General Description

The MAX5062/MAX5063/MAX5064 high-frequency, 125V half-bridge, n-channel MOSFET drivers drive highand low-side MOSFETs in high-voltage applications. These drivers are independently controlled and their 35ns typical propagation delay, from input to output, are matched to within 3ns (typ). The high-voltage operation with very low and matched propagation delay between drivers, and high source/sink current capabilities in a thermally enhanced package make these devices suitable for the high-power, high-frequency telecom power converters. The 125V maximum input voltage range provides plenty of margin over the 100V input transient requirement of telecom standards. A reliable on-chip bootstrap diode connected between V_{DD} and BST eliminates the need for an external discrete diode.

The MAX5062A/C and the MAX5063A/C offer both noninverting drivers (see the *Selector Guide*). The MAX5062B/D and the MAX5063B/D offer a noninverting high-side driver and an inverting low-side driver. The MAX5064A/B offer two inputs per driver that can be either inverting or noninverting. The MAX5062A/B/C/D and the MAX5063A/B/C/D and the MAX5063A/B/C/D and the MAX5063A/B/C/D and the MAX5064A feature CMOS (V_{DD} / 2) logic inputs. The MAX5063A/B/C/D and the MAX5064A/B include a break-before-make adjustment input that sets the dead time between drivers from 16ns to 95ns. The drivers are available in the industry-standard 8-pin SO footprint and pin configuration, and a thermally enhanced 8-pin SO and 12-pin (4mm x 4mm) thin QFN packages. All devices operate over the -40°C to +125°C automotive temperature range.

Applications

Telecom Half-Bridge Power Supplies

Two-Switch Forward Converters

- Full-Bridge Converters
- Active-Clamp Forward Converters
- Power-Supply Modules

Motor Control

Features

- HIP2100/HIP2101 Pin Compatible (MAX5062A/ MAX5063A)
- Up to 125V Input Operation
- ♦ 8V to 12.6V V_{DD} Input Voltage Range
- ♦ 2A Peak Source and Sink Current Drive Capability
- ♦ 35ns Typical Propagation Delay
- Guaranteed 8ns Propagation Delay Matching Between Drivers
- Programmable Break-Before-Make Timing (MAX5064)
- Up to 1MHz Combined Switching Frequency while Driving 100nC Gate Charge (MAX5064)
- Available in CMOS (V_{DD} / 2) or TTL Logic-Level Inputs with Hysteresis
- Up to 15V Logic Inputs Independent of Input Voltage
- ♦ Low 2.5pF Input Capacitance
- Instant Turn-Off of Drivers During Fault or PWM Start-Stop Synchronization (MAX5064)
- Low 200µA Supply Current
- Versions Available With Combination of Noninverting and Inverting Drivers (MAX5062B/D and MAX5063B/D)
- Available in 8-Pin SO, Thermally Enhanced SO, and 12-Pin Thin QFN Packages

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK	PKG CODE
MAX5062AASA	-40°C to +125°C	8 SO	_	S8-5
MAX5062BASA	-40°C to +125°C	8 SO	_	S8-5
MAX5062CASA	-40°C to +125°C	8 SO-EP*	_	S8E-14
MAX5062DASA	-40°C to +125°C	8 SO-EP*	_	S8E-14

*EP = Exposed paddle.

Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing "-T" with "+T" when ordering. **Ordering Information continued at end of data sheet.**

Selector Guide

PART	HIGH-SIDE DRIVER	LOW-SIDE DRIVER	LOGIC LEVELS	PIN COMPATIBLE
MAX5062AASA	Noninverting	Noninverting	CMOS (V _{DD} / 2)	HIP 2100IB
MAX5062BASA	Noninverting	Inverting	CMOS (V _{DD} / 2)	—
MAX5062CASA	Noninverting	Noninverting	CMOS (V _{DD} / 2)	—
MAX5062DASA	Noninverting	Inverting	CMOS (V _{DD} / 2)	—

Selector Guide continued at end of data sheet.

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

All voltages referenced to GND, unless otherwise noted.) / _{DD} , IN_H, IN_L, IN_L+, IN_L-, IN_H+, IN_H0.3V to +15)L, BBM	
HS5V to +130	'
DH to HS0.3V to (V _{DD} + 0.3V	()
3ST to HS0.3V to +15	Ý
AGND to PGND (MAX5064)0.3V to +0.3	V
dV/dt at HS50V/n	s
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
8-Pin SO (derate 5.9mW/°C above +70°C)470.6mV	V

*Per JEDEC 51 standard multilayer board.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = V_{BST} = +8V$ to +12.6V, $V_{HS} = GND = 0V$, BBM = open, $T_A = -40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at $V_{DD} = V_{BST} = +12V$ and $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	МАХ	UNITS
POWER SUPPLIES		·					
Operating Supply Voltage	V _{DD}	(Note 2)		8.0		12.6	V
VDD Quiescent Supply Current	IDD	IN_H = IN_L = GND	MAX5062_/ MAX5063_		70	140	μA
	.00	(no switching)	MAX5064_		120	260	pri t
V _{DD} Operating Supply Current	IDDO	$f_{SW} = 500$ kHz, $V_{DD} = +$	12V			3	mA
BST Quiescent Supply Current	IBST	$IN_H = IN_L = GND$ (no	switching)		15	40	μA
BST Operating Supply Current	IBSTO	$f_{SW} = 500 \text{kHz}, V_{DD} = V$	BST = +12V			3	mA
UVLO (V _{DD} to GND)	UVLOVDD	V _{DD} rising		6.5	7.3	8.0	V
UVLO (BST to HS)	UVLOBST	BST rising	BST rising		6.9	7.8	V
UVLO Hysteresis					0.5		V
LOGIC INPUT							
Input-Logic High	V _{IH} _	MAX5062_/MAX5064A, CMOS (V _{DD} / 2) version		0.67 x V _{DD}	0.55 x V _{DD}		V
		MAX5063_/MAX5064B,	TTL version	2	1.65		
Input-Logic Low	V _{IL} _	MAX5062_/MAX5064A, CMOS (V _{DD} / 2) version			0.4 x V _{DD}	0.33 x V _{DD}	V
		MAX5063_/MAX5064B,	TTL version		1.4	0.8	
Logic-Input Hysteresis	V _{HYS}	MAX5062_/MAX5064A, CMOS (V _{DD} / 2) versior			1.6		V
		MAX5063_/MAX5064B, TTL version			0.25		

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = V_{BST} = +8V \text{ to } +12.6V, V_{HS} = GND = 0V, BBM = \text{open}, T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ unless otherwise noted}.$ Typical values are at $V_{DD} = V_{BST} = +12V$ and $T_A = +25^{\circ}\text{C}.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIO	NS	MIN	ТҮР	MAX	UNITS
		$V_{IN_H+}, V_{IN_L+} = 0V$	$V_{IN_H+}, V_{IN_L+} = 0V$				
		$V_{IN L} = V_{DD}$ for MAX5062	-1				
Logic-Input Current	I_IN	$V_{IN_H-}, V_{IN_L-}, V_{IN_H} = V_{DD}$			0.001	+1	μA
		$V_{\rm IN \ L} = 0V$ for MAX5062A					
		IN_H+, IN_L+ IN_H, to GN					
		IN_L to V _{DD} for MAX5062E					
Input Resistance	RIN	MAX5063B/D			1		MΩ
		IN_H-, IN_L-, IN_H, to V _{DD})				
		IN_L for MAX5062A/C, MAX	(5063A/C to GND				
Input Capacitance	CIN				2.5		рF
HIGH-SIDE GATE DRIVER	•						
HS Maximum Voltage	V _{HS_MAX}			125			V
BST Maximum Voltage	V _{BST_MAX}			140			V
Driver Output Resistance	D.	$V_{DD} = 12V, I_{DH} = 100mA$	$T_A = +25^{\circ}C$		2.5	3.3	0
(Sourcing)	R _{ON_HP}	(sourcing)	$T_A = +125^{\circ}C$		3.5	4.6	Ω
Driver Output Resistance	Davis	$V_{DD} = 12V, I_{DH} = 100mA$	$T_A = +25^{\circ}C$		2.1	2.8	Ω
(Sinking)	Ron_hn	(sinking) $T_A = +125^{\circ}C$			3.2	4.2	52
DH Reverse Current (Latchup Protection)		(Note 3)		400			mA
,							
Power-Off Pulldown Clamp Voltage		$V_{BST} = 0V$ or floating, $I_{DH} = 1mA$ (sinking)			0.94	1.16	V
Peak Output Current (Sourcing)	1	$C_L = 10nF$, $V_{DH} = 0V$			2		А
Peak Output Current (Sinking)	DH_PEAK	$C_L = 10nF, V_{DH} = 12V$			2		А
LOW-SIDE GATE DRIVER							
Driver Output Resistance	Poulo	$V_{DD} = 12V, I_{DL} = 100mA$	$T_A = +25^{\circ}C$		2.5	3.3	Ω
(Sourcing)	Ron_lp	(sourcing)	$T_A = +125^{\circ}C$		3.5	4.6	52
Driver Output Resistance	Poulu	$V_{DD} = 12V, I_{DL} = 100mA$	$T_A = +25^{\circ}C$		2.1	2.8	Ω
(Sinking)	Ron_ln	(sinking)	$T_A = +125^{\circ}C$		3.2	4.2	52
Reverse Current at DL (Latchup Protection)		(Note 3)		400			mA
Power-Off Pulldown Clamp Voltage		$V_{DD} = 0V$ or floating, $I_{DL} = 1mA$ (sinking)			0.95	1.16	V
Peak Output Current (Sourcing)	IPK_LP	$C_L = 10nF, V_{DL} = 0V$			2		А
Peak Output Current (Sinking)	IPK_LN	$C_L = 10nF, V_{DL} = 12V$			2		A
INTERNAL BOOTSTRAP DIODE	. –	•					-
Forward Voltage Drop	Vf	I _{BST} = 100mA			0.91	1.11	V
Turn-On and Turn-Off Time	t _R	I _{BST} = 100mA			40		ns

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = V_{BST} = +8V$ to +12.6V, $V_{HS} = GND = 0V$, BBM = open, $T_A = -40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at $V_{DD} = V_{BST} = +12V$ and $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	МАХ	UNITS	
SWITCHING CHARACTERISTICS	FOR HIGH-	AND LOW-SIDE DRIVERS	$(V_{DD} = V_{BST} = +1)$	2V)				
		$C_{L} = 1000 pF$			7			
Rise Time	t _R	$C_{L} = 5000 pF$			33		ns	
		C _L = 10,000pF			65			
		C _L = 1000pF			7			
Fall Time	t⊨	$C_{L} = 5000 pF$			33		ns	
		$C_{L} = 10,000 pF$			65			
Turn-On Propagation Delay Time	to ou	Figure 1, $C_L = 1000pF$	CMOS		30	55	ns	
Turn-On Fropagation Delay Time	td_on	(Note 3)	TTL		35	63	115	
Turn Off Branagation Dolay Time	to ore	Figure 1, $C_L = 1000pF$	CMOS		30	55	ns	
Turn-Off Propagation Delay Time	tD_OFF	(Note 3)	TTL		35	63		
Delay Matching Between Inverting Input to Output and Noninverting Input to Output	tMATCH1	C _L = 1000pF, BBM open f Figure 1 (Note 3)	C _L = 1000pF, BBM open for MAX5064, Figure 1 (Note 3)		2	8	ns	
Delay Matching Between Driver- Low and Driver-High	tMATCH2	C _L = 1000pF, BBM open f Figure 1 (Note 3)	or MAX5064,		2	8	ns	
		$R_{BBM} = 10k\Omega$			16			
Break-Before-Make Accuracy (MAX5064 Only)		$R_{BBM} = 47 k\Omega \text{ (Notes 3, 4)}$		40	56	72	ns	
(W) 0(0004 Offiy)		$R_{BBM} = 100 k\Omega$			95			
Internal Nonoverlap					1		ns	
Minimum Pulse-Width Input Logic	tow	$V_{DD} = V_{BST} = 12V$			135		20	
(High or Low) (Note 5)	tpw-min	$V_{DD} = V_{BST} = 8V$			170		ns	

Note 1: All devices are 100% tested at $T_A = +125^{\circ}C$. Limits over temperature are guaranteed by design.

Note 2: Ensure that the V_{DD}-to-GND or BST-to-HS voltage does not exceed 13.2V.

Note 3: Guaranteed by design, not production tested.

Note 4: Break-before-make time is calculated by $t_{BBM} = 8ns \times (1 + R_{BBM} / 10k\Omega)$.

Note 5: See the Minimum Pulse Width section.

Typical Operating Characteristics

(Typical values are at $V_{DD} = V_{BST} = +12V$ and $T_A = +25^{\circ}C$, unless otherwise specified.)

5

MAX5062/MAX5063/MAX5064

Typical Operating Characteristics (continued)

(Typical values are at $V_{DD} = V_{BST} = +12V$ and $T_A = +25^{\circ}C$, unless otherwise specified.)

DH OR DL FALL TIME vs. TEMPERATURE (C_{load} = 10nF)

DH OR DL RISE TIME vs. TEMPERATURE (CL = 10nF)

DH OR DL RISE PROPAGATION DELAY vs. temperature

/N/IXI/N

6

Typical Operating Characteristics (continued)

(Typical values are at $V_{DD} = V_{BST} = +12V$ and $T_A = +25^{\circ}C$, unless otherwise specified.)

DELAY MATCHING (DH/DL RISING)

DH/DL RESPONSE TO VDD GLITCH 10V/div DH 10V/div DL 10V/div V_{DD} 5V/div INPUT 40µs/div

M/XI/N

MAX5062/MAX5063 Pin Description

PIN	NAME	FUNCTION
1	V _{DD}	Power Input. Bypass to GND with a parallel combination of $0.1\mu F$ and $1\mu F$ ceramic capacitor.
2	BST	Boost Flying Capacitor Connection. Connect a $0.1\mu F$ ceramic capacitor between BST and HS for the high-side MOSFET driver supply.
3	DH	High-Side-Gate Driver Output. Driver output for the high-side MOSFET gate.
4	HS	Source Connection for High-Side MOSFET. Also serves as a return terminal for the high-side driver.
5	IN_H	High-Side Noninverting Logic Input
6	IN_L	Low-Side Noninverting Logic Input (MAX5062A/C, MAX5063A/C). Low-side inverting logic input (MAX5062B/D, MAX5063B/D).
7	GND	Ground. Use GND as a return path to the DL driver output and IN_H/IN_L inputs.
8	DL	Low-Side-Gate Driver Output. Drives low-side MOSFET gate.
	EP	Exposed Pad. Internally connected to GND. Externally connect the exposed pad to a large ground plane to aid in heat dissipation (MAX5062C/D, MAX5063C/D only).

MAX5064 Pin Description

PIN	NAME	FUNCTION
1	BST	Boost Flying Capacitor Connection. Connect a 0.1μ F ceramic capacitor between BST and HS for the high-side MOSFET driver supply.
2	DH	High-Side-Gate Driver Output. Drives high-side MOSFET gate.
3	HS	Source Connection for High-Side MOSFET. Also serves as a return terminal for the high-side driver.
4	AGND	Analog Ground. Return path for low-switching current signals. IN_H/IN_L inputs referenced to
5	BBM	Break-Before-Make Programming Resistor Connection. Connect a $10k\Omega$ to $100k\Omega$ resistor from BBM to AGND to program the break-before-make time (t _{BBM}) from 16ns to 95ns. Resistance values greater than $200k\Omega$ disables the BBM function and makes t _{BBM} = 1ns. Bypass this pin with at least a 1nF capacitor to AGND.
6	IN_H-	High-Side Inverting CMOS (V_{DD} / 2) (MAX5064A), or TTL (MAX5064B) Logic Input. Connect to AGND when not used.
7	IN_H+	High-Side Noninverting CMOS (V_DD / 2) (MAX5064A), or TTL (MAX5064B) Logic Input. Connect to V_DD when not used.
8	IN_L-	Low-Side Inverting CMOS (V_{DD} / 2) (MAX5064A), or TTL (MAX5064B) Logic Input. Connect to AGND when not used.
9	IN_L+	Low-Side Noninverting CMOS (V _{DD} / 2) (MAX5064A), or TTL (MAX5064B) Logic Input. Connect to V _{DD} when not used.
10	PGND	Power Ground. Return path for high-switching current signals. Use PGND as a return path for the low-side driver.
11	DL	Low-Side-Gate Driver Output. Drives the low-side MOSFET gate.
12	V _{DD}	Power Input. Bypass to PGND with a 0.1µF ceramic in parallel with a 1µF ceramic capacitor.
_	EP	Exposed Pad. Internally connected to AGND. Externally connect to a large ground plane to aid in heat dissipation.

Figure 1. Timing Characteristics for Noninverting and Inverting Logic Inputs

Detailed Description

The MAX5062/MAX5063/MAX5064 are 125V/2A highspeed, half-bridge MOSFET drivers that operate from a supply voltage of +8V to +12.6V. The drivers are intended to drive a high-side switch without any isolation device like an optocoupler or drive transformer. The high-side driver is controlled by a TTL/CMOS logic signal referenced to ground. The 2A source and sink drive capability is achieved by using low RDS_ON pand n-channel driver output stages. The BiCMOS process allows extremely fast rise/fall times and low propagation delays. The typical propagation delay from the logic-input signal to the drive output is 35ns with a matched propagation delay of 3ns typical. Matching these propagation delays is as important as the absolute value of the delay itself. The high 125V input voltage range allows plenty of margin above the 100V transient specification per telecom standards.

The MAX5064 is available in a thermally enhanced TQFN package, which can dissipate up to 1.95W (at +70°C) and allow up to 1MHz switching frequency while driving 100nC combined gate-charge MOSFETs.

MAX5062/MAX5063/MAX5064

Undervoltage Lockout

Both the high- and low-side drivers feature undervoltage lockout (UVLO). The low-side driver's UVLO_{LOW} threshold is referenced to GND and pulls both driver outputs low when V_{DD} falls below 6.8V. The high-side driver has its own undervoltage lockout threshold (UVLO_{HIGH}), referenced to HS, and pulls DH low when BST falls below 6.4V with respect to HS.

During turn-on, once V_{DD} rises above its UVLO threshold, DL starts switching and follows the IN_L logic input. At this time, the bootstrap capacitor is not charged and the BST-to-HS voltage is below UVLO_{BST}. For synchronous buck and half-bridge converter topologies, the bootstrap capacitor can charge up in one cycle and normal operation begins in a few microseconds after the BST-to-HS voltage exceeds UVLO_{BST}. In the two-switch forward topology, the BST capacitor takes some time (a few hundred microseconds) to charge and increase its voltage above UVLO_{BST}.

The typical hysteresis for both UVLO thresholds is 0.5V. The bootstrap capacitor value should be selected carefully to avoid unintentional oscillations during turn-on and turn-off at the DH output. Choose the capacitor value about 20 times higher than the total gate capacitance of the MOSFET. Use a low-ESR-type X7R dielectric ceramic capacitor at BST (typically a 0.1 μ F ceramic is adequate) and a parallel combination of 1 μ F and 0.1 μ F ceramic capacitors from VDD to GND (MAX5062_, MAX5063_) or to PGND (MAX5064_). The high-side MOSFET's continuous on-time is limited due to the charge loss from the high-side driver's quiescent current. The maximum on-time is dependent on the size of CBST, IBST (50 μ A max), and UVLOBST.

Output Driver

The MAX5062/MAX5063/MAX5064 have low 2.5 Ω RDS ON p-channel and n-channel devices (totem pole) in the output stage. This allows for a fast turn-on and turn-off of the high gate-charge switching MOSFETs. The peak source and sink current is typically 2A. Propagation delays from the logic inputs to the driver outputs are matched to within 8ns. The internal p- and n-channel MOSFETs have a 1ns break-before-make logic to avoid any cross conduction between them. This internal break-before-make logic eliminates shootthrough currents reducing the operating supply current as well as the spikes at V_{DD}. The DL voltage is approximately equal to V_{DD} and the DH-to-HS voltage, a diode drop below V_{DD}, when they are in a high state and to zero when in a low state. The driver R_{DS ON} is lower at higher VDD. Lower RDS ON means higher source and sink currents and faster switching speeds.

Internal Bootstrap Diode

An internal diode connects from V_{DD} to BST and is used in conjunction with a bootstrap capacitor externally connected between BST and HS. The diode charges the capacitor from V_{DD} when the DL low-side switch is on and isolates V_{DD} when HS is pulled high as the highside driver turns on (see the *Typical Operating Circuit*).

The internal bootstrap diode has a typical forward voltage drop of 0.9V and has a 10ns typical turn-off/turn-on time. For lower voltage drops from V_{DD} to BST, connect an external Schottky diode between V_{DD} and BST.

Programmable Break-Before-Make (MAX5064)

Half-bridge and synchronous buck topologies require that the high- or low-side switch be turned off before the other switch is turned on to avoid shoot-through currents. Shoot-through occurs when both high- and low-side switches are on at the same time. This condition is caused by the mismatch in the propagation delay from IN_H/IN_L to DH/DL, driver output impedance, and the MOSFET gate capacitance. Shootthrough currents increase power dissipation, radiate EMI, and can be catastrophic, especially with high input voltages.

The MAX5064 offers a break-before-make (BBM) feature that allows the adjustment of the delay from the input to the output of each driver. The propagation delay from the rising edges of IN_H and IN_L to the rising edges of DH and DL, respectively, can be programmed from 16ns to 95ns. Note that the BBM time (tBBM) has a higher percentage error at lower value because of the fixed comparator delay in the BBM block. The propagation delay mismatch (tMATCH_) needs to be included when calculating the total tBBM error. The low 8ns (maximum) delay mismatch reduces the total tBBM variation. Use the following equations to calculate RBBM for the required BBM time and tBBM_ERROR:

$$R_{BBM} = 10k\Omega \times \left(\frac{t_{BBM}}{8ns} - 1\right) \text{ for } R_{BBM} < 200k\Omega$$

$$t_{BBM} \text{ ERROR} = 0.15 \times t_{BBM} + t_{MATCH}$$

where tBBM is in nanoseconds.

The voltage at BBM is regulated to 1.3V. The BBM circuit adjusts t_{BBM} depending on the current drawn by R_{BBM} . Bypass BBM to AGND with a 1nF or smaller ceramic capacitor (C_{BBM}) to avoid any effect of ground bounce caused during switching. The charging time of C_{BBM} does not affect t_{BBM} at turn-on because the BBM voltage is stabilized before the UVLO clears the device turn-on.

Topologies like the two-switch forward converter, where both high- and low-side switches are turned on and off simultaneously, can have the BBM function disabled by leaving BBM unconnected. When disabled, t_{BBM} is typically 1ns.

Driver Logic Inputs (IN_H, IN_L, IN_H+, IN_H-, IN_L+, IN_L-)

The MAX5062 /MAX5064A are CMOS (Vp / 2) logicinput drivers while the MAX5063 /MAX5064B have TTLcompatible logic inputs. The logic-input signals are independent of V_D. For example, the IC can be powered by a 10V supply while the logic inputs are provided from a 12V CMOS logic. Also, the logic inputs are protected against voltage spikes up to 15V, regardless of the VDD voltage. The TTL and CMOS logic inputs have 400mV and 1.6V hysteresis, respectively, to avoid double pulsing during transition. The logic inputs are high-impedance pins and should not be left floating. The low 2.5pF input capacitance reduces loading and increases switching speed. The noninverting inputs are pulled down to GND and the inverting inputs are pulled up to V_{DD} internally using a 1M Ω resistor. The PWM output from the controller must assume a proper state while powering up the device. With the logic inputs floating, the DH and DL outputs pull low as V_{DD} rises up above the UVLO threshold.

The MAX5064_ has two logic inputs per driver, which provide greater flexibility in controlling the MOSFET. Use IN_H+/IN_L+ for noninverting logic and IN_H-/IN_L- for inverting logic operation. Connect IN_H+/IN_L+ to V_{DD} and IN_H-/IN_L- to GND if not used. Alternatively, the unused input can be used as an ON/OFF function. Use IN_+ for active-low and IN_- for active-high shutdown logic.

Table 1. MAX5064_ 1	Fruth	Table
---------------------	--------------	-------

IN_H+/IN_L+	IN_H-/IN_L-	DH/DL
Low	Low	Low
Low	High	Low
High	Low	High
High	High	Low

Minimum Pulse Width

The MAX5062/MAX5063/MAX5064 uses a single-shot level shifter architecture to achieve low propagation delay. Typical level shifter architecture causes a minimum (high or low) pulse width (t_{Dmin}) at the output that may be higher than the logic-input pulse width. For MAX5062/MAX5063/MAX5064 devices, the DH minimum high pulse width (t_{Dmin-DH-H}) is lower than the DL minimum low pulse width (t_{Dmin-DL-L}) to avoid any

shoot-through in the absence of external BBM delay during the narrow pulse at low duty cycle (see Figure 2). At high duty cycle (close to 100%) the DH minimum low pulse width (t_{Dmin-DH-L}) must be higher than the DL minimum low pulse width (t_{Dmin-DL-L}) to avoid overlap and shoot-through (see Figure 3). In the case of MAX5062/MAX5063/MAX5064, there is a possibility of about 40ns overlap if an external BBM delay is not provided. We recommend adding external delay in the INH path so that the minimum low pulse width seen at INH is always longer than t_{PW-min}. See the *Electrical Characteristics* table for the typical values of t_{PW-MIN}.

Figure 2. Minimum Pulse-Width Behavior for Narrow Duty-Cycle Input (On-Time < t_{PW_MIN})

Figure 3. Minimum Pulse-Width Behavior for High Duty-Cycle Input (Off-Time < tPW_MIN)

Applications Information

Supply Bypassing and Grounding

Pay extra attention to bypassing and grounding the MAX5062/MAX5063/MAX5064. Peak supply and output currents may exceed 4A when both drivers are driving large external capacitive loads in-phase. Supply drops and ground shifts create forms of negative feedback for inverters and may degrade the delay and transition times. Ground shifts due to insufficient device grounding may also disturb other circuits sharing the same AC ground return path. Any series inductance in the V_{DD}, DH, DL, and/or GND paths can cause oscillations due to the very high di/dt when switching the MAX5062/ MAX5063/MAX5064 with any capacitive load. Place one or more 0.1µF ceramic capacitors in parallel as close to the device as possible to bypass VDD to GND (MAX5062/MAX5063) or PGND (MAX5064). Use a ground plane to minimize ground return resistance and series inductance. Place the external MOSFET as close as possible to the MAX5062/MAX5063/MAX5064 to further minimize board inductance and AC path resistance. For the MAX5064_ the low-power logic ground (AGND) is separated from the high-power driver return (PGND). Apply the logic-input signal between IN_ to AGND and connect the load (MOSFET gate) between DL and PGND.

Power Dissipation

Power dissipation in the MAX5062/MAX5063/MAX5064 is primarily due to power loss in the internal boost diode and the nMOS and pMOS FETS.

For capacitive loads, the total power dissipation for the device is:

$$P_{D} = \left(C_{L} \times V_{DD}^{2} \times f_{SW}\right) + \left(I_{DDO} + I_{BSTO}\right) \times V_{DD}$$

where C_L is the combined capacitive load at DH and DL. V_{DD} is the supply voltage and f_{SW} is the switching frequency of the converter. P_D includes the power dissipated in the internal bootstrap diode. The internal power dissipation reduces by P_{DIODE}, if an external bootstrap Schottky diode is used. The power dissipation in the internal boost diode (when driving a capacitive load) will be the charge through the diode per switching period multiplied by the maximum diode forward voltage drop (V_f = 1V).

$$P_{DIODE} = C_{DH} \times (V_{DD} - 1) \times f_{SW} \times V_{f}$$

The total power dissipation when using the internal boost diode will be PD and, when using an external Schottky diode, will be PD - PDIODE. The total power dissipated in the device must be kept below the maximum of 1.951W for the 12-pin TQFN package, 1.5W for the 8-pin SO with exposed pad, and 0.471W for the regular 8-pin SO package at TA = $+70^{\circ}$ C ambient.

Layout Information

The MAX5062/MAX5063/MAX5064 drivers source and sink large currents to create very fast rise and fall edges at the gates of the switching MOSFETs. The high di/dt can cause unacceptable ringing if the trace lengths and impedances are not well controlled. Use the following PC board layout guidelines when designing with the MAX5062/MAX5063/MAX5064:

 It is important that the V_{DD} voltage (with respect to ground) or BST voltage (with respect to HS) does not exceed 13.2V. Voltage spikes higher than 13.2V from V_{DD} to GND or BST to HS can damage the device. Place one or more low ESL 0.1 μ F decoupling ceramic capacitors from V_{DD} to GND (MAX5062/MAX5063) or to PGND (MAX5064), and from BST to HS as close as possible to the part. The ceramic decoupling capacitors should be at least 20 times the gate capacitance being driven.

- There are two AC current loops formed between the device and the gate of the MOSFET being driven. The MOSFET looks like a large capacitance from gate to source when the gate is being pulled low. The active current loop is from the MOSFET driver output (DL or DH) to the MOSFET gate, to the MOSFET source, and to the return terminal of the MOSFET driver (either GND or HS). When the gate of the MOS-FET is being pulled high, the active current loop is from the MOSFET driver output, (DL or DH), to the MOSFET gate, to the MOSFET source, to the return terminal of the drivers decoupling capacitor, to the positive terminal of the decoupling capacitor, and to the supply connection of the MOSFET driver. The decoupling capacitor will be either the flying capacitor connected between BST and HS or the decoupling capacitor for V_D. Care must be taken to minimize the physical distance and the impedance of these AC current paths.
- Solder the exposed pad of the TQFN (MAX5064) or SO (MAX5062C/D and MAX5063C/D) package to a large copper plane to achieve the rated power dissipation. Connect AGND and PGND at one point near V_{DD}'s decoupling capacitor return.

Figure 4. MAX5062 Half-Bridge Conversion

Figure 5. Synchronous Buck Converter

Typical Application Circuits (continued)

Figure 6. Two-Switch Forward Conversion

Figure 7. MAX5064 Half-Bridge Converter

Functional Diagrams M/XI/M M/X/// /VI/IXI/VI MAX5062A MAX5062B/ MAX5063A/ MAX5063C MAX5062C MAX5062D V_{DD}/2 CMOS V_{DD}/2 CMOS TTL BST BST BST IN_H IN H IN H DH DH DF 5 5 HS HS HS VDD VDD VDD DL IN_I DL IN_I DL IN 6 F GND GNE GND SO/SO-EP SO/SO-EP SO/SO-EP M/XX/// M /X I /VI /VI/IXI/VI MAX5064A MAX5063B/ MAX5064B MAX5063D V_{DD}/2 CMOS TTL TTL BST BST BST IN H-IN H₄ IN H DH DH DH Д D IN H-IN H-6 HS HS HS BBM BBM 5 VDD V_{DD} V_{DD} 12 12 IN L-IN L+ q DL DL DL 11 Π 11 Γ IN L IN I 8 AGND GND AGND PGND PGND 10 10 SO/SO-EP THIN QFN THIN QFN

Pin Configurations

Typical Operating Circuit

_Selector Guide (continued)

				-
PART	HIGH-SIDE DRIVER	LOW-SIDE DRIVER	LOGIC LEVELS	PIN COMPATIBLE
MAX5063AASA	Noninverting	Noninverting	TTL	HIP2101IB
MAX5063BASA	Noninverting	Inverting	TTL	—
MAX5063CASA	Noninverting	Noninverting	TTL	—
MAX5063DASA	Noninverting	Inverting	TTL	—
MAX5064AATC	Both Inverting and Noninverting	Both Inverting and Noninverting	CMOS (V _{DD} / 2)	_
MAX5064BATC	Both Inverting and Noninverting	Both Inverting and Noninverting	TTL	_

_Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK	PKG CODE
MAX5063AASA	-40°C to +125°C	8 SO	_	S8-5
MAX5063BASA	-40°C to +125°C	8 SO	—	S8-5
MAX5063CASA	-40°C to +125°C	8 SO-EP*	_	S8E-14
MAX5063DASA	-40°C to +125°C	8 SO-EP*	_	S8E-14
MAX5064AATC	-40°C to +125°C	12 TQFN	AAEF	T1244-4
MAX5064BATC	-40°C to +125°C	12 TQFN	AAEG	T1244-4

*EP = Exposed paddle.

Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing "-T" with "+T" when ordering.

Chip Information

TRANSISTOR COUNT: 790 PROCESS: HV BICMOS

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

										EXPOSED PAD				VARIATIONS									
PKG	12	12L 4×4			16L 4x4		20L 4×4		24L 4×4		28L 4×4		‹4	PKG.		02			E5		DOWN		
REF.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MEN.	NDM.	MAX.	PKG. CODES	MIN.	NDM.	MAX.	MIN.	NOM.	MAX.	
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.90	0.70	0.75	0.80	0.70	0.75	0.80	T1244-	1.95	2.10	2.25	1.95	2.10	2.25	YES
A1	0.0	0.02	0.05	0.0	20,0	0.05	0.0	0.02	0,05	0.0	0.02	0.05	0.0	0.02	0.05	T1244-	1.95	2.10	2.25	1.95	2.10	2.25	ND
A2	0.20 REF		0.20 REF		0.20 REF		F	0.20 REF		0.20 REF		F	T1644-		2.10	2.25	1.95	2.10	2.25	YES			
b	0.25	0.30	0.35		0.30	0.35		0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25	T1644-		2.10	2.25		2.10	2.25	ND
D	3.90	4.00	4,10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	T2044-		2.10	2.25	1.95	2.10	2.25	YES
E	3.90	4.00	4.10	3.90	4.00	4.10		4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	T2044-		2.10	2.25		2.10	2.25	ND
e		0.80 BS	-		65 BS	_		50 BS().50 BS	1).40 BS	1	T2444-		2.10	2.25	1.95	2.10	2.25	YES
<u>к</u>	0.25	- 0.55	-	0.25	- 0.55	- 0.65	0.25	0.55	-	0.25	0.40	0.50	0.25	0.40	- 0.50	T2444-		2.60	2.63		2.60	2.63	YES
<u> </u>	0.40	12	0.62	0.43		0.65	0.45		0.65	0.30		0.50	0.30	28	0.30	T2444-			2.63	2.45	2.60 2.60	2.63	ND
ND	+	3		16 4		20 5		24 6		28			12844-	1 5.30	2.00	1 2.70	C.30	2.00	2.70				
NE	+	3		4		5		6		7													
Jedec Var.	1	VGGB		+ VGC			VGGD-1		VGGD-2			VGGE											
2. 3.	dimens All din N Is T	MENSION HE TOT	ns are Ial nui	E IN MI MBIER C	LUNETE DF TER	ers, an Minals,	IGLES	ARE IN	DEGR	EES,													
1. 2. 3.	DIMENS ALL DIM N IS T THE TE JESD 9	Mension He tot Rminal 15—1 si	NS ARE IAL NUI .∰1 ID	E IN MI MBER (DENTIFIE 2. DETA	LUMETE DF TERI IR AND	ers, an Minals. Termin Termin	IGLES / VAL NU	ARE IN IMBERIN	DEGR	EES. NVENTK	IONAL,	BUT M	iust be	E LOCAT	TED WITI	HIN							
1. 2. 3.	DIMENS ALL DIN N IS TI THE TE	MENSION HE TOT RMINAL 15-1 SI XNE INE NE INE	NS ARE	in Mi Mber C Dentifie 2. Deta). The	LUMETE DF TERI TR AND ILS OF TERMIN	ers, an Minals, Termin Termin Ial #1	igles i Val nu Ial #1 Identif	ARE IN Imberin Identif Fier M	DEGR NG COI FIER AI AY BE	ees, Mentk Re opt Eithef	nonal, ₹ A MC	BUT M	iust be Marki	ed fea	TURE.								
1. 2. 3. (A)	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZO DIMENS	MENSION HE TOT RMINAL 5-1 SI 5-1 SI 5	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER	E IN MI MENER C DENTIFIE 2. DETA 2. THE 2. THE 3. TO IN TO THE	LUMETE DF TERI TERMIN TERMIN METALLI	ERS. AN MINALS. TERMIN TERMIN IAL #1 ZED TE IER OF	IGLES VAL NU IAL #1 IDENTIF RMINAL TERMIN	ARE IN IDENTIF TER M/ . AND I	DEGR NG COM FIER AN AY BE IS MEA	EES. NVENTK RE OPT EITHEF SURED	ional, R A MC Betwi	BUT M XLD OR EEN 0.3	iust Be Marki 25 mm	ed fea 1 And	TURE.								
1. 2. 3. (A) (A) 7.	DIMENS ALL DIM N IS THE JESD 9 THE ZC DIMENS FROM 1 ND AND	Mension He tot 15–1 Si Sne ine 10N b Termin/ D ne fi Ulation	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER	E IN MI MEER (2. Deta 2. Deta 3. The 3. To 1 To The DSSIBLE	LUNETE DF TERI R AND ILS OF TERMIN METALLI NUMB	ers. An minals. Termin termin Val #1 Zed te er of Symme	IGLES / IAL NU IAL ∯1 IDENTIF RMINAL TERMIN TRICAL	ARE IN IMBERIN IDENTIN TER M/ AND I AND I FASHK	DEGR NG CON FIER AN AY BE IS MEA IS MEA	ees, Nventik Re opt Eithef Sured H d ai	nonal, R A MC Betwi ND E S	BUT M OLD OR EEN 0.: SIDE RE	iust Be Marki 25 mm Espect	E LOCAT ED FEA 1 AND IVELY,	TURE.								
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DIM N IS TH JESD 9 THE ZC DIMENS FROM ND AND DEPOPU	Mension He tot Rminal 5-1 Si Nne ine ion 6 Termin/ D ne f Ulation Varity	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER N IS PO APPLIE	IN MI MER (DENTIFIE 2. DETA 2. DETA 2. DETA 2. DETA 2. DETA 3. TO I 3. TO I 5. TO I 5. TO I	LUMETE DF TERI TERMIN METALUI NUMB IN A	ERS. AN MINALS. TERMIN TERMIN IAL #1 ZED TE ER OF SYMME POSED	IGLES A VAL NU IDENTIF RMINAL TERMIN TERMIN TRICAL HEAT S	ARE IN IDENTIF TER M AND I VALS O FASHIC	DEGR NG CON FIER AN AY BE IS MEA IS MEA IN EAC DN.	EES. NVENTIK EITHEF ISURED H D AI	ND E S	BUT M XLD OR EEN 0.: SIDE RE	iust Be Marki 25 mm Espect	E LOCAT ED FEA 1 AND IVELY.	TURE.								
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENS ALL DIM N IS TO THE TE JESD 9 THE ZC DIMENS FROM 1 ND AND DEPOPU COPLAN	MENSION HE TOT RMINAL 5-1 SI XNE INE ION 6 TERMIN/ D NE F JLATION VARITY IG CON	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER N IS PO APPLIE IFORMS	E IN MI MEBER (DENTIFIE 2. DETA 2. DETA 2. THE 2. TO IN 2. TO THE 2. TO I 3. TO JE	LUMETE DF TER R AND ILS OF TERMIN METALUI NUMB IN A THE EXI IDEC MI	ERS. AN MINALS. TERMIN TERMIN IAL #1 ZED TE IER OF SYMME POSED 0220, 1	IGLES	ARE IN IDENTIFIER M/ AND I FASHK SINK SI FOR	DEGR NG COI FIER AF AY BE IS MEA IN EAC DN. LUG AS T2444-	EES. NVENTIK EITHEF ISURED H D AI	ND E S	BUT M XLD OR EEN 0.: SIDE RE	iust Be Marki 25 mm Espect	E LOCAT ED FEA 1 AND IVELY.	TURE.								
1. 2. 3. 4. 7. 9. 9.	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZC DIMENS FROM 1 ND AND DEPOPU COPLAN DRAWIN	MENSION HE TOT RMINAL 5-1 SI 5-1 SI 5-1 SI 5-1 SI 5-1 SI 100 b TERMIN/ D NE F ULATION VARITY IG CON G IS FO	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER N IS PO APPLIE IFORMS DR PAC	E IN MI MEBER (DENTIFIE 2. DETA 2. DE	LUMETE DF TERE TERMIN METALUI IN METALUI IN METALUI IN A THE EXI DRIENTA	ERS. AN MINALS. TERMIN TERMIN VAL #1 ZED TE ER OF SYMME POSED 0220, I TION R	IGLES A VAL NU IAL #1 IDENTIF RMINAL TERMIN TERMIN TRICAL HEAT S EXCEPT EFEREN	ARE IN IDENTIFIER M/ AND I FASHK SINK SI FOR	DEGR NG COI FIER AF AY BE IS MEA IN EAC DN. LUG AS T2444-	EES. NVENTIK EITHEF ISURED H D AI	ND E S	BUT M XLD OR EEN 0.: SIDE RE	iust Be Marki 25 mm Espect	E LOCAT ED FEA 1 AND IVELY.	TURE.								
1. 2. 3. 4. 7. 9. 9. 11.	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZC DIMENS FROM 1 ND AND DEPOPU COPLAN DRAWIN MARKING	MENSION HE TOT RMINAL 5-1 SI DNE INE ION B TERMIN/ D NE F ULATION VARITY IG CON G IS FO ARITY S	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP. REFER N IS PO APPLIE IFORMS DR PAC SHALL N	E IN MI MEER C DENTIFIE DETA D. THE S TO I S TO I S TO I TO JE KAGE (NOT EX	LUMETE DF TERM TERMIN METALUI IN A THE EXI DRIENTA CEED (ERS. AN MINALS. TERMIN TERMIN IAL #1 ZED TE ER OF SYMME POSED 0220, I TION R 0.08mm	IGLES A VAL NU IAL #1 IDENTIF RMINAL TERMIN TERMIN TRICAL HEAT S EXCEPT EFEREN	ARE IN IDENTIFIER M/ AND I FASHK SINK SI FOR	DEGR NG COI FIER AF AY BE IS MEA IN EAC DN. LUG AS T2444-	EES. NVENTIK EITHEF ISURED H D AI	ND E S	BUT M XLD OR EEN 0.: SIDE RE	iust Be Marki 25 mm Espect	E LOCAT ED FEA 1 AND IVELY.	TURE.								
1. 2. 3. 4. 7. 9. 11. 12. V	DIMENS ALL DIM N IS THE THE TE JESD 9 THE ZC DIMENS FROM 1 ND AND DEPOPH COPLAN DRAWIN MARKING COPLAN/	MENSION HE TOT RMINAL 5-1 SI 5-1 SI 5-1 SI 5-1 SI 10N b TERMIN D NE F ULATION VARITY IG CON G IS FO ARITY S E SHAL ENTERLI	APPLIE APPLIE APPLIE AL TIP. REFER N IS PO APPLIE IFORMS DR PAC SHALL NOT INES TO	E IN MI MIBER (DENTIFIE 2. DETA 5. TO I S TO I S TO I S TO I S TO I S TO I TO JE KAGE (NOT EX EXCEE D BE A	LUMETE DF TERRI R AND ILS OF TERMIN METALU: NUMB IN A THE EXI DEC MI DRIENTA CEED (ND 0.1 T TRUE	ERS. AN MINALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME POSED 0220, I TION R 0.08mm 0mm : POSIT	IGLES A VAL NU IAL #I IDENTIF RMINAL TERMIN TRICAL HEAT S EXCEPT EFEREN	ARE IN IDENTIFIER MU AND I VALS O FASHIC SINK SI FOR INK SI ICE ON	DEGR NG COI FIER AI AY BE IS MEA IN EAC DN. LUG AS T2444- NLY.	EES, NVENTIK RE OPT EITHEF SURED H D AI S WELL -3, T2	10 nal, R A MC D BETWI ND E S AS TI 444-4	BUT M DLD OR EEN 0.: SIDE R HE TER AND 1	IUST BE MARKI 25 mm ESPECT MINALS 12844-	E LOCAT ED FEA 1 AND IVELY.	TURE.				AS A			X	
1. 2. 3. 4. 7. 9. 11. 12. V	DIMENS ALL DIM N IS TI THE TE JESD 9 THE ZC DIMENS FROM 1 ND AND DEPOPU COPLAN MARKING COPLAN WARPAGI LEAD CE	MENSION HE TOT RMINAL 5-1 SI 5-1 SI 5-1 SI 5-1 SI 10N b TERMIN D NE F ULATION VARITY IG CON G IS FO ARITY S E SHAL ENTERLI	APPLIE APPLIE APPLIE AL TIP. REFER N IS PO APPLIE IFORMS DR PAC SHALL NOT INES TO	E IN MI MIBER (DENTIFIE 2. DETA 5. TO I S TO I S TO I S TO I S TO I S TO I TO JE KAGE (NOT EX EXCEE D BE A	LUMETE DF TERRI R AND ILS OF TERMIN METALU: NUMB IN A THE EXI DEC MI DRIENTA CEED (ND 0.1 T TRUE	ERS. AN MINALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME POSED 0220, I TION R 0.08mm 0mm : POSIT	IGLES A VAL NU IAL #I IDENTIF RMINAL TERMIN TRICAL HEAT S EXCEPT EFEREN	ARE IN IDENTIFIER MU AND I VALS O FASHIC SINK SI FOR INK SI ICE ON	DEGR NG COI FIER AI AY BE IS MEA IN EAC DN. LUG AS T2444- NLY.	EES, NVENTIK RE OPT EITHEF SURED H D AI S WELL -3, T2	10 nal, R A MC D BETWI ND E S AS TI 444-4	BUT M DLD OR EEN 0.: SIDE R HE TER AND 1	IUST BE MARKI 25 mm ESPECT MINALS 12844-	E LOCAT ED FEA 1 AND IVELY.	TURE.		TITLE PAG	KAGE	OUTLI 24, 28		QFN, 4		

Revision History

Pages changed at Rev 5: 1, 2, 4, 5, 11–15, 19, 20

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

20

is a registered trademark of Maxim Integrated Products, Inc.