General Description

Applications

The MAX333 is a quad single-pole-double-throw

(SPDT) analog switch. These four independent

switches can be operated with bipolar power supplies ranging from $\pm 5V$ to $\pm 18V$, or single-ended power

The MAX333 has break-before-make switching, (200ns

typical), a maximum turn-off time of 500ns, and a

The MAX333 is ideal for portable operation since quiescent current is only $250\mu A$ maximum with all

Logic inputs are fully TTL and CMOS compatible and guaranteed over a +0.8V to +2.4V range, regardless of supply voltage. Logic inputs and switched analog

signals can range anywhere between the supply voltages without damage. The MAX333 is a low-cost replacement for a DG211/DG212 pair when used as a

supplies of +10V to +30V.

quad SPDT switch.

PBX, PABX

maximum turn-on time of 1000ns.

inputs high, and less with all inputs low.

Winchester Disk Drives Test Equipment

Communications Systems

_ Features

- ♦ Low Cost Per Channel
- Four Independent SPDT Switches
- Break-Before-Make Switching
- ♦ Guaranteed ±5V to ±18V Operation
- Guaranteed +10V to +30V Operation (Single Supply)
- No Separate Logic Supply Required
- CMOS and TTL Logic Compatible
- Monolithic, Low Power CMOS Design

Ordering Information

PART	TEMP. RANGE	PACKAGE			
MAX333CPP	0°C to +70°C	20 Lead Plastic DIP			
MAX333C/D	0°C to +70°C	Dice			
MAX333EPP	-40°C to +85°C	20 Lead Plastic DIP			
MAX333MJP	-55°C to +125°C	20 Lead CERDIP			
MAX333CWP	0°C to +70°C	20 Lead Wide SO			
MAX333EWP	-40°C to +85°C	20 Lead Wide SO			

Typical Operating Circuit

M NXI M

Maxim Integrated Products 1

Call toll free 1-800-998-8800 for free samples or literature.

ABSOLUTE MAXIMUM RATINGS

V ⁻ to V ⁻
V_{IN} , V_{COM} , V_{NO} or V_{NC} V^- to V^+
V _{NO} - V _{NC}
V [*] to Ground
V ⁻ to Ground
Current, Any Terminal Except V _{COM} , V _{NO} , or V _{NC} 30mA
Continuous Current, V _{COM} , V _{NO} or V _{NC}
Peak Current, V _{COM} , V _{NO} or V _{NC}
(Pulsed at 1msec, 10% duty cycle max) 70mA

Note 4: Derate 10mW/°C above 70°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (GND = 0V, V⁺ = +15V, V⁻ = -15V, T_A = +25°C, unless otherwise indicated)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN (Note 5)	TYP (Note 6)	MAX	UNITS
SUPPLY						
Positive Supply Current	I.			0.13	0.25	mA
Supply Voltage Range	V*/V-	Dual Supply; V ⁺ = V ⁻	±5		±18	V
Supply Voltage Range	V ⁺	Single Supply; V⁻ = GND	+10		+30	V
Negative Supply Current	1-			0.01	0.25	mA
LOGIC INPUT						
Input Voltage Low	VIL		V-		+0.8	V
Input Voltage High	V _{IH}		2.4			V
Input Current	I _{IN}	$V_{1N} = V^{-}, V^{+}$	-10	0.0001	+10	μA
SWITCH						
Analog Signal Range	V _{ANA}		V		V	V
ON Circuit Resistance	R _{ON}	V _{ANA} = +10V; I _{COM} = 1mA V _{ANA} = -10V; I _{COM} = 1mA		140 125	175 175	Ω Ω
ON Circuit Leakage Current	IONL	$V_{ANA} = +14V; V_{OFF} = -14V$ $V_{ANA} = -14V; V_{OFF} = +14V$	-5 -5	0.1 0.2	+5 +5	nA nA
OFF Circuit Leakage Current	I _{OFF}	$V_{ANA} = +14V; V_{OFF} = -14V$ $V_{ANA} = -14V; V_{OFF} = +14V$	-5 -5	0.01 0.02	+5 +5	nA nA
DYNAMIC						
Turn-off Time	t _{OFF}	(See Switching Time Test Circuit)		50	500	ns
Turn-on Time	t _{ON}			460	1000	ns
Break-before-make Time	tOPEN		50	200		ns
Off Capacitance	C _{OFF}	V _{ANA} = 0V		5		pF
On Capacitance	C _{ON}	V _{ANA} = OV		5		pF
Off Isolation	OIRR	f = 1MHz, RI = 75Ω V_{ANA} = 2.3 V_{RMS}		72		dB
Crosstalk	CCRR			78		dB

Note 5: The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data sheet.

Note 6: Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

M/XX/M

ELECTRICAL CHARACTERISTICS

(GND = 0V, V⁻ = +15V, V⁻ = -15V, T_A = Full Operating Temperature Range, unless otherwise indicated)

PARAMETER						
	SYMBOL	TEST CONDITIONS	MIN TYP (Note 5) (Note 6)		MAX	UNITS
LOGIC INPUT					_	
Input Voltage Low	V _{IL}		V-		+0.8	V
Input Voltage High	VIH		2.4		V.	V
Input Current	I _{IN}	$V_{IN} = V^{-}, V^{+}$	-10	0.0001	+10	μA
SWITCH	•					
Analog Signal Range	V _{ANA}		V-		V	V
ON Circuit Resistance	R _{ON}	V_{ANA} = +10V; I_{COM} = 1mA V_{ANA} = -10V; I_{COM} = 1mA		200 180	250 250	Ω Ω
ON Circuit Leakage Current	I _{ONL}	V _{ANA} = +15V; V _{OFF} = -15V V _{ANA} = -15V; V _{OFF} = +15V		200 200		nA nA
OFF Circuit Leakage Current	I _{OFF}	V _{ANA} = +15V; V _{OFF} = -15V V _{ANA} = -15V; V _{OFF} = +15V		100 100		nA nA

MAX333

3

Switching Time Test Circuit

TYPICAL RDS(ON) & SUPPLY CURRENT VS. POWER SUPPLY VOLTAGE

Power Supply Voltage		R _{on} a	at Analo	og Sign	al Leve	Quiescent Supply	Charge Injection		
	-15V	-10V	-5V	٥٧	+5V	+10V	+15V	Current (µA)	(pC)
V ⁻ = -15V, V ⁺ = +15V	117			109			153	130	12
$V^{-} = -10V, V^{+} = +10V$		158		156		171		80	10
$V = -5V, V^* = +5V$			297	303	288			30	8
V ⁻ = GND, V ⁺ = +15V				200			212	115	
V ⁻ = GND, V ⁺ = +10V				300	312	303		30	

///XI//I

ELECTRICAL CHARACTERISTICS (Single Supply)

(GND = 0V, V' = +12V, V' = 0V, $T_A = 25^{\circ}$ C, unless otherwise indicated)

PARAMETER	SYMBOL					
		TEST CONDITIONS	MIN (Note 5)	TYP (Note 6)	MAX	UNITS
SUPPLY						
Supply Voltage Range	V*	Single Supply; V ⁻ = GND	+10		+30	V
Positive Supply Current	1*			0.11	0.25	mA
INPUT						_L
Input Voltage Low	V _{INLO}		0		+0.8	V
Input Voltage High	V _{INHI}		2.4		V	v
Input Current	I _{IN}	$V_{IN} = V', OV$			1	μA
SWITCH	_ /			<u></u>		_1 .
Analog Signal Range	VANA		V-		V	V
ON Circuit Resistance	R _{ON}	V_{ANA} = +10V; I_{COM} = 1mA V_{ANA} = 0V; I_{COM} = 1mA		250 240	350 350	Ω Ω
ON Circuit Leakage Current	I _{ONL}	$V_{ANA} = V^*; V_{OFF} = 0V$ $V_{ANA} = 0V; V_{OFF} = V^*$		0.05 0.05		nA nA
OFF Circuit Leakage Current	I _{OFF}	$V_{ANA} = V^+$ $V_{ANA} = OV$		0.01 0.01		nA nA
DYNAMIC	•					- L
Turn-off Time	t _{OFF}	(See Switching Time Test Circuit)		65		ns
Turn-on Time	t _{on}			700		ns
Break-before-make Time	t _{OPEN}			200		ns
Off Isolation	OIRR	f = 1MHz, RI = 75Ω V _{ANA} = 2.3V _{RMS}		70		dB
Crosstalk	CCRR			72		dB

Note 5: The algebraic convention whereby the most negative value is a minimum, and the most positive is a maximum, is used in this data sheet.

Note 6: Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

Protecting Against Fault Conditions

Printed USA

Fault conditions occur when power supplies are turned off when input signals are still present or when over voltages occur at the inputs during normal operation. In either case, source-to-body diodes can be forward biased and conduct current from the signal source. If this current is required to be kept to low (μ A) levels then the addition of external protection diodes is recommended.

To provide protection for over-voltages up to 20V above the supplies, 1N4001 or 1N914 type diodes should be placed in series with the positive and negative supplies. The addition of these diodes will reduce the analog signal range to 1 volt below the positive supply and 1 volt above the negative supply.

NOTE. NEX IS CONNECTED TO COMY WHEN INX IS LOW.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

© 1995 Maxim Integrated Products

4

is a registered trademark of Maxim Integrated Products.