/MAX6577 are available in space-saving 6-pin SOT23 packages.

Applications

- Critical µP and µC Temperature Monitoring
- Portable Battery-Powered Equipment
- Cell Phones
- Battery Packs
- Hard Drives/Tape Drives
- Networking and Telecom Equipment
- Medical Equipment

Pin Configuration

Features

- Simple Single-Wire Output
- Two Output Types Available
 - Temperature to Period (µs) (MAX6576)
 - Temperature to Frequency (Hz) (MAX6577)
- ±0.8°C Accuracy at +25°C (±3°C max)
- No External Components
- Operates from +2.7V to +5.5V Supply Voltage
- Low 140µA Typical Supply Current
- Standard Operating Temperature Range: -40°C to +125°C
- Small 6-Pin SOT23 Package

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	SOT TOP MARK
MAX6576ZUT	-40°C to +125°C	6 SOT23	AABI
MAX6577ZUT	-40°C to +125°C	6 SOT23	AABJ

Typical Operating Circuit

SOT Temperature Sensors with Period/Frequency Output

Absolute Maximum Ratings

Terminal Voltage (with respect to GND)
V _{DD} 0.3V to +6V
TS1, TS0, OUT0.3V to (V _{DD} + 0.3V)
Input/Output Current, All Pins±20mA
Continuous Power Dissipation (T _A = +70°C)
6-pin SOT23 (derate 7.10mW/°C above +70°C)571mW

Operating Temperature Range	40°C to +125°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

(V_{DD} = +2.7V to +5.5V, T_A = -40°C to +125°C, unless otherwise noted. Typical values are specified at T_A = +25°C and V_{DD} = +5V, unless otherwise noted.)

PARAMETER	SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS	
V _{DD} Range	V _{DD}			2.7		5.5	V	
Supply Current	1		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		140	250		
Supply Current	IDD	V _{DD} = 5.5V	$T_A = -40^{\circ}C$ to $+125^{\circ}C$			400	μA	
			T _A = -20°C	-7.5	±1.1	+7.5		
			T _A = 0°C	-5.5	±0.9	+5.5		
		MAX6576	T _A = +25°C	-3.0	±0.8	+3.0] °C	
			T _A = +85°C	-4.5	±0.5	+4.5]	
Temperature Sensor			T _A = +125°C	-5.0	±0.5	+5.0		
Error (Note 1)			T _A = -20°C	-7.5	±1.1	+7.5		
			T _A = 0°C	-6.5	±0.9	+6.5	°C	
		MAX6577	T _A = +25°C	-3.0	±0.8	+3.0		
			T _A = +85°C	-3.5	±0.5	+3.5		
			T _A = +125°C	-4.5	±0.5	+4.5		
			V _{TS1} = GND, V _{TS0} = GND		10T		μs	
Output Clock Daried	tout	MAX6576, T (temp) in °K, Figure 1	V_{TS1} = GND, V_{TS0} = V_{DD}		40T			
Output Clock Period			$V_{TS1} = V_{DD}, V_{TS0} = GND$		160T			
			$V_{TS1} = V_{DD}, V_{TS0} = V_{DD}$		640T			
		MAX6577, T (temp) in °K, Figure 2	V _{TS1} = GND, V _{TS0} = GND		4T		Hz	
Output Clock Frequency	£		V_{TS1} = GND, V_{TS0} = V_{DD}		1T			
Output Clock Frequency	fout		$V_{TS1} = V_{DD}, V_{TS0} = GND$		T/4			
			$V_{TS1} = V_{DD}, V_{TS0} = V_{DD}$		T/16			
OUT Duty Cycle (Note 2)					0.5			
Time-Select Pin Logic Levels	VIL					0.8	- V	
	V _{IH}			2.3				
	V _{OL}	V _{DD} > 4.5V, I _{SINK} = 3.2mA				0.4	- V	
		V _{DD} > 2.7V, I _{SINK} = 1.2mA				0.3		
OUT Voltage		V _{DD} > 4.5V, I _{SRC} = 800µA		V _{DD} - 1.	5			
	V _{OH}	$V_{DD} > 2.7V, I_{SRC} = 500\mu A$		0.8V _{DD}]	

Note 1: See the Temperature Accuracy histograms in the *Typical Operating Characteristics*.

Note 2: The output duty cycle is guaranteed to be 50% by an internal flip-flop.

SOT Temperature Sensors with Period/Frequency Output

Typical Operating Characteristics

(V_{DD} = +5V, T_A = +25°C, unless otherwise noted.)

SOT Temperature Sensors with Period/Frequency Output

Pin Description

PIN	NAME	FUNCTION				
1	V _{DD}	Positive Supply Voltage				
2	GND	Ground				
3	N.C.	o Connection. Connect pin to GND or leave open.				
4, 5	TS1, TS0	Time-Select Pins. TS1 and TS0 set the temperature scale factor by connecting TS1 and TS0 to either $V_{\mbox{DD}}$ or GND. See Tables 1 and 2.				
6	6 OUT	Square-Wave Output with a Clock Period Proportional to Absolute Temperature (°K) (MAX6576)				
0		Square-Wave Output with a Clock Frequency Proportional to Absolute Temperature (°K) (MAX6577)				

Table 1. MAX6576 Time-Select PinConfiguration

TS1	TS0	SCALAR MULTIPLIER (µs/°K)
GND	GND	10
GND	V _{DD}	40
V _{DD}	GND	160
V _{DD}	V _{DD}	640

Note: The temperature, in °C, may be calculated as follows:

$$T(^{\circ}C) = \frac{PERIOD(\mu s)}{SCALAR MULTIPLIER(\mu s/^{\circ}K)} - 273.15^{\circ}K$$

Detailed Description

The MAX6576/MAX6577 low-cost, low-current (140 μ A typ) temperature sensors are ideal for interfacing with microcontrollers (μ Cs) or microprocessors (μ Ps). The MAX6576 converts ambient temperature into a 50% dutycycle square wave with a period proportional to absolute temperature. The MAX6577 converts ambient temperature into a 50% duty-cycle square wave with a frequency proportional to absolute temperature. Time-select pins (TS1, TS0) permit the internal temperature-controlled oscillator (TCO) to be scaled by four preset multipliers. The MAX6576/MAX6577 feature a single-wire interface to minimize the number of port pins necessary for interfacing with a μ P.

MAX6576 Characteristics

The MAX6576 temperature sensor converts temperature to period. The output of the device is a free-running, 50% duty-cycle square wave with a period that is proportional

Table 2. MAX6577 Time-Select PinConfiguration

TS1	TS0	SCALAR MULTIPLIER (Hz/°K)
GND	GND	4
GND	V _{DD}	1
V _{DD}	GND	1/4
V _{DD}	V _{DD}	1/16

Note: The temperature, in °C, may be calculated as follows:

$$T(^{\circ}C) = \frac{FREQUENCY(\mu s)}{SCALAR MULTIPLIER(\mu s/^{\circ}K)} - 273.15^{\circ}K$$

to the absolute temperature (°K) of the device (Figure 1). The MAX6576 has a push/pull CMOS output with sharp edges. The speed of the output square wave can be selected by hard-wiring TS1 and TS0 as shown in Table 1. One of four scaled output periods can be selected using TS1 and TS0.

MAX6577 Characteristics

The MAX6577 temperature sensor converts temperature to frequency. The output of the device is a free-running, 50% duty-cycle square wave with a frequency that is proportional to the absolute temperature (°K) of the device (Figure 2). The MAX6577 has a push/pull CMOS output with sharp edges. The speed of the output square wave can be selected by hard-wiring TS1 and TS0 as shown in Table 2. One of four scaled output frequencies can be selected using TS1 and TS0.

SOT Temperature Sensors with Period/Frequency Output

Figure 1. MAX6576 Timing Diagram

Applications Information

Quick-Look Circuits

Figure 3 shows a quick-look application circuit for the MAX6576 using a universal counter measuring period. TS1 and TS0 are both tied to ground to select a scalar multiplier of $10\mu s/^{\circ}$ K. The MAX6576 converts the ambient temperature into a square wave with a period that is 10 times the absolute temperature of the device in μ s. At room temperature, the universal counter will display approximately 2980 μ s.

Figure 4 shows a quick-look application circuit for the MAX6577 using a universal counter measuring frequency. TS1 is tied to ground and TS0 is tied to V_{DD} to select a scalar multiplier of $1Hz/^{\circ}K$. The MAX6577 converts the ambient temperature into a square wave with a frequency that is equal to the absolute temperature of the device in Hertz. At room temperature, the universal counter will display approximately 298Hz.

Interfacing with a Microcontroller

Figure 5 shows the MAX6577 interfaced with an 8051 μ C. In this example, TS1 is tied to ground and TS0 is tied to

Figure 2. MAX6577 Timing Diagram

V_{DD} to select a scalar multiplier of 1Hz/°K. The MAX6577 converts the ambient temperature into a square wave with a frequency that is equal to the absolute temperature of the device in Hertz. The 8051 μ C reads the frequency of the square-wave output of the MAX6577 into Timer 0 and displays the temperature as degrees Celsius in binary on Port 1. Listing 1 provides the code for this application. The interface is similar for the MAX6576, except the μ C will perform a period measurement.

Noise Considerations

The accuracy of the MAX6576/MAX6577 is susceptible to noise generated both internally and externally. The effects of external noise can be minimized by placing a 0.1μ F ceramic bypass capacitor close to the supply pin of the devices. Internal noise is inherent in the operation of the devices and is detailed in Table 3. Internal averaging minimizes the effect of this noise when using longer scalar timeout multipliers. The effects of this noise are included in the overall accuracy of the devices as specified in the *Electrical Characteristics*.

SOT Temperature Sensors with Period/Frequency Output

Figure 3. MAX6576 Quick-Look Circuit

Figure 4. MAX6577 Quick-Look Circuit

Table 3. Typical Peak Noise Amplitude

Figure 5. Interfacing with a μC

Chip Information

TRANSISTOR COUNT: 302

PARAMETER	MAX6576				MAX	577		
Scalar Multiplier	10	40	160	640	4	1	1/4	1/16
Noise Amplitude (°C)	±0.38	±0.17	±0.11	±0.094	±0.13	±0.066	±0.040	±0.028

Г

SOT Temperature Sensors with Period/Frequency Output

Listing 1. 8051 Code Example

			MAX6577 Temp to Frequency n a sensor into timer 0
-			in binary on port 1.
10.0	-		ay 21 or 00010101 on P1
;******	******	*****	*******
; EQUATES			
TEMPH	EQU	10H	; TEMPERATURE
TEMPL	EQU	11H	
TICKS	EQU	12H	;number of 50 ms - counts to 1 second
NEWT	BIT	00h	;new temp flag- bit address in 20h
; MAIN		•	
	ORG	0	;note one isr's used- timer overflow
	AJMP		;jump over isr's
	ORG	1BH	;TF1 ISR
TICK:	PUSH		;stash acc
· roloci	PUSH		;stash psw
; reload			close for subb
	CLR	С А,#0B0H	clear for subb
	MOV		;latency fix ;subtract timer low latency < 20
	SUBB MOV	01 AL 2015/2 200	;50 ms reload value- low
	MOV	TL1,A TH1,#03CH	;50 ms reload value- 10w ;50 ms reload value- high
	DJNZ	TICKS, NORL	;jump over counter code
	MOV	TICKS, #20	; reload ticks
•read con		templ and temp h:	
GTAG:	MOV	A, THO	;get timer high
UIAU.	MOV	B,TLO	;grab timer low
	CJNE	A, THO, GTAG	;get again if rollover
	MOV	TEMPH, A	;stash high
	MOV	TEMPL, B	;stash low
	MOV	TH0,#0	;zero counter
	MOV	TL0,#0	;zero counter
	SETB		;set data ready flag
NORL:	POP	PSW	,
	POP	ACC	
	RETI		;done
BEGIN:		MOV SP,#70h	;set sp at 70H
;setup ti	mers to		put, t1 timer 50 ms
	MOV	TMOD, #15H	;t1 timer- t0 counter
	MOV	TH1,#03CH	;50 ms reload value- high
	MOV	TL1,#0B0H	;50 ms reload value- low
	MOV	TL0,#0	;reset counter low
	MOV	тно,#0	;reset counter high
	MOV	TCON, #50H	;start both timers
	MOV	TICKS,#20	$;20 \times 50 \text{ ms} = 1 \text{ sec}$
	MOV	IE,#88H	;enable t1 ints and global
; ;inits do	one- meas	ure	
DOTMP :	CLR	NEWT	;clear data flag
WAITT:	JNB	NEWT, WAITT	;wait for data

SOT Temperature Sensors with Period/Frequency Output

Listing 1. 8051 Code Example (continued)

MO	ыр С Двв А,#011н	;get temp (K) ;ready for subb ;sub low byte of 273 ;stash back
MO	DV A, TEMPH JBB A, #01H	;get high byte for completeness ;sub high byte and prop carry ;stash
;display it MO CP MO JM	PLA DVP1,A	;get temp (C) ;compliment for led's- active low ;output it
EN	۳D	

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
6 SOT23	U6-4	<u>21-0058</u>	<u>90-0175</u>

SOT Temperature Sensors with Period/Frequency Output

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	4/99	Initial release	—
1	10/14	Removed automotive reference from data sheet	1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.