TIGER ELECTRONIC CO.,LTD

Low-Power, Slew-Rate-Limited RS-485/RS-422 Transceivers

General Description

The MAX485 is low-power transceivers for RS-485 and RS-422 communication. IC contains one driver and one receiver. The driver slew rates of the MAX485 is not limited, allowing them to transmit up to 2.5Mbps.

These transceivers draw between 120μ A and 500μ A of supply current when unloaded or fully loaded with disabled drivers. All parts operate from a single 5V supply. Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry that places the driver outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if the input is open circuit. The MAX485 is designed for half-duplex applications.

Features

- Low Quiescent Current: 300µA
- -7V to +12V Common-Mode Input Voltage Range
- Three-State Outputs
- 30ns Propagation Delays, 5ns Skew
- Full-Duplex and Half-Duplex Versions Available
- Operate from a Single 5V Supply
- Allows up to 32 Transceivers on the Bus
- Data rate: 2,5 Mbps
- Current-Limiting and Thermal Shutdown for Driver Overload Protection
- The transmitter outputs and receiver inputs are protected to ± 15 kV Air ESD.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC}) 12V	Continuous Power Dissipation ($T_A = +70^{\circ}C$)
Control Input Voltage -0.5V to $(V_{CC} + 0.5V)$	8-Pin Plastic DIP (derate 9.09mW/°C above
	+70°C) 727mW
Driver Input Voltage (DI) -0.5V to $(V_{CC}+ 0.5V)$	8-Pin SOP (derate 5.88mW/°C above +70°C)
	471mW
Driver Output Voltage (A, B) -8V to +12.5V	Operating Temperature Ranges 0°C to +70°C
Receiver Input Voltage (A, B) -8V to +12.5V	Storage Temperature Range -65°C to +160°C
Receiver Output Voltage (RO) -0.5V to $(V_{CC}+0.5V)$	Lead Temperature (soldering, 10sec) +300°C

DC ELECTRICAL CHARACTERISTICS

(V_{CC} = 5V ±5%, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TY P	MAX	UNITS
Differential Driver Output (no load)	Vodi					5	V
Differential Driver Output	Vod2	$R = 50\Omega$ (RS-422)		2			V
(with load)		$R = 27\Omega$ (RS-485), F	igure 4	1.5		5	
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	ΔV od	$R = 27\Omega$ or 50 Ω , Figu	ure 4			0.2	V
Driver Common-Mode Output Voltage	Voc	$R = 27\Omega$ or 50Ω , Figu	ure 4			3	V
Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	ΔV od	$R = 27\Omega$ or 50Ω , Figure 4				0.2	V
Input High Voltage	VIH	DE, DI, RE		2.0			V
Input Low Voltage	VIL	DE, DI, RE				0.8	V
Input Current	IIN1	DE, DI, RE				±2	μA
Input Current	IIN2	DE = 0V;	$V_{IN} = 12V$			1.0	mA
(A, B)		$V_{CC} = 0V \text{ or } 5.25V,$	$V_{IN} = -7V$			-0.8	
Receiver Differential Threshold Voltage	VTH	$-7V \le V_{CM} \le 12V$		-0.2		0.2	V
Receiver Input Hysteresis	ΔV Th	$V_{CM} = 0V$			70		mV
Receiver Output High Voltage	Voh	$I_0 = -4mA$, $VID = 200mV$		3.5			V
Receiver Output Low Voltage	Vol	$I_0 = 4mA$, $VID = -200mV$				0.4	V
Three-State (high impedance) Output Current at Receiver	Iozr	$0.4V \le V_O \le 2.4V$				±1	μΑ
Receiver Input Resistance	Rin	$-7V \leq V_{CM} \leq 12V$					kΩ

DC ELECTRICAL CHARACTERISTICS (continued)

(Vcc = 5V \pm 5%, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TY P	MAX	UNITS
No-Load Supply Current	Icc	$DE = V_{CC}$		500	900	
(Note 3)		$\overline{\text{RE}} = 0 \text{V} \text{ or } \text{V}_{\text{CC}}$		300	500	μA
		DE = 0V				
Driver Short-Circuit Current,						
	Iosd1	$-7V \le Vo \le 12V$ (Note 4)	35		250	mA
Vo=High						
Driver Short-Circuit Current,						
	Iosd2	$-7V \le V_0 \le 12V$ (Note 4)	35		250	mA
Vo=Low						
Receiver Short-Circuit Current	Iosr	$0V \le V_0 \le V_{CC}$	7		95	mA

SWITCHING CHARACTERISTICS

(Vcc = 5V \pm 5%, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Driver Input to Output	t plh	$R_{DIFF} = 54\Omega$	10	30	60	ns
	t phl	$C_{L1} = C_{L2} = 100 pF$	10	30	60	
Driver Output Skew to Output	tskew	$R_{DIFF} = 54\Omega$, $CL1 = CL2 = 100 pF$		5	10	ns
Driver Enable to Output High	tzн	$C_L=100 pF$, S2 closed		40	70	ns
Driver Enable to Output Low	tzl	CL= 100pF, S1 closed		40	70	ns
Driver Disable Time from Low	tlz	$C_L=15pF$, S1 closed		40	70	ns
Driver Disable Time from High	thz	$C_{L}=15pF$, S2 closed		40	70	ns
tPLH - tPHL Differential	tskd	$R_{DIFF} = 54\Omega$		13		ns
Receiver Skew		$C_{L1} = C_{L2} = 100 pF$				
Receiver Enable to Output Low	tzl	$C_{RL} = 15 pF$, S1 closed		20	50	ns
Receiver Enable to Output High	tzн	$C_{RL} = 15 pF$, S2 closed		20	50	ns
Receiver Disable Time from	tlz	$C_{RL} = 15 pF$, S1 closed		20	50	ns
Low						
Receiver Disable Time from	tHZ	$C_{RL} = 15 pF$, S2 closed		20	50	ns
High						
Maximum Data Rate	fмах		2.5			Mbps

Note 1: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.

Note 2: All typical specifications are given for Vcc = 5V and TA = +25°C.

Note 3: Supply current specification is valid for loaded transmitters when DE = 0V.

Note 4: Applies to peak current. See Typical Operating Characteristics.

Test Circuits

Figure 4. Driver DC Test Load

Figure 6. Driver/Receiver Timing Test Circuit

Rgure 7. Driver Timing Test Load

Operation timing diagrams of MAX 485

Table of MAX 485 operation

Transmitting			Receiving						
	Inputs			Outputs X Inputs		Outputs X			Outputs
RE	DE	DI	Z	Y	RE	DE	A-B	RO	
Х	1	1	0	1	0	0	+0.2V	1	
Х	1	0	1	0	0	0	-0.2V	0	
0	0	Х	Z	Z	0	0	open	1	
1	0	Х	Ζ	Z	1	0	Х	Ζ	

X-don't care Z-high impedance

N SUFFIX PLASTIC DIP (MS - 001BA)

$\begin{array}{c c} A & A & A \\ \hline 8 & 5 \\ \hline 0 & B \\ 1 & 4 \\ \hline V & V & V \end{array}$	
$F \leftarrow C$ $F \leftarrow C$ F	
⊕ 0.25 (0.010) ∭ T	

A-

NOTES:

 Dimensions "A", "B" do not include mold flash or protrusions. Maximum mold flash or protrusions 0.25 mm (0.010) per side.

0	1				
	Dimension, mm				
Symbol	MIN MAX				
Α	8.51	10.16			
В	6.1	7.11			
С		5.33			
D	0.36	0.56			
F	1.14	1.78			
G	2.54				
Н	7.	62			
J	0°	10°			
K	2.92	3.81			
L	7.62	8.26			
М	0.2	0.36			
N	0.38				

D SUFFIX SOIC (MS - 012AA)

8

	Dimension, mm				
Symbol	MIN MAX				
А	4.8	5			
В	3.8	4			
С	1.35	1.75			
D	0.33 0.51				
F	0.4 1.27				
G	1.27				
Н	5.72				
J	0°	8°			
K	0.1 0.25				
Μ	0.19 0.25				
Р	5.8 6.2				
R	0.25 0.5				

NOTES:

- $1. \ \ \, Dimensions\ A\ and\ B\ do\ not\ include\ mold\ flash\ or\ protrusion.$
- 2. Maximum mold flash or protrusion 0.15 mm (0.006) per side for A; for B 0.25 mm (0.010) per side.