1% max Initial Accuracy

♦ 0.12µV/µA Load Regulation

Stable with CLOAD = 0 to 2.2nF

♦ 8µV/V Line Regulation

100ppm/°C max Temperature Coefficient

• 0.8µA/V Supply Current Variation with VIN

±400µA Output Source and Sink Current

100mV Dropout at 400µA Load Current

45µA max Quiescent Supply Current

General Description

The MAX6001–MAX6005 family of SOT23, low-cost series voltage references meets the cost advantage of shunt references and offers the power-saving advantage of series references, which traditionally cost more. Unlike conventional shunt-mode (two-terminal) references that must be biased at the load current and require an external resistor, these devices eliminate the need for an external resistor and offer a supply current that is virtually independent of the supply voltage.

These micropower, low-dropout, low-cost devices are ideal for high-volume, cost-sensitive 3V and 5V batteryoperated systems with wide variations in supply voltage that require very low power dissipation. Additionally, these devices are internally compensated and do not require an external compensation capacitor, saving valuable board area in space-critical applications.

Applications

Portable/Battery-Powered Equipment Notebook Computers PDAs, GPSs, and DMMs Cellular Phones Pagers Hard-Disk Drives

Selector Guide

PART	OUTPUT VOLTAGE (V)	INPUT VOLTAGE (V)		
MAX6001	1.250	2.5 to 12.6		
MAX6002	2.500	(V _{OUT} + 200mV) to 12.6		
MAX6003	5003 3.000 (V _{OUT} + 200mV) to			
MAX6004	MAX6004 4.096 (V _{OUT} + 200mV) to 12			
MAX6005	5.000	(V _{OUT} + 200mV) to 12.6		

M/IXI/M

_____ Maxim Integrated Products 1

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	SOT TOP MARK
MAX6001EUR-T	-40°C to +85°C	3 SOT23-3	FZCW
MAX6002EUR-T	-40°C to +85°C	3 SOT23-3	FZCX
MAX6003EUR-T	-40°C to +85°C	3 SOT23-3	FZDK
MAX6004EUR-T	-40°C to +85°C	3 SOT23-3	FZCY
MAX6005EUR-T	-40°C to +85°C	3 SOT23-3	FZCZ

Typical Operating Circuit

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to GND

IN	0.3V to +13.5V
OUT	0.3V to (V _{IN} + 0.3V)
Output Short Circuit to GND or IN (VIN < 6	V)Continuous
Output Short Circuit to GND or IN ($V_{IN} \ge 6$)	V)60sec

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX6001

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT						
Output Voltage	Vout	$T_A = +25^{\circ}C$	1.237	1.250	1.263	V
Output Voltage Temperature Coefficient (Note 2)	TCV _{OUT}			20	100	ppm/°C
Line Regulation	$\Delta V_{OUT} / \Delta V_{IN}$	$2.5V \le V_{\rm IN} \le 12.6V$		8	120	μV/V
Lood Dogulation	ΔV _{OUT} /	Sourcing: $0 \le I_{OUT} \le 400 \mu A$		0.12	0.8	
Load Regulation	ΔI_{OUT}	Sinking: $-400\mu A \le I_{OUT} \le 0$		0.15	1.0	μV/μA
OUT Short-Circuit Current		Short to GND		4		mA
OUT SHOIT-CITCUIT CUTTERI	ISC	Short to IN		4		IIIA
Temperature Hysteresis (Note 3)				130		ppm
Long-Term Stability	ΔV _{OUT} / time	1,000 hours at $T_A = +25^{\circ}C$		50		ppm/ 1,000hrs
DYNAMIC			1			1
	f = 0.1Hz to 10Hz		25		μVp-р	
Noise Voltage	eout	f = 10Hz to 10kHz		65		μV _{RMS}
Ripple Rejection	$\Delta V_{OUT}/\Delta V_{IN}$	V _{IN} = 5V ±100mV, f = 120Hz		86		dB
Turn-On Settling Time	t _R	To $V_{OUT} = 0.1\%$ of final value, $C_{OUT} = 50 pF$		30		μs
Capacitive-Load Stability Range	Cout	(Note 4)	0		2.2	nF
INPUT		•	·			
Supply Voltage Range	VIN	Guaranteed by line-regulation test	2.5		12.6	V
Quiescent Supply Current	lin			27	45	μA
Change in Supply Current	I _{IN} /V _{IN}	$2.5V \le V_{IN} \le 12.6V$		0.8	2.6	μA/V

ELECTRICAL CHARACTERISTICS—MAX6002

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
OUTPUT		I				1	
Output Voltage	Vout	$T_A = +25^{\circ}C$	2.475	2.500	2.525	V	
Output Voltage Temperature Coefficient (Note 2)	TCV _{OUT}			20	100	ppm/°C	
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		15	200	μ٧/٧	
	ΔVOUT/	Sourcing: $0 \le I_{OUT} \le 400\mu A$		0.14	0.90		
Load Regulation	ΔΙΟυτ	Sinking: -400 μ A \leq I _{OUT} \leq 0		0.18	1.10	μν/μΑ	
Dropout Voltage (Note 5)	V _{IN} - Vout	I _{OUT} = 400μA		100	200	mV	
OLIT Chart Circuit Current	1	Short to GND		4			
OUT Short-Circuit Current	I _{SC}	Short to IN		4		- mA	
Temperature Hysteresis (Note 3)	ΔV _{OUT} / time			130		ppm	
Long-Term Stability	ΔV _{OUT} / time	1,000 hours at T _A = +25°C		50		ppm/ 1,000hrs	
DYNAMIC							
		f = 0.1Hz to 10Hz		60		µVp-p	
Noise Voltage	eout	f = 10Hz to 10kHz		125		μV _{RMS}	
Ripple Rejection	$\Delta V_{OUT}/\Delta V_{IN}$	V _{IN} = 5V ±100mV, f = 120Hz		82		dB	
Turn-On Settling Time	t _R	To $V_{OUT} = 0.1\%$ of final value, $C_{OUT} = 50pF$		85		μs	
Capacitive-Load Stability Range	Соит	(Note 4)	0		2.2	nF	
INPUT							
Supply Voltage Range	VIN	Guaranteed by line-regulation test	V _{OUT} + (0.2	12.6	V	
Quiescent Supply Current	l _{IN}			27	45	μΑ	
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		0.8	2.6	μA/V	

ELECTRICAL CHARACTERISTICS—MAX6003

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT	1		_			
Output Voltage	Vout	$T_A = +25^{\circ}C$	2.97	3.00	3.03	V
Output Voltage Temperature Coefficient (Note 2)	TCVOUT			20	100	ppm/°C
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		20	220	μ٧/٧
Lood Dogulation	ΔVout/	Sourcing: $0 \le I_{OUT} \le 400 \mu A$		0.14	0.90	
Load Regulation	ΔI_{OUT}	Sinking: $-400\mu A \le I_{OUT} \le 0$		0.18	1.10	μν/μΑ
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	I _{OUT} = 400μA		100	200	mV
OLIT Chart Circuit Current	1	Short to GND		4		
OUT Short-Circuit Current	ISC	Short to IN		4		- mA
Temperature Hysteresis (Note 3)	ΔV _{OUT} / time			130		ppm
Long-Term Stability	ΔV _{OUT} / time	1,000 hours at T _A = +25°C		50		ppm/ 1,000hrs
DYNAMIC						
		f = 0.1Hz to 10Hz		75		μVp-р
Noise Voltage	eout	f = 10Hz to 10kHz		150		μV _{RMS}
Ripple Rejection	$\Delta V_{OUT}/\Delta V_{IN}$	V _{IN} = 5V ±100mV, f = 120Hz		80		dB
Turn-On Settling Time	t _R	To $V_{OUT} = 0.1\%$ of final value, $C_{OUT} = 50pF$		100		μs
Capacitive-Load Stability Range	Cout	(Note 4)	0		2.2	nF
INPUT						
Supply Voltage Range	VIN	Guaranteed by line-regulation test	V _{OUT} + (0.2	12.6	V
Quiescent Supply Current	liN			27	45	μA
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		0.8	2.6	μΑ/V

ELECTRICAL CHARACTERISTICS—MAX6004

 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
OUTPUT						1	
Output Voltage	Vout	$T_A = +25^{\circ}C$	4.055	4.096	4.137	V	
Output Voltage Temperature Coefficient (Note 2)	TCVOUT			20	100	ppm/°C	
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		25	240	μV/V	
Lood Dogulation	ΔVout/	Sourcing: $0 \le I_{OUT} \le 400 \mu A$		0.15	1.00		
Load Regulation	ΔI_{OUT}	Sinking: $-400\mu A \le I_{OUT} \le 0$		0.20	1.20	μ٧/μΑ	
Dropout Voltage (Note 5)	V _{IN} - Vout	l _{OUT} = 400μA		100	200	mV	
OUT Short-Circuit Current	1	Short to GND		4		m 4	
OUT Short-Circuit Current	Isc	Short to IN		4		- mA	
Temperature Hysteresis (Note 3)	ΔV _{OUT} / time	1,000 hours at T _A = +25°C		130		ppm	
Long-Term Stability	ΔV _{OUT} / time	1,000 hours at T _A = +25°C		50		ppm/ 1,000hrs	
DYNAMIC							
		f = 0.1Hz to 10Hz		100		μVp-р	
Noise Voltage	eout	f = 10Hz to 10kHz		200		μV _{RMS}	
Ripple Rejection	$\Delta V_{OUT}/\Delta V_{IN}$	V _{IN} = 5V ±100mV, f = 120Hz		77		dB	
Turn-On Settling Time	t _R	To $V_{OUT} = 0.1\%$ of final value, $C_{OUT} = 50pF$		160		μs	
Capacitive-Load Stability Range	COUT	(Note 4)	0		2.2	nF	
INPUT							
Supply Voltage Range	VIN	Guaranteed by line-regulation test	Vout + (0.2	12.6	V	
Quiescent Supply Current	lin			27	45	μA	
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		0.8	2.6	μA/V	

ELECTRICAL CHARACTERISTICS—MAX6005

 $(V_{IN} = +5.5V, I_{OUT} = 0, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT						1
Output Voltage	V _{OUT}	$T_A = +25^{\circ}C$	4.950	5.000	5.050	V
Output Voltage Temperature Coefficient (Note 2)	TCVOUT			20	100	ppm/°C
Line Regulation	ΔV _{OUT} / ΔVIN	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		25	240	μ٧/٧
Load Degulation	ΔVout/	Sourcing: $0 \le I_{OUT} \le 400 \mu A$		0.17	1.00	
Load Regulation	ΔI_{OUT}	Sinking: $-400\mu A \le I_{OUT} \le 0$		0.24	1.20	μν/μΑ
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	I _{OUT} = 400μA		100	200	mV
OUT Short-Circuit Current	l	Short to GND		4		m 4
OUT Short-Circuit Current	I _{SC}	Short to IN		4		mA
Temperature Hysteresis (Note 3)				130		ppm
Long-Term Stability	ΔV _{OUT} / time	1,000 hours at T _A = +25°C		50		ppm/ 1,000hrs
DYNAMIC						
Noise Veltage	0.01/7	f = 0.1Hz to 10Hz		120		µVр-р
Noise Voltage	eout	f =10Hz to 10kHz		240		μV _{RMS}
Ripple Rejection	$\Delta V_{OUT} / \Delta V_{IN}$	V _{IN} = 5V ±100mV, f = 120Hz		72		dB
Turn-On Settling Time	t _R	To $V_{OUT} = 0.1\%$ of final value, $C_{OUT} = 50pF$		220		μs
Capacitive-Load Stability Range	Cout	(Note 4)	0		2.2	nF
INPUT		•				
Supply Voltage Range	VIN	Guaranteed by line-regulation test	Vout + ().2	12.6	V
Quiescent Supply Current	l _{IN}			27	45	μA
Change in Supply Current	I _{IN} /V _{IN}	$(V_{OUT} + 0.2V) \le V_{IN} \le 12.6V$		0.8	2.6	μA/V

Note 1: All devices are 100% production tested at $T_A = +25$ °C and are guaranteed by design for $T_A = T_{MIN}$ to T_{MAX} , as specified.

Note 2: Temperature coefficient is measured by the "box" method; i.e., the maximum ΔV_{OUT} is divided by the maximum Δt .

Note 3: Thermal hysteresis is defined as the change in $+25^{\circ}$ C output voltage before and after cycling the device from T_{MIN} to T_{MAX}. **Note 4:** Not production tested. Guaranteed by design.

Note 5: Dropout voltage is the minimum input voltage at which V_{OUT} changes $\leq 0.2\%$ from V_{OUT} at V_{IN} = 5.0V (V_{IN} = 5.5V for MAX6005).

M/XI/M

_Typical Operating Characteristics

 $(V_{IN} = +5V \text{ for MAX6001}-MAX6004, V_{IN} = +5.5V \text{ for MAX6005}; I_{OUT} = 0; T_A = +25^{\circ}C; unless otherwise noted.) (Note 6)$

MAX6001-MAX6005

MAX6001

 $(V_{IN} = +5V \text{ for MAX6001}-MAX6004, V_{IN} = +5.5V \text{ for MAX6005}; I_{OUT} = 0; T_A = +25^{\circ}C; unless otherwise noted.) (Note 6)$

MAX6005

M/IXI/N

Typical Operating Characteristics (continued)

 $(V_{IN} = +5V \text{ for MAX6001}-MAX6004, V_{IN} = +5.5V \text{ for MAX6005}; I_{OUT} = 0; T_A = +25^{\circ}C; unless otherwise noted.) (Note 6)$

///XI//

Pin Description

Supply Current

PIN	NAME	FUNCTION
1	IN	Supply Voltage Input
2	OUT	Reference Voltage Output
3	GND	Ground

Detailed Description

The MAX6001–MAX6005 bandgap references offer a temperature coefficient of <100ppm/°C and initial accuracy of better than 1%. These devices can sink and source up to 400 μ A with <200mV of dropout voltage, making them attractive for use in low-voltage applications.

Applications Information

Output/Load Capacitance

Devices in this family do not require an output capacitance for frequency stability. They are stable for capacitive loads from 0 to 2.2nF. However, in applications where the load or the supply can experience step changes, an output capacitor will reduce the amount of overshoot (or undershoot) and assist the circuit's transient response. Many applications do not need an external capacitor, and this family can offer a significant advantage in these applications when board space is critical. The quiescent supply current of these series-mode references is a maximum of 45μ A and is virtually independent of the supply voltage, with only a 0.8μ A/V variation with supply voltage. Unlike shunt-mode references, the load current of these series-mode references is drawn from the supply voltage only when required, so supply current is not wasted and efficiency is maximized over the entire supply voltage range. This improved efficiency can help reduce power dissipation and extend battery life.

When the supply voltage is below the minimum specified input voltage (as during turn-on), the devices can draw up to 200μ A beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.

Output Voltage Hysteresis

Output voltage hysteresis is the change in the output voltage at $T_A = +25^{\circ}$ C before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The typical temperature hysteresis value is 130ppm.

Figure 1. Positive and Negative References from Single +3V or +5V Supply

Turn-On Time

These devices typically turn on and settle to within 0.1% of their final value in 30µs to 220µs depending on the device. The turn-on time can increase up to 1.5ms with the device operating at the minimum dropout voltage and the maximum load.

Positive and Negative Low-Power Voltage Reference

Figure 1 shows a typical method for developing a bipolar reference. The circuit uses a MAX681 voltage doubler/inverter charge-pump converter to power an ICL7652, thus creating a positive as well as a negative reference voltage.

Chip Information

TRANSISTOR COUNT: 70

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

© 1999 Maxim Integrated Products

12

Printed USA is a registered trademark of Maxim Integrated Products.