General Description The MAX1908/MAX8724/MAX8765 highly integrated, multichemistry battery-charger control ICs simplify the construction of accurate and efficient chargers. These devices use analog inputs to control charge current and voltage, and can be programmed by the host or hardwired. The MAX1908/MAX8724/MAX8765 achieve high efficiency using a buck topology with synchronous rectification. The MAX1908/MAX8724/MAX8765 feature input current limiting. This feature reduces battery charge current when the input current limit is reached to avoid overloading the AC adapter when supplying the load and the battery charger simultaneously. The MAX1908/MAX8724/ MAX8765 provide outputs to monitor current drawn from the AC adapter (DC input source), battery-charging current, and the presence of an AC adapter. The MAX1908's conditioning charge feature provides 300mA to safely charge deeply discharged lithium-ion (Li+) battery packs. The MAX1908 includes a conditioning charge feature while the MAX8724/MAX8765 do not. The MAX1908/MAX8724/MAX8765 charge two to four series Li+ cells, providing more than 5A, and are available in a space-saving, 28-pin, thin QFN package (5mm × 5mm). An evaluation kit is available to speed designs. ### **Applications** Notebook and Subnotebook Computers Personal Digital Assistants Handheld Terminals ### Minimum Operating Circuit #### **Features** - ♦ ±0.5% Output Voltage Accuracy Using Internal Reference (0°C to +85°C) - ♦ ±4% Accurate Input Current Limiting - **♦** ±5% Accurate Charge Current - **♦** Analog Inputs Control Charge Current and **Charge Voltage** - **♦** Outputs for Monitoring **Current Drawn from AC Adapter Charging Current AC Adapter Presence** - ♦ Up to 17.6V Battery-Voltage Set Point - ♦ Maximum 28V Input Voltage - ♦ > 95% Efficiency - **♦** Shutdown Control Input - **♦ Charge Any Battery Chemistry** Li+. NiCd. NiMH. Lead Acid. etc. ### **Ordering Information** | PART | TEMP RANGE | PIN-
PACKAGE | PKG CODE | |--------------------|----------------|-----------------|----------| | MAX1908ETI | -40°C to +85°C | 28 Thin QFN | T2855-6 | | MAX8724 ETI | -40°C to +85°C | 28 Thin QFN | T2855-6 | | MAX8765 ETI | -40°C to +85°C | 28 Thin QFN | T2855-6 | ### Pin Configuration NIXIN Maxim Integrated Products 1 #### **ABSOLUTE MAXIMUM RATINGS** | DCIN, CSSP, CSSN, ACOK to GND | 0.3V to +30V | |---------------------------------|----------------------------| | BST to GND | 0.3V to +36V | | BST to LX | | | DHI to LX | 0.3V to $(V_{BST} + 0.3V)$ | | LX to GND | 6V to +30V | | BATT, CSIP, CSIN to GND | 0.3V to +20V | | CSIP to CSIN or CSSP to CSSN or | | | PGND to GND | 0.3V to +0.3V | | CCI, CCS, CCV, DLO, ICHG, | | | IINP, ACIN, REF to GND | 0.3V to $(V_{LDO} + 0.3V)$ | | DLOV, VCTL, ICTL, REFIN, CELLS, CLS, | |---| | LDO, SHDN to GND0.3V to +6V | | DLOV to LDO0.3V to +0.3V | | DLO to PGND0.3V to (V _{DLOV} + 0.3V) | | LDO Short-Circuit Current50mA | | Continuous Power Dissipation ($T_A = +70^{\circ}C$) | | 28-Pin Thin QFN (5mm × 5mm) | | (derate 20.8mW/°C above +70°C)1666.7mW | | Operating Temperature Range40°C to +85°C | | Junction Temperature+150°C | | Storage Temperature Range60°C to +150°C | | Lead Temperature (soldering, 10s)+300°C | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **ELECTRICAL CHARACTERISTICS** $(V_{DCIN} = V_{CSSP} = V_{CSSN} = 18V, V_{BATT} = V_{CSIP} = V_{CSIN} = 12V, V_{REFIN} = 3V, V_{VCTL} = V_{ICTL} = 0.75 \times V_{REFIN}, CELLS = float, CLS = REF, V_{BST} - V_{LX} = 4.5V, ACIN = GND = PGND = 0, C_{LDO} = 1\mu F, LDO = DLOV, C_{REF} = 1\mu F; CCI, CCS, and CCV are compensated per Figure 1a;$ **T_A = 0°C to +85°C** $, unless otherwise noted. Typical values are at T_A = +25°C.)$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |---|----------|---|-------|------|-------|-------| | CHARGE-VOLTAGE REGULATION | N | | | | | | | | | V _{VCTL} = V _{REFIN} (2, 3, or 4 cells) | -0.5 | | +0.5 | | | Battery-Regulation Voltage Accuracy | | V _{VCTL} = V _{REFIN} / 20 (2, 3, or 4 cells) | -0.5 | | +0.5 | % | | Accuracy | | V _{VCTL} = V _{LDO} (2, 3, or 4 cells) | -0.5 | | +0.5 | | | VCTL Default Threshold | | V _{VCTL} rising | 4.0 | 4.1 | 4.2 | V | | REFIN Range | | (Note 1) | 2.5 | | 3.6 | V | | REFIN Undervoltage Lockout | | V _{REFIN} falling | | 1.20 | 1.92 | V | | CHARGE-CURRENT REGULATION | ON | | | | | | | CSIP-to-CSIN Full-Scale Current-
Sense Voltage | | VICTL = VREFIN | 71.25 | 75 | 78.75 | mV | | | | VICTL = VREFIN | -5 | | +5 | | | | | V _{ICTL} = V _{REFIN} x 0.6 | -5 | | +5 | | | Charging-Current Accuracy | | VICTL = VLDO | -6 | | +6 | % | | | | MAX8765 only; V _{ICTL} = V _{REFIN} x 0.036 | -45 | | +45 | | | | | MAX8724 only; V _{ICTL} = V _{REFIN} x 0.058 | -33 | | +33 | | | Charge-Current Gain Error (MAX8765 Only) | | | -2 | | +2 | % | | Charge-Current Offset (MAX8765 Only) | | | -2 | | +2 | mV | | ICTL Default Threshold | | V _{ICTL} rising | 4.0 | 4.1 | 4.2 | V | | BATT/CSIP/CSIN Input Voltage
Range | | | 0 | | 19 | V | | CCID/CCINI Inquit Current | | V _{DCIN} = 0 or V _{ICTL} = 0 or SHDN = 0 | | | 1 | μА | | CSIP/CSIN Input Current | Charging | Charging | | 400 | 650 | | ______/N/XI/N ### **ELECTRICAL CHARACTERISTICS (continued)** $(V_{DCIN} = V_{CSSP} = V_{CSSN} = 18V, V_{BATT} = V_{CSIP} = V_{CSIN} = 12V, V_{REFIN} = 3V, V_{VCTL} = V_{ICTL} = 0.75 \times V_{REFIN}, CELLS = float, CLS = REF, V_{BST} - V_{LX} = 4.5V, ACIN = GND = PGND = 0, C_{LDO} = 1 \mu F, LDO = DLOV, C_{REF} = 1 \mu F; CCI, CCS, and CCV are compensated per Figure 1a; T_A = 0°C to +85°C, unless otherwise noted. Typical values are at T_A = +25°C.)$ | PARAMETER | SYMBOL | CONDITION | IS | MIN | TYP | MAX | UNITS | | |---|------------------|--|-------------------------|----------------|---------------|---------------|-------|--| | Cycle-by-Cycle Maximum Current
Limit | I _{MAX} | $RS2 = 0.015\Omega$ | | 6.0 | 6.8 | 7.5 | А | | | ICTL Power-Down Mode
Threshold Voltage
(MAX1908/MAX8724 Only) | | V _{ICTL} rising | | REFIN /
100 | REFIN /
55 | REFIN
/ 33 | V | | | ICTL, VCTL Input Bias Current | | V _V CTL = V _I CTL = 0 or 3V | | -1 | | +1 | μA | | | TOTE, VOTE INput bias outrent | | V _{DCIN} = 0, V _{VCTL} = V _{ICTL} = | V _{REFIN} = 5V | -1 | | +1 | μΑ | | | REFIN Input Bias Current | | V _{DCIN} = 5V, V _{REFIN} = 3V | | -1 | | +1 | μΑ | | | TEL IN INPUT BIAS CUITETT | | V _{REFIN} = 5V | | -1 | | +1 | μΑ | | | ICHG Transconductance
(MAX1908/MAX8724 Only) | GICHG | V _{CSIP} - V _{CSIN} = 45mV | | 2.7 | 3 | 3.3 | μΑ/mV | | | ICHG Transconductance
(MAX8765 Only) | GICHG | V _{CSIP} - V _{CSIN} = 45mV | | 2.85 | 3 | 3.15 | μΑ/mV | | | ICHG Transconductance Error (MAX8765 Only) | | | | -5 | | +5 | % | | | ICHG Transconductance Offset (MAX8765 Only) | | | | -5 | | +5 | μΑ | | | | | V _{CSIP} - V _{CSIN} = 75mV | | -6 | | +6 | | | | ICHG Accuracy | | V _{CSIP} - V _{CSIN} = 45mV | | -5 | | +5 | % | | | | | V _{CSIP} - V _{CSIN} = 5mV | | -40 | | +40 | | | | ICHG Output Current | | VCSIP - VCSIN = 150mV, VICI | HG = 0 | 350 | | | μΑ | | | ICHG Output Voltage | | VCSIP - VCSIN = 150mV, ICH | G = float | 3.5 | | | V | | | INPUT-CURRENT REGULATION | | | | | | | | | | CSSP-to-CSSN Full-Scale
Current-Sense Voltage | | | | 72 | 75 | 78 | mV | | | | | V _{CLS} = V _{REF} | | -4 | | +4 | | | | Input Current-Limit Accuracy | | V _{CLS} = V _{REF} / 2 | | -7.5 | | +7.5 | % | | | | | V _{CLS} = 1.1V (MAX8765 only |) | -10 | | +10 | | | | Input Current-Limit Gain Error (MAX8765 Only) | | | | -2 | | +2 | % | | | Input Current-Limit Offset
(MAX8765 Only) | | | | -2 | | +2 | mV | | | CSSP, CSSN Input Voltage
Range | | | | 8 | | 28 | V | | | CSSP, CSSN Input Current | | V _{DCIN} = 0 | | | 0.1 | 1 | ^ | | | (MAX1908/MAX8724 Only) | | VCSSP = VCSSN = VDCIN > 8 | V | | 350 | 600 | μΑ | | | CSSP Input Current | | V _{CSSP} = V _{CSSN} = 28V | V _{DCIN} = 0V | | 0.1 | 1 | μΑ | | | (MAX8765 Only) | | VC35F - VC55N - 20V | V _{DCIN} = 28V | | 400 | 650 | μA | | ### **ELECTRICAL CHARACTERISTICS (continued)** $(V_{DCIN} = V_{CSSP} = V_{CSSN} = 18V, V_{BATT} = V_{CSIP} = V_{CSIN} = 12V, V_{REFIN} = 3V, V_{VCTL} = V_{ICTL} = 0.75 \times V_{REFIN}, CELLS = float, CLS = REF, V_{BST} - V_{LX} = 4.5V, ACIN = GND = PGND = 0, C_{LDO} = 1 \mu F, LDO = DLOV, C_{REF} = 1 \mu F; CCI, CCS, and CCV are compensated per Figure 1a; T_A = 0°C to +85°C, unless otherwise noted. Typical values are at T_A = +25°C.)$ | PARAMETER | SYMBOL | CONDITIO | NS | MIN | TYP | MAX | UNITS | |---|-------------------|--|-------------------------|-------|-------|-------|-------| | CSSN Input Current | | V V 00V | V _{DCIN} = 0 | | 0.1 | 1 | | | (MAX8765 Only) | | VCSSP = VCSSN = 28V | V _{DCIN} = 28V | | 0.1 | 1 | μA | | CLS Input Range
(MAX1908/MAX8724 Only) | | | | 1.6 | | REF | V | | CLS Input Range
(MAX8765 Only) | | | | 1.1 | | REF | V | | CLS Input Bias Current | | V _{CLS} = 2V | | -1 | | +1 | μΑ | | IINP Transconductance
(MAX1908/MAX8724 Only) | GIINP | VCSSP - VCSSN = 75mV | | 2.7 | 3 | 3.3 | μΑ/mV | | IINP Accuracy | | V _{CSSP} - V _{CSSN} = 75mV | | -5 | | +5 | % | | IIIVE ACCURACY | | V _{CSSP} - V _{CSSN} = 37.5mV | | -7.5 | | +7.5 | /0 | | IINP Transconductance
(MAX8765 Only) | GIINP | VCSSP - VCCSN = 75mV
 | 2.82 | 3 | 3.18 | μA/mV | | IINP Transconductance Error (MAX8765 Only) | | | | -6 | | +6 | % | | IINP Transconductance Offset (MAX8765 Only) | | | | -10 | | +10 | μΑ | | IINP Output Current | | VCSSP - VCSSN = 150mV, \ | /IINP = 0 | 350 | | | μΑ | | IINP Output Voltage | | VCSSP - VCSSN = 150mV, \ | /IINP = float | 3.5 | | | V | | SUPPLY AND LDO REGULATOR | | | | | | | | | DCIN Input Voltage Range | V _{DCIN} | | | 8 | | 28 | V | | DCIN Undervoltage-Lockout Trip | | V _{DCIN} falling | | 7 | 7.4 | | V | | Point | | V _{DCIN} rising | | | 7.5 | 7.85 | V | | DCIN Quiescent Current | IDCIN | 8.0V < V _{DCIN} < 28V | | | 3.2 | 6 | mA | | BATT Input Current | lo . TT | V _{BATT} = 19V, V _{DCIN} = 0 | | | | 1 | μΑ | | BATT Input Current | IBATT | $V_{BATT} = 2V \text{ to } 19V, V_{DCIN}$ | = 19.3V | | 200 | 500 | μΑ | | LDO Output Voltage | | 8V < V _{DCIN} < 28V, no load | | 5.25 | 5.4 | 5.55 | V | | LDO Load Regulation | | 0 < I _{LDO} < 10mA | | | 34 | 100 | mV | | LDO Undervoltage-Lockout Trip
Point | | V _{DCIN} = 8V | | 3.20 | 4 | 5.15 | V | | REFERENCE | | | | | | | | | REF Output Voltage | | 0 < I _{REF} < 500μA | | 4.072 | 4.096 | 4.120 | V | | REF Undervoltage-Lockout Trip
Point | | V _{REF} falling | | | 3.1 | 3.9 | V | ### **ELECTRICAL CHARACTERISTICS (continued)** $(V_{DCIN} = V_{CSSP} = V_{CSSN} = 18V, V_{BATT} = V_{CSIP} = V_{CSIN} = 12V, V_{REFIN} = 3V, V_{VCTL} = V_{ICTL} = 0.75 \times V_{REFIN}, CELLS = float, CLS = REF, V_{BST} - V_{LX} = 4.5V, ACIN = GND = PGND = 0, C_{LDO} = 1 \mu F, LDO = DLOV, C_{REF} = 1 \mu F; CCI, CCS, and CCV are compensated per Figure 1a; T_A = 0°C to +85°C, unless otherwise noted. Typical values are at T_A = +25°C.)$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |--|------------------|---|-------|-------|-------|-------| | TRIP POINTS | | | | | | | | BATT Power-Fail Threshold | | V _{DCIN} falling, referred to V _{CSIN} (MAX1908/MAX8724 only) | 50 | 100 | 150 | mV | | DATT POWER-FAIL INTESHOLD | | V _{CSSP} falling, referred to V _{CSIN} (MAX8765 only) | 50 | 100 | 150 | IIIV | | BATT Power-Fail Threshold
Hysteresis | | | | 200 | | mV | | ACIN Threshold | | ACIN rising (MAX8765 only) | 2.028 | 2.048 | 2.068 | V | | ACIN ITII esiloid | | ACIN rising (MAX1908/MAX8724 only) | 2.007 | 2.048 | 2.089 | V | | ACIN Threshold Hysteresis | | 0.5% of REF | | 20 | | mV | | ACIN Input Bias Current | | V _{ACIN} = 2.048V | -1 | | +1 | μΑ | | SWITCHING REGULATOR | | | | | | | | DHI Off-Time | | VBATT = 16V, VDCIN = 19V,
VCELLS = VREFIN | 0.36 | 0.4 | 0.44 | μs | | DHI Minimum Off-Time | | V _{BATT} = 16V, V _{DCIN} = 17V,
V _{CELLS} = V _{REFIN} | 0.24 | 0.28 | 0.33 | μs | | DHI Maximum On-Time | | | 2.5 | 5 | 7.5 | ms | | DLOV Supply Current | IDLOV | DLO low | | 5 | 10 | μΑ | | BST Supply Current | I _{BST} | DHI high | | 6 | 15 | μΑ | | BST Input Quiescent Current | | V _{DCIN} = 0, V _{BST} = 24.5V,
V _{BATT} = V _{LX} = 20V | | 0.3 | 1 | μΑ | | LX Input Bias Current | | V _{DCIN} = 28V, V _{BATT} = V _{LX} = 20V | | 150 | 500 | μΑ | | LX Input Quiescent Current | | V _{DCIN} = 0, V _{BATT} = V _{LX} = 20V | | 0.3 | 1 | μΑ | | DHI Maximum Duty Cycle | | | 99 | 99.9 | | % | | Minimum Discontinuous-Mode
Ripple Current | | | | 0.5 | | А | | Battery Undervoltage Charge
Current | | $V_{BATT} = 3V$ per cell (RS2 = 15m Ω),
MAX1908 only, V_{BATT} rising | 150 | 300 | 450 | mA | | | | CELLS = GND, MAX1908 only, VBATT rising | 6.1 | 6.2 | 6.3 | | | Battery Undervoltage Current Threshold | | CELLS = float, MAX1908 only, VBATT rising | 9.15 | 9.3 | 9.45 | V | | | | CELLS = V _{REFIN} , MAX1908 only, V _{BATT} rising | 12.2 | 12.4 | 12.6 | | | DHI On-Resistance High | | V _{BST} - V _{LX} = 4.5V, I _{DHI} = +100mA | | 4 | 7 | Ω | | DHI On-Resistance Low | | V _{BST} - V _{LX} = 4.5V, I _{DHI} = -100mA | | 1 | 3.5 | Ω | | DLO On-Resistance High | | $V_{DLOV} = 4.5V$, $I_{DLO} = +100$ mA | | 4 | 7 | Ω | | DLO On-Resistance Low | | $V_{DLOV} = 4.5V$, $I_{DLO} = -100$ mA | | 1 | 3.5 | Ω | ### **ELECTRICAL CHARACTERISTICS (continued)** $(V_{DCIN} = V_{CSSP} = V_{CSSN} = 18V, V_{BATT} = V_{CSIP} = V_{CSIN} = 12V, V_{REFIN} = 3V, V_{VCTL} = V_{ICTL} = 0.75 \times V_{REFIN}, CELLS = float, CLS = REF, V_{BST} - V_{LX} = 4.5V, ACIN = GND = PGND = 0, C_{LDO} = 1 \mu F, LDO = DLOV, C_{REF} = 1 \mu F; CCI, CCS, and CCV are compensated per Figure 1a; T_A = 0°C to +85°C, unless otherwise noted. Typical values are at T_A = +25°C.)$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |--------------------------------|--------|--|---------------------------|------------------------|--------------------------|----------------------------| | ERROR AMPLIFIERS | | | | | | | | GMV Amplifier Transconductance | GMV | VvcTL = VLDO, VBATT = 16.8V,
CELLS = VREFIN | 0.0625 | 0.125 | 0.2500 | μΑ/mV | | GMI Amplifier Transconductance | GMI | VICTL = VREFIN, VCSIP - VCSIN = 75mV | 0.5 | 1 | 2.0 | μΑ/mV | | GMS Amplifier Transconductance | GMS | VCLS = VREF, VCSSP - VCSSN = 75mV | 0.5 | 1 | 2.0 | μΑ/mV | | CCI, CCS, CCV Clamp Voltage | | 0.25V < V _{CCV,CCS,CCI} < 2V | 150 | 300 | 600 | mV | | LOGIC LEVELS | | | | | | | | CELLS Input Low Voltage | | | | | 0.4 | V | | CELLS Input Float Voltage | | CELLS = float | (VREFIN
/ 2) -
0.2V | V _{REFIN} / 2 | (VREFIN
/2) +
0.2V | V | | CELLS Input High Voltage | | | VREFIN
- 0.4V | | | V | | CELLS Input Bias Current | | CELLS = 0 or V _{REFIN} | -2 | | +2 | μΑ | | ACOK AND SHDN | | | | | | | | ACOK Input Voltage Range | | | 0 | | 28 | V | | ACOK Sink Current | | $V_{\overline{ACOK}} = 0.4V$, $V_{ACIN} = 3V$ | 1 | | | mΑ | | ACOK Leakage Current | | $V_{\overline{ACOK}} = 28V, V_{ACIN} = 0$ | | | 1 | μΑ | | SHDN Input Voltage Range | | | 0 | | LDO | V | | SHDN Input Bias Current | | $V\overline{SHDN} = 0$ or $VLDO$ | -1 | | +1 | μA | | Or IDIA Input Blas Guiterit | | V _{DCIN} = 0, V SHDN = 5V | -1 | | +1 | μπ | | SHDN Threshold | | V _{SHDN} falling | 22 | 23.5 | 25 | % of
VREFIN | | SHDN Threshold Hysteresis | | | | 1 | | % of
V _{REFIN} | #### **ELECTRICAL CHARACTERISTICS** $(V_{DCIN} = V_{CSSP} = V_{CSSN} = 18V, V_{BATT} = V_{CSIP} = V_{CSIN} = 12V, V_{REFIN} = 3V, V_{VCTL} = V_{ICTL} = 0.75 \times V_{REFIN}, CELLS = FLOAT, CLS = REF, V_{BST} - V_{LX} = 4.5V, ACIN = GND = PGND = 0, C_{LDO} = 1 \mu F, LDO = DLOV, C_{REF} = 1 \mu F; CCI, CCS, and CCV are compensated per Figure 1a; T_A = -40 °C to +85 °C, unless otherwise noted.) (Note 2)$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP MAX | UNITS | |---|------------------|---|---------------|-------------|-------| | CHARGE-VOLTAGE REGULATION | N | | | | | | | | V _{VCTL} = V _{REFIN} (2, 3, or 4 cells) | -0.6 | +0.6 | | | Battery Regulation Voltage Accuracy | | V _{VCTL} = V _{REFIN} / 20 (2, 3, or 4 cells) | -0.6 | +0.6 | % | | Accuracy | | V _{VCTL} = V _{LDO} (2, 3, or 4 cells) | -0.6 | +0.6 | | | REFIN Range | | (Note 1) | 2.5 | 3.6 | V | | REFIN Undervoltage Lockout | | V _{REFIN} falling | | 1.92 | V | | CHARGE CURRENT REGULATION | N | | | | | | CSIP-to-CSIN Full-Scale Current-
Sense Voltage | | VICTL = VREFIN | 70.5 | 79.5 | mV | | | | VICTL = VREFIN | -6 | +6 | | | | | V _{ICTL} = V _{REFIN} x 0.6 | -7.5 | +7.5 | | | Charging Current Acquirecy | | V _{ICTL} = V _{LDO} | -7.5 | +7.5 | % | | Charging-Current Accuracy | | MAX8765 only; V _{ICTL} = V _{REFIN} x 0.036 | -50 | +50 | % | | | | MAX8724 only;
VICTL = VREFIN x 0.058 | -33 | +33 | | | Charge-Current Gain Error (MAX8765 Only) | | | -2 | +2 | % | | Charge-Current Offset
(MAX8765 Only) | | | -2 | +2 | mV | | BATT/CSIP/CSIN Input Voltage
Range | | | 0 | 19 | V | | CCID/CCIAL Innuit Current | | V _{DCIN} = 0 or V _{ICTL} = 0 or SHDN = 0 | | 1 | | | CSIP/CSIN Input Current | | Charging | | 650 | μΑ | | Cycle-by-Cycle Maximum Current
Limit | I _{MAX} | $RS2 = 0.015\Omega$ | 6.0 | 7.5 | А | | ICTL Power-Down Mode
Threshold Voltage
(MAX1908/MAX8724 Only) | | V _{ICTL} rising | REFIN/
100 | REFIN
33 | / v | | ICHG Transconductance
(MAX1908/MAX8724 Only) | GICHG | V _{CSIP} - V _{CSIN} = 45mV | 2.7 | 3.3 | μA/mV | | ICHG Transconductance
(MAX8765 Only) | GICHG | V _{CSIP} - V _{CSIN} = 45mV | 2.785 | 3.22 | μA/mV | | ICHG Transconductance Error (MAX8765 Only) | | | -7.5 | +7.5 | % | | ICHG Transconductance Offset
(MAX8765 Only) | | | -6.5 | +6.5 | μА | ### **ELECTRICAL CHARACTERISTICS (continued)** $(V_{DCIN} = V_{CSSP} = V_{CSSN} = 18V, V_{BATT} = V_{CSIP} = V_{CSIN} = 12V, V_{REFIN} = 3V, V_{VCTL} = V_{ICTL} = 0.75 \times V_{REFIN}, CELLS = FLOAT, CLS = REF, V_{BST} - V_{LX} = 4.5V, ACIN = GND = PGND = 0, C_{LDO} = 1 \mu F, LDO = DLOV, C_{REF} = 1 \mu F; CCI, CCS, and CCV are compensated per Figure 1a; T_A = -40 °C to +85 °C, unless otherwise noted.) (Note 2)$ | PARAMETER | SYMBOL | CONDITIO | ONS | MIN | TYP | MAX | UNITS | |--|-------------------|---|-------------------------|-------|-----|-------|-------| | | | V _{CSIP} - V _{CSIN} = 75mV | | -7.5 | | +7.5 | | | ICHG Accuracy | | V _{CSIP} - V _{CSIN} = 45mV | | -7.5 | | +7.5 | % | | | | V _{CSIP} - V _{CSIN} = 5mV | -40 | | +40 | | | | INPUT-CURRENT REGULATION | 1 | | | | | | | | CSSP-to-CSSN Full-Scale
Current-Sense Voltage | | | | 71.25 | | 78.75 | mV | | | | V _{CLS} = V _{REF} | | -5 | | +5 | | | Input Current-Limit Accuracy | | V _{CLS} = V _{REF} / 2 | | -7.5 | | +7.5 | % | | | | V _{CLS} = 1.1V (MAX8765 or | nly) | -10 | | +10 | | | Input Current-Limit Gain Error (MAX8765 Only) | | | | -2 | | +2 | % | | Input Current-Limit Offset
(MAX8765 Only) | |
| | -2 | | +2 | mV | | CSSP, CSSN Input Voltage
Range | | | | 8 | | 28 | V | | CSSP, CSSN Input Current | | V _{DCIN} = 0 | | | | 1 | | | (MAX1908/MAX8724 Only) | | V _{CSSP} = V _{CSSN} = V _{DCIN} : | > 8V | | | 600 | μΑ | | CSSP Input Current | | V _{CSSP} = V _{CSSN} = 28V | V _{DCIN} = 0V | | | 1 | μΑ | | (MAX8765 Only) | | VCSSP - VCSSN - 20V | V _{DCIN} = 28V | | | 650 | μ/ (| | CSSN Input Current | | Vcssp = Vcssn = 28V | VDCIN = 0V | | | 1 | μA | | (MAX8765 Only) | | 1033i = 1033ii = 201 | V _{DCIN} = 28V | | | 1 | μν | | CLS Input Range
(MAX1908/MAX8724 Only) | | | | 1.6 | | REF | V | | CLS Input Range
(MAX8765 Only) | | | | 1.1 | | REF | V | | IINP Transconductance
(MAX1908/MAX8724 Only) | G _{IINP} | V _{CSSP} - V _{CSSN} = 75mV | | 2.7 | | 3.3 | μΑ/mV | | IINP Transconductance
(MAX8765 Only) | GIINP | VCSSP - VCCSN = 75mV | | 2.785 | | 3.225 | μΑ/mV | | IINP Transconductance Error (MAX8765 Only) | | | | -7.5 | | +7.5 | % | | IINP Transconductance Offset (MAX8765 Only) | | | | -12 | | +12 | μΑ | | IINP Accuracy | | VCSSP - VCSSN = 75mV | | -7.5 | | +7.5 | % | | IIIVI Accuracy | | VCSSP - VCSSN = 37.5mV | | -7.5 | | +7.5 | | MIXKN _____ ### **ELECTRICAL CHARACTERISTICS (continued)** $(V_{DCIN} = V_{CSSP} = V_{CSSN} = 18V, V_{BATT} = V_{CSIP} = V_{CSIN} = 12V, V_{REFIN} = 3V, V_{VCTL} = V_{ICTL} = 0.75 \times V_{REFIN}, CELLS = FLOAT, CLS = REF, V_{BST} - V_{LX} = 4.5V, ACIN = GND = PGND = 0, C_{LDO} = 1 \mu F, LDO = DLOV, C_{REF} = 1 \mu F; CCI, CCS, and CCV are compensated per Figure 1a; T_A = -40 °C to +85 °C, unless otherwise noted.) (Note 2)$ | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |--|-------------------|--|-------|-----|-------|-------| | SUPPLY AND LDO REGULATO | R | | | | | | | DCIN Input Voltage Range | V _{DCIN} | | 8 | | 28 | V | | DCIN Quiescent Current | IDCIN | 8V < V _{DCIN} < 28V | | | 6 | mA | | DATTI | 1 | V _{BATT} = 19V, V _{DCIN} = 0 | | | 1 | | | BATT Input Current | I _{BATT} | V _{BATT} = 2V to 19V, V _{DCIN} = 19.3V | | | 500 | μΑ | | LDO Output Voltage | | 8V < V _{DCIN} < 28V, no load | 5.25 | | 5.55 | V | | LDO Load Regulation | | 0 < I _{LDO} < 10mA | | | 100 | mV | | REFERENCE | · | | | | | | | REF Output Voltage | | 0 < I _{REF} < 500μA | 4.065 | | 4.120 | V | | TRIP POINTS | | | | | | | | | | V _{DCIN} falling, referred to V _{CSIN} (MAX1908/MAX8724 only) | 50 | | 150 | \/an | | BATT Power-Fail Threshold | | V _{CSSP} falling, referred to V _{CSIN} (MAX8765 only) | 50 | | 150 | mV | | ACIN Threshold | | ACIN rising (MAX8765 only) | 2.028 | | 2.068 | | | | | ACIN rising (MAX1908/MAX8724 only) | 2.007 | | 2.089 | V | | SWITCHING REGULATOR | | | | | | | | DHI Off-Time | | V _{BATT} = 16V, V _{DCIN} = 19V,
V _{CELLS} = V _{REFIN} | 0.35 | | 0.45 | μs | | DHI Minimum Off-Time | | V _{BATT} = 16V, V _{DCIN} = 17V,
V _{CELLS} = V _{REFIN} | 0.24 | | 0.33 | μs | | DHI Maximum On-Time | | | 2.5 | | 7.5 | ms | | DHI Maximum Duty Cycle | | | 99 | | | % | | Battery Undervoltage Charge
Current | | $V_{BATT} = 3V$ per cell (RS2 = 15m Ω),
MAX1908 only, V_{BATT} rising | 150 | | 450 | mA | | _ | | CELLS = GND, MAX1908 only, VBATT rising | 6.09 | | 6.30 | | | Battery Undervoltage Current Threshold | | CELLS = float, MAX1908 only, VBATT rising | 9.12 | | 9.45 | V | | Tillesiloid | | CELLS = V _{REFIN} , MAX1908 only, V _{BATT} rising | 12.18 | | 12.60 | | | DHI On-Resistance High | | $V_{BST} - V_{LX} = 4.5V$, $I_{DHI} = +100$ mA | | | 7 | Ω | | DHI On-Resistance Low | | V _{BST} - V _{LX} = 4.5V, I _{DHI} = -100mA | _ | | 3.5 | Ω | | DLO On-Resistance High | | $V_{DLOV} = 4.5V$, $I_{DLO} = +100$ mA | | | 7 | Ω | | DLO On-Resistance Low | | $V_{DLOV} = 4.5V$, $I_{DLO} = -100$ mA | | | 3.5 | Ω | ### **ELECTRICAL CHARACTERISTICS (continued)** $(V_{DCIN} = V_{CSSP} = V_{CSSN} = 18V, V_{BATT} = V_{CSIP} = V_{CSIN} = 12V, V_{REFIN} = 3V, V_{VCTL} = V_{ICTL} = 0.75 \times V_{REFIN}, CELLS = FLOAT, CLS = REF, V_{BST} - V_{LX} = 4.5V, ACIN = GND = PGND = 0, C_{LDO} = 1\mu F, LDO = DLOV, C_{REF} = 1\mu F; CCI, CCS, and CCV are compensated per Figure 1a;$ **T_A = -40°C to +85°C**, unless otherwise noted.) (Note 2) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP N | IAX | UNITS | |--------------------------------|--------|---|---------------------------|-------|----------------------|----------------------------| | ERROR AMPLIFIERS | | | | | | | | GMV Amplifier Transconductance | GMV | V _{VCTL} = V _{LDO} , V _{BATT} = 16.8V,
CELLS = V _{REFIN} | 0.0625 | 0. | 250 | μΑ/mV | | GMI Amplifier Transconductance | GMI | VICTL = VREFIN, VCSIP - VCSIN = 75mV | 0.5 | | 2.0 | μΑ/mV | | GMS Amplifier Transconductance | GMS | VCLS = VREF, VCSSP - VCSSN = 75mV | 0.5 | | 2.0 | μΑ/mV | | CCI, CCS, CCV Clamp Voltage | | 0.25V < V _{CCV,CCS,CCI} < 2V | 150 | 6 | 000 | mV | | LOGIC LEVELS | | | | | | | | CELLS Input Low Voltage | | | | (| 0.4 | V | | CELLS Input Float Voltage | | CELLS = float | (VREFIN
/ 2) -
0.2V | /: | REFIN
2) +
.2V | V | | CELLS Input High Voltage | | | VREFIN
- 0.4V | | | V | | ACOK AND SHDN | | | | | | | | ACOK Input Voltage Range | | | 0 | | 28 | V | | ACOK Sink Current | | VACOK = 0.4V, VACIN = 3V | 1 | | | mA | | SHDN Input Voltage Range | | | 0 | L | DO | V | | SHDN Threshold | | V _{SHDN} falling | 22 | | 25 | % of
V _{REFIN} | Note 1: If both ICTL and VCTL use default mode (connected to LDO), REFIN is not used and can be connected to LDO. Note 2: Specifications to -40°C are guaranteed by design and not production tested. ### Typical Operating Characteristics (Circuit of Figure 1, V_{DCIN} = 20V, T_A = +25°C, unless otherwise noted.) ### Typical Operating Characteristics (continued) (Circuit of Figure 1, V_{DCIN} = 20V, T_A = +25°C, unless otherwise noted.) ### **Typical Operating Characteristics (continued)** (Circuit of Figure 1, V_{DCIN} = 20V, T_A = +25°C, unless otherwise noted.) ## Pin Description | PIN | NAME | FUNCTION | |-----|-------|--| | 1 | DCIN | Charging Voltage Input. Bypass DCIN with a 1µF capacitor to PGND. | | 2 | LDO | Device Power Supply. Output of the 5.4V linear regulator supplied from DCIN. Bypass with a 1µF capacitor to GND. | | 3 | CLS | Source Current-Limit Input. Voltage input for setting the current limit of the input source. | | 4 | REF | 4.096V Voltage Reference. Bypass REF with a 1µF capacitor to GND. | | 5 | CCS | Input-Current Regulation Loop-Compensation Point. Connect a 0.01µF capacitor to GND. | | 6 | CCI | Output-Current Regulation Loop-Compensation Point. Connect a 0.01µF capacitor to GND. | | 7 | CCV | Voltage Regulation Loop-Compensation Point. Connect 1kΩ in series with a 0.1μF capacitor to GND. | | 8 | SHDN | Shutdown Control Input. Drive SHDN logic low to shut down the MAX1908/MAX8724/MAX8765. Use with a thermistor to detect a hot battery and suspend charging. | | 9 | ICHG | Charge-Current Monitor Output. ICHG is a scaled-down replica of the charger output current. Use ICHG to monitor the charging current and detect when the chip changes from constant-current mode to constant-voltage mode. The transconductance of (CSIP - CSIN) to ICHG is 3µA/mV. | | 10 | ACIN | AC Detect Input. Input to an uncommitted comparator. ACIN can be used to detect AC-adapter presence. | | 11 | ACOK | AC Detect Output. High-voltage open-drain output is high impedance when VACIN is less than VREF / 2. | | 12 | REFIN | Reference Input. Allows the ICTL and VCTL inputs to have ratiometric ranges for increased accuracy. | | 13 | ICTL | Output Current-Limit Set Input. ICTL input voltage range is V _{REFIN} / 32 to V _{REFIN} . The MAX1908/MAX8724 shut down if ICTL is forced below V _{REFIN} / 100 while the MAX8765 does not. When ICTL is equal to LDO, the set point for CSIP - CSIN is 45mV. | | 14 | GND | Analog Ground | | 15 | VCTL | Output Voltage-Limit Set Input. VCTL input voltage range is 0 to V _{REFIN} . When VCTL is equal to LDO, the set point is (4.2 x CELLS)V. | | 16 | BATT | Battery Voltage Input | | 17 | CELLS | Cell Count Input. Tri-level input for setting number of cells. GND = 2 cells, float = 3 cells, REFIN = 4 cells. | | 18 | CSIN | Output Current-Sense Negative Input | | 19 | CSIP | Output Current-Sense Positive Input. Connect a current-sense resistor from CSIP to CSIN. | | 20 | PGND | Power Ground | | 21 | DLO | Low-Side Power MOSFET Driver Output. Connect to low-side nMOS gate. | | 22 | DLOV | Low-Side Driver Supply. Bypass DLOV with a 1µF capacitor to GND. | | 23 | LX | High-Side Power MOSFET Driver Power-Return Connection. Connect to the source of the high-side nMOS. | | 24 | BST | High-Side Power MOSFET Driver Power-Supply Connection. Connect a 0.1µF capacitor from LX to BST. | | 25 | DHI | High-Side Power MOSFET Driver Output. Connect to high-side nMOS gate. | | 26 | CSSN | Input Current-Sense Negative Input | | 27 | CSSP | Input Current-Sense Positive Input. Connect a current-sense resistor from CSSP to CSSN. | | 28 | IINP | Input-Current Monitor Output. IINP is a scaled-down replica of the input current. IINP monitors the total system current. The transconductance of (CSSP - CSSN) to IINP is 3µA/mV. | ### **Detailed Description** The MAX1908/MAX8724/MAX8765 include all the functions necessary to charge Li+ batteries. A high-efficiency synchronous-rectified step-down DC-DC converter controls charging voltage and current. The device also includes input-source current limiting and analog inputs for setting the charge current and charge voltage. Control charge current and
voltage using the ICTL and VCTL inputs, respectively. Both ICTL and VCTL are ratiometric with respect to REFIN, allowing compatibility with DACs or microcontrollers (μCs). Ratiometric ICTL and VCTL improve the accuracy of the charge current and voltage set point by matching VREFIN to the reference of the host. For standard applications, internal set points for ICTL and VCTL provide 3A charge current (with 0.015Ω sense resistor), and 4.2V (per cell) charge voltage. Connect ICTL and VCTL to LDO to select the internal set points. The MAX1908 safely conditions overdischarged cells with 300mA (with 0.015Ω sense resistor) until the battery-pack voltage exceeds 3.1V x number of series-connected cells. The SHDN input allows shutdown from a microcontroller or thermistor. The DC-DC converter uses external n-channel MOSFETs as the buck switch and synchronous rectifier to convert the input voltage to the required charging current and voltage. The *Typical Application Circuit* shown in Figure 1 uses a μ C to control charging current, while Figure 2 shows a typical application with charging voltage and current fixed to specific values for the application. The voltage at ICTL and the value of RS2 set the charging current. The DC-DC converter generates the control signals for the external MOSFETs to regulate the voltage and the current set by the VCTL, ICTL, and CELLS inputs. The MAX1908/MAX8724/MAX8765 feature a voltage regulation loop (CCV) and two current regulation loops (CCI and CCS). The CCV voltage regulation loop monitors BATT to ensure that its voltage does not exceed the voltage set by VCTL. The CCI battery current regulation loop monitors current delivered to BATT to ensure that it does not exceed the current limit set by ICTL. A third loop (CCS) takes control and reduces the battery-charging current when the sum of the system load and the battery-charging input current exceeds the input current limit set by CLS. #### **Setting the Battery-Regulation Voltage** The MAX1908/MAX8724/MAX8765 use a high-accuracy voltage regulator for charging voltage. The VCTL input adjusts the charger output voltage. VCTL control voltage can vary from 0 to V_{REFIN} , providing a 10% adjustment range on the V_{BATT} regulation voltage. By limiting the adjust range to 10% of the regulation voltage, the external resistor mismatch error is reduced from 1% to 0.05% of the regulation voltage. Therefore, an overall voltage accuracy of better than 0.7% is maintained while using 1% resistors. The per-cell battery termination voltage is a function of the battery chemistry. Consult the battery manufacturer to determine this voltage. Connect VCTL to LDO to select the internal default setting VBATT = 4.2V × number of cells, or program the battery voltage with the following equation: $$V_{BATT} = CELLS \times \left(4V + \left(0.4 \times \frac{V_{VCTL}}{V_{REFIN}}\right)\right)$$ CELLS is the programming input for selecting cell count. Connect CELLS as shown in Table 2 to charge 2, 3, or 4 Li+ cells. When charging other cell chemistries, use CELLS to select an output voltage range for the charger. The internal error amplifier (GMV) maintains voltage regulation (Figure 3). The voltage error amplifier is compensated at CCV. The component values shown in Figures 1 and 2 provide suitable performance for most applications. Individual compensation of the voltage regulation and current regulation loops allows for optimal compensation (see the *Compensation* section). **Table 1. Versions Comparison** | DESCRIPTION | MAX1908 | MAX8724 | MAX8765 | |--------------------------------|---------------------|---------------------|----------------------| | Conditioning
Charge Feature | Yes | No | No | | ICTL Shutdown
Mode | Yes | Yes | No | | ACOK Enable
Condition | REFIN must be ready | REFIN must be ready | Independent of REFIN | **Table 2. Cell-Count Programming** | CELLS | CELL COUNT | |--------|------------| | GND | 2 | | Float | 3 | | VREFIN | 4 | ### **Typical Application Circuits** Figure 1. µC-Controlled Typical Application Circuit ### **Typical Application Circuits (continued)** Figure 2. Typical Application Circuit with Fixed Charging Parameters ### **Functional Diagram** Figure 3. Functional Diagram #### **Setting the Charging-Current Limit** The ICTL input sets the maximum charging current. The current is set by current-sense resistor RS2, connected between CSIP and CSIN. The full-scale differential voltage between CSIP and CSIN is 75mV; thus, for a 0.015Ω sense resistor, the maximum charging current is 5A. Battery-charging current is programmed with ICTL using the equation: $$I_{CHG} = \frac{V_{ICTL}}{V_{REFIN}} \times \frac{0.075}{RS2}$$ The input voltage range for ICTL is V_{REFIN} / 32 to V_{REFIN} . The MAX1908/MAX8724 shut down if ICTL is forced below V_{REFIN} / 100 (min), while the MAX8765 does not. Connect ICTL to LDO to select the internal default fullscale, charge-current sense voltage of 45mV. The charge current when ICTL = LDO is: $$I_{CHG} = \frac{0.045V}{RS2}$$ where RS2 is 0.015Ω , providing a charge-current set point of 3A. The current at the ICHG output is a scaled-down replica of the battery output current being sensed across CSIP and CSIN (see the *Current Measurement* section). When choosing the current-sense resistor, note that the voltage drop across this resistor causes further power loss, reducing efficiency. However, adjusting ICTL to reduce the voltage across the current-sense resistor can degrade accuracy due to the smaller signal to the input of the current-sense amplifier. The charging-current-error amplifier (GMI) is compensated at CCI (see the *Compensation* section). #### **Setting the Input Current Limit** The total input current (from an AC adapter or other DC source) is a function of the system supply current and the battery-charging current. The input current regulator limits the input current by reducing the charging current when the input current exceeds the input current-limit set point. System current normally fluctuates as portions of the system are powered up or down. Without input current regulation, the source must be able to supply the maximum system current and the maximum charger input current simultaneously. By using the input current limiter, the current capability of the AC adapter can be lowered, reducing system cost. The MAX1908/MAX8724/MAX8765 limit the battery charge current when the input current-limit threshold is exceeded, ensuring the battery charger does not load down the AC adapter voltage. An internal amplifier compares the voltage between CSSP and CSSN to the voltage at CLS. V_{CLS} can be set by a resistive divider between REF and GND. Connect CLS to REF for the full-scale input current limit. The CLS voltage range for the MAX1908/MAX8724 is from 1.6V to REF, while the MAX8765 CLS voltage is from 1.1V to REF. The input current is the sum of the device current, the charger input current, and the load current. The device current is minimal (3.8mA) in comparison to the charge and load currents. Determine the actual input current required as follows: $$I_{INPUT} = I_{LOAD} + \left(\frac{I_{CHG} \times V_{BATT}}{V_{IN} \times \eta}\right)$$ where η is the efficiency of the DC-DC converter. VCLS determines the reference voltage of the GMS error amplifier. Sense resistor RS1 and VCLS determine the maximum allowable input current. Calculate the input current limit as follows: $$I_{\text{INPUT}} = \frac{V_{\text{CLS}}}{V_{\text{REF}}} \times \frac{0.075}{\text{RS1}}$$ Once the input current limit is reached, the charging current is reduced until the input current is at the desired threshold. When choosing the current-sense resistor, note that the voltage drop across this resistor causes further power loss, reducing efficiency. Choose the smallest value for RS1 that achieves the accuracy requirement for the input current-limit set point. #### **Conditioning Charge** The MAX1908 includes a battery-voltage comparator that allows a conditioning charge of overdischarged Li+ battery packs. If the battery-pack voltage is less than 3.1V × number of cells programmed by CELLS, the MAX1908 charges the battery with 300mA current when using sense resistor RS2 = 0.015 Ω . After the battery voltage exceeds the conditioning charge threshold, the MAX1908 resumes full-charge mode, charging to the programmed voltage and current limits. The MAX8724/MAX8765 do not offer this feature. #### **AC Adapter Detection** Connect the AC adapter voltage through a resistive divider to ACIN to detect when AC power is available, as shown in Figure 1. ACIN voltage rising trip point is VREF / 2 with 20mV hysteresis. ACOK is an open-drain output and is high impedance when ACIN is less than VRFF / 2. Since ACOK can withstand 30V (max), ACOK can drive a p-channel MOSFET directly at the charger input, providing a lower dropout voltage than a Schottky diode (Figure 2). In the MAX1908/MAX8724 the ACOK comparator is enabled after REFIN is ready. In the MAX8765, the ACOK comparator is independent of REFIN. #### **Current Measurement** Use ICHG to monitor the battery-charging current being sensed across CSIP and CSIN. The ICHG voltage is proportional to the output current by the equation: VICHG = ICHG x RS2 x GICHG x R9 where ICHG is the battery-charging current, GICHG is the transconductance of ICHG (3µA/mV typ), and R9 is the resistor connected between ICHG and ground. Leave ICHG unconnected if not used. Use IINP to monitor the system input current being sensed across CSSP and CSSN. The voltage of IINP is proportional to the input current by the equation: VIINP = INPUT x RS1 x GIINP x R10 where I_{INPUT} is the DC current being supplied by the AC adapter power, G_{IINP} is the transconductance of IINP (3µA/mV typ), and R10 is the resistor connected between IINP and ground. ICHG and IINP have a 0 to 3.5V output voltage range. Leave IINP unconnected if not used. #### **LDO
Regulator** LDO provides a 5.4V supply derived from DCIN and can deliver up to 10mA of load current. The MOSFET drivers are powered by DLOV and BST, which must be connected to LDO as shown in Figure 1. LDO supplies the 4.096V reference (REF) and most of the control circuitry. Bypass LDO with a $1\mu F$ capacitor to GND. #### Shutdown The MAX1908/MAX8724/MAX8765 feature a low-power shutdown mode. Driving SHDN low shuts down the MAX1908/MAX8724/MAX8765. In shutdown, the DC-DC converter is disabled and CCI, CCS, and CCV are pulled to ground. The IINP and ACOK outputs continue to function. SHDN can be driven by a thermistor to allow automatic shutdown of the MAX1908/MAX8724/MAX8765 when the battery pack is hot. The shutdown falling threshold is 23.5% (typ) of V_{REFIN} with 1% V_{REFIN} hysteresis to provide smooth shutdown when driven by a thermistor. #### **DC-DC Converter** The MAX1908/MAX8724/MAX8765 employ a buck regulator with a bootstrapped nMOS high-side switch and a low-side nMOS synchronous rectifier. #### CCV, CCI, CCS, and LVC Control Blocks The MAX1908/MAX8724/MAX8765 control input current (CCS control loop), charge current (CCI control loop), or charge voltage (CCV control loop), depending on the operating condition. The three control loops, CCV, CCI, and CCS are brought together internally at the LVC amplifier (lowest voltage clamp). The output of the LVC amplifier is the feedback control signal for the DC-DC controller. The output of the GM amplifier that is the lowest sets the output of the LVC amplifier and also clamps the other two control loops to within 0.3V above the control point. Clamping the other two control loops close to the lowest control loop ensures fast transition with minimal overshoot when switching between different control loops. #### **DC-DC Controller** The MAX1908/MAX8724/MAX8765 feature a variable offtime, cycle-by-cycle current-mode control scheme. Depending upon the conditions, the MAX1908/MAX8724/ MAX8765 work in continuous or discontinuous-conduction mode. #### **Continuous-Conduction Mode** With sufficient charger loading, the MAX1908/MAX8724/ MAX8765 operate in continuous-conduction mode (inductor current never reaches zero) switching at 400kHz if the BATT voltage is within the following range: 3.1V x (number of cells) < VBATT < (0.88 x VDCIN) The operation of the DC-DC controller is controlled by the following four comparators as shown in Figure 4: - IMIN—Compares the control point (LVC) against 0.15V (typ). If IMIN output is low, then a new cycle cannot begin. - **CCMP**—Compares the control point (LVC) against the charging current (CSI). The high-side MOSFET ontime is terminated if the CCMP output is high. - **IMAX**—Compares the charging current (CSI) to 6A (RS2 = 0.015Ω). The high-side MOSFET on-time is terminated if the IMAX output is high and a new cycle cannot begin until IMAX goes low. - ZCMP—Compares the charging current (CSI) to 333mA (RS2 = 0.015Ω). If ZCMP output is high, then both MOSFETs are turned off. ### **DC-DC Functional Diagram** Figure 4. DC-DC Functional Diagram In normal operation, the controller starts a new cycle by turning on the high-side n-channel MOSFET and turning off the low-side n-channel MOSFET. When the charge current is greater than the control point (LVC), CCMP goes high and the off-time is started. The off-time turns off the high-side n-channel MOSFET and turns on the low-side n-channel MOSFET. The operational frequency is governed by the off-time and is dependent upon V_{DCIN} and V_{BATT} . The off-time is set by the following equations: $$t_{OFF} = 2.5 \mu s \times \frac{V_{DCIN} - V_{BATT}}{V_{DCIN}}$$ $$t_{ON} = \frac{L \times I_{RIPPLE}}{V_{CSSN} - V_{BATT}}$$ where: $$I_{RIPPLE} = \frac{V_{BATT} \times t_{OFF}}{L}$$ $$f = \frac{1}{t_{ON} + t_{OFF}}$$ These equations result in fixed-frequency operation over the most common operating conditions. At the end of the fixed off-time, another cycle begins if the control point (LVC) is greater than 0.15V, IMIN = high, and the peak charge current is less than 6A (RS2 = 0.015 Ω), IMAX = high. If the charge current exceeds IMAX, the on-time is terminated by the IMAX comparator. IMAX governs the maximum cycle-by-cycle current limit and is internally set to 6A (RS2 = 0.015 Ω). IMAX protects against sudden overcurrent faults. If, during the off-time, the inductor current goes to zero, ZCMP = high, both the high- and low-side MOSFETs are turned off until another cycle is ready to begin. There is a minimum 0.3µs off-time when the (V_{DCIN} - V_{BATT}) differential becomes too small. If $V_{BATT} \ge 0.88 \times V_{DCIN}$, then the threshold for minimum off-time is reached and the t_{OFF} is fixed at 0.3µs. A maximum ontime of 5ms allows the controller to achieve > 99% duty cycle in continuous-conduction mode. The switching frequency in this mode varies according to the equation: $$f = \frac{1}{\frac{L \times I_{RIPPLE}}{(V_{CSSN} - V_{BATT})}} + 0.3\mu s$$ #### **Discontinuous Conduction** The MAX1908/MAX8724/MAX8765 enter discontinuous-conduction mode when the output of the LVC control point falls below 0.15V. For RS2 = 0.015Ω , this corresponds to 0.5A: $$IMIN = \frac{0.15V}{20 \times RS2} = 0.5A$$ for RS2 = 0.015Ω . In discontinuous mode, a new cycle is not started until the LVC voltage rises above 0.15V. Discontinuousmode operation can occur during conditioning charge of overdischarged battery packs, when the charge current has been reduced sufficiently by the CCS control loop, or when the battery pack is near full charge (constant-voltage-charging mode). #### **MOSFET Drivers** The low-side driver output DLO switches between PGND and DLOV. DLOV is usually connected through a filter to LDO. The high-side driver output DHI is bootstrapped off LX and switches between V_{LX} and V_{BST}. When the low-side driver turns on, BST rises to one diode voltage below DLOV. Filter DLOV with a lowpass filter whose cutoff frequency is approximately 5kHz (Figure 1): $$f_C = \frac{1}{2\pi BC} = \frac{1}{2\pi \times 33\Omega \times 1\mu F} = 4.8 \text{kHz}$$ #### **Dropout Operation** The MAX1908/MAX8724/MAX8765 have 99% duty-cycle capability with a 5ms (max) on-time and 0.3µs (min) off-time. This allows the charger to achieve dropout performance limited only by resistive losses in the DC-DC converter components (D1, N1, RS1, and RS2, Figure 1). Replacing diode D1 with a p-channel MOSFET driven by ACOK improves dropout performance (Figure 2). The dropout voltage is set by the difference between DCIN and CSIN. When the dropout voltage falls below 100mV, the charger is disabled; 200mV hysteresis ensures that the charger does not turn back on until the dropout voltage rises to 300mV. #### Compensation Each of the three regulation loops—input current limit, charging current limit, and charging voltage limit—are compensated separately using CCS, CCI, and CCV, respectively. Figure 5. CCV Loop Diagram #### **CCV Loop Definitions** Compensation of the CCV loop depends on the parameters and components shown in Figure 5. C_{CV} and R_{CV} are the CCV loop compensation capacitor and series resistor. R_{ESR} is the equivalent series resistance (ESR) of the charger output capacitor (C_{OUT}). R_L is the equivalent charger output load, where R_L = V_{BATT} / I_{CHG}. The equivalent output impedance of the GMV amplifier, R_{OGMV} \geq 10M Ω . The voltage amplifier transconductance, GMV = 0.125 μ A/mV. The DC-DC converter transconductance, GM_{OUT} = 3.33A/V: $$GM_{OUT} = \frac{1}{A_{CSI} \times RS2}$$ where ACSI = 20, and RS2 is the charging currentsense resistor in the *Typical Application Circuits*. The compensation pole is given by: $$f_{P-CV} = \frac{1}{2\pi R_{OGMV} \times C_{CV}}$$ The compensation zero is given by: $$f_{Z-CV} = \frac{1}{2\pi R_{CV} \times C_{CV}}$$ The output pole is given by: $$f_{P_OUT} = \frac{1}{2\pi R_L \times C_{OUT}}$$ where R_L varies with load according to $R_L = V_{BATT} / I_{CHG}$. Output zero due to output capacitor ESR: $$f_{Z_ESR} = \frac{1}{2\pi R_{ESR} \times C_{OUT}}$$ The loop transfer function is given by: $$\begin{split} \text{LTF} = & \text{GM}_{\text{OUT}} \times \text{R}_{\text{L}} \times \text{GMV} \times \text{R}_{\text{OGMV}} \times \\ & \frac{\left(1 + \text{sC}_{\text{OUT}} \times \text{R}_{\text{ESR}}\right) \left(1 + \text{sC}_{\text{CV}} \times \text{R}_{\text{CV}}\right)}{\left(1 + \text{sC}_{\text{CV}} \times \text{R}_{\text{OGMV}}\right) \left(1 + \text{sC}_{\text{OUT}} \times \text{R}_{\text{L}}\right)} \end{split}$$ Assuming the compensation pole is a very low frequency, and the output zero is a much higher frequency, the crossover frequency is given by: $$f_{CO_CV} = \frac{GMV \times R_{CV} \times GM_{OUT}}{2\pi C_{OUT}}$$ To calculate RCV and CCV values of the circuit of Figure 2: Cells = 4 $COUT = 22\mu F$ $V_{BATT} = 16.8V$ ICHG = 2.5A $GMV = 0.125\mu A/mV$ GMOUT = 3.33A/V $Rogmv = 10M\Omega$ f = 400kHz Choose crossover frequency to be 1/5th the MAX1908's 400kHz switching frequency: $$f_{CO_CV} = \frac{GMV \times R_{CV} \times GM_{OUT}}{2\pi C_{OUT}} = 80kHz$$ Solving yields $R_{CV} = 26k\Omega$. Conservatively set $R_{CV} = 1k\Omega$, which sets the crossover frequency at: $$fCO CV = 3kHz$$ Choose the output-capacitor ESR so the output-capacitor zero is 10 times the crossover frequency: $$R_{ESR} = \frac{1}{2\pi \times 10 \times f_{CO-CV} \times C_{OUT}} = 0.24\Omega$$ $$f_{Z_ESR} = \frac{1}{2\pi R_{ESR} \times C_{OUT}} = 2.412MHz$$ The $22\mu F$ ceramic capacitor has a typical ESR of 0.003Ω , which sets the output zero at 2.412MHz. The output pole is set at: $$f_{P_OUT} = \frac{1}{2\pi R_1 \times C_{OUT}} = 1.08 \text{kHz}$$ where: $$R_L = \frac{\Delta V_{BATT}}{\Delta I_{CHG}} = Battery ESR$$ Set the compensation zero (f_{Z_CV}) so it is equivalent to the output pole ($f_{P_OUT} = 1.08$ kHz), effectively producing a pole-zero cancellation and maintaining a single-pole system
response: $$f_{Z_{CV}} = \frac{1}{2\pi R_{CV} \times C_{CV}}$$ $$C_{CV} = \frac{1}{2\pi R_{CV} \times 1.08 \text{kHz}} = 147 \text{nF}$$ Choose $C_{CV} = 100nF$, which sets the compensation zero ($f_{Z_{CV}}$) at 1.6kHz. This sets the compensation pole: $$f_{P_CV} = \frac{1}{2\pi R_{OGMV} \times C_{CV}} = 0.16Hz$$ #### **CCI Loop Definitions** Compensation of the CCI loop depends on the parameters and components shown in Figure 7. C_{CI} is the CCI loop compensation capacitor. ACSI is the internal gain of the current-sense amplifier. RS2 is the charge current-sense resistor, RS2 = $15m\Omega$. R_{OGMI} is the equivalent output impedance of the GMI amplifier $\geq 10M\Omega$. GMI is the charge-current amplifier transconductance = $1\mu A/mV$. GMOUT is the DC-DC converter transconductance = 3.3A/V. The CCI loop is a single-pole system with a dominant pole compensation set by f_{PCI} : $$f_{P_CI} = \frac{1}{2\pi R_{OGMI} \times C_{CI}}$$ The loop transfer function is given by: $$LTF = GM_{OUT} \times A_{CSI} \times RS2 \times GMI \frac{R_{OGMI}}{1 + sR_{OGMI} \times C_{CI}}$$ Since: $$GM_{OUT} = \frac{1}{A_{CSI} \times RS2}$$ The loop transfer function simplifies to: $$LTF = GMI \times \frac{R_{OGMI}}{1 + sR_{OGMI} \times C_{CI}}$$ Figure 6. CCV Loop Gain/Phase vs. Frequency Figure 7. CCI Loop Diagram The crossover frequency is given by: $$f_{\text{CO}_{\text{CI}}} = \frac{\text{GMI}}{2\pi C_{\text{CI}}}$$ The CCI loop dominant compensation pole: $$f_{P-CI} = \frac{1}{2\pi R_{OGMI} \times C_{CI}}$$ where the GMI amplifier output impedance, $R_{OGMI} = 10M\Omega$. To calculate the CCI loop compensation pole, CCI: $GMI = 1\mu A/mV$ GMOUT = 3.33A/V $Rogmi = 10M\Omega$ f = 400kHz Choose crossover frequency f_{CO_CI} to be 1/5th the MAX1908/MAX8724/MAX8765 switching frequency: $$f_{\text{CO}_{\text{CI}}} = \frac{\text{GMI}}{2\pi\text{C}_{\text{CI}}} = 80\text{kHz}$$ Solving for C_{CI} , $C_{CI} = 2nF$. To be conservative, set $C_{CI} = 10nF$, which sets the crossover frequency at: $$f_{CO_CI} = \frac{GMI}{2\pi 10nF} = 16kHz$$ The compensation pole, fp_CI is set at: $$f_{P_CI} = \frac{GMI}{2\pi R_{OGMI} \times C_{CI}} = 0.0016Hz$$ #### **CCS Loop Definitions** Compensation of the CCS loop depends on the parameters and components shown in Figure 9. CCs is the CCS loop compensation capacitor. ACSS is the internal gain of the current-sense amplifier. RS1 is the input current-sense resistor, RS1 = $10m\Omega$. ROGMS is the equivalent output impedance of the GMS amplifier $\geq 10M\Omega$. GMS is Figure 8. CCI Loop Gain/Phase vs. Frequency the charge-current amplifier transconductance = 1μ A/mV. GM_{IN} is the DC-DC converter transconductance = 3.3A/V. The CCS loop is a single-pole system with a dominant pole compensation set by fp CS: $$f_{P-CS} = \frac{1}{2\pi R_{OGMS} \times C_{CS}}$$ The loop transfer function is given by: LTF = $$GM_{IN} \times A_{CSS} \times RS1 \times GMS \times \frac{R_{OGMS}}{1 + sR_{OGMS} \times C_{CS}}$$ Since: $$GM_{IN} = \frac{1}{A_{CSS} \times RS1}$$ Then, the loop transfer function simplifies to: $$LTF = GMS \times \frac{R_{OGMS}}{1 + sR_{OGMS} \times C_{CS}}$$ The crossover frequency is given by: $$f_{CO_CS} = \frac{GMS}{2\pi C_{CS}}$$ Figure 9. CCS Loop Diagram The CCS loop dominant compensation pole: $$f_{P-CS} = \frac{1}{2\pi R_{OGMS} \times C_{CS}}$$ where the GMS amplifier output impedance, Rogms = $10M\Omega$. To calculate the CCI loop compensation pole, Ccs: $GMS = 1\mu A/mV$ $GM_{IN} = 3.33A/V$ $Rogms = 10M\Omega$ f = 400kHz Figure 10. CCS Loop Gain/Phase vs. Frequency Choose crossover frequency f_{CO_CS} to be 1/5th the MAX1908/MAX8724/MAX8765 switching frequency: $$f_{CO_CS} = \frac{GMS}{2\pi C_{CS}} = 80kHz$$ Solving for C_{CS}, C_{CS} = 2nF. To be conservative, set C_{CS} = 10nF, which sets the crossover frequency at: $$f_{CO_CS} = \frac{GMS}{2\pi 10nF} = 16kHz$$ The compensation pole, fp_cs is set at: $$f_{P-CS} = \frac{1}{2\pi R_{OGMS} \times C_{CS}} = 0.0016Hz$$ ### **Component Selection** Table 3 lists the recommended components and refers to the circuit of Figure 2. The following sections describe how to select these components. #### **Inductor Selection** Inductor L1 provides power to the battery while it is being charged. It must have a saturation current of at least the charge current (ICHG), plus 1/2 the current ripple IRIPPLE: $$I_{SAT} = I_{CHG} + (1/2) I_{RIPPLE}$$ Ripple current varies according to the equation: Figure 11. Ripple Current vs. Battery Voltage where: $$t_{OFF} = 2.5 \mu s \times (V_{DCIN} - V_{BATT}) / V_{DCIN}$$ $V_{BATT} < 0.88 \times V_{DCIN}$ or: Figure 11 illustrates the variation of ripple current vs. battery voltage when charging at 3A with a fixed 19V input voltage. Higher inductor values decrease the ripple current. Smaller inductor values require higher saturation current capabilities and degrade efficiency. Designs for ripple current, $I_{RIPPLE} = 0.3 \times I_{CHG}$ usually result in a good balance between inductor size and efficiency. #### **Input Capacitor** Input capacitor C1 must be able to handle the input ripple current. At high charging currents, the DC-DC converter operates in continuous conduction. In this case, the ripple current of the input capacitor can be approximated by the following equation: $$I_{C1} = I_{CHG} \sqrt{D - D^2}$$ where: I_{C1} = input capacitor ripple current. D = DC-DC converter duty ratio. ICHG = battery-charging current. Input capacitor C1 must be sized to handle the maximum ripple current that occurs during continuous conduction. The maximum input ripple current occurs at 50% duty cycle; thus, the worst-case input ripple current is $0.5 \times I_{CHG}$. If the input-to-output voltage ratio is such that the DC-DC converter does not operate at a 50% duty cycle, then the worst-case capacitor current occurs where the duty cycle is nearest 50%. The input capacitor ESR times the input ripple current sets the ripple voltage at the input, and should not exceed 0.5V ripple. Choose the ESR of C1 according to: $$\mathsf{ESR}_{\mathsf{C1}} < \frac{0.5\mathsf{V}}{\mathsf{I}_{\mathsf{C1}}}$$ The input capacitor size should allow minimal output voltage sag at the highest switching frequency: $$\frac{I_{C1}}{2} = C1 \frac{dV}{dt}$$ where dV is the maximum voltage sag of 0.5V while delivering energy to the inductor during the high-side MOSFET on-time, and dt is the period at highest operating frequency (400kHz): C1 > $$\frac{I_{C1}}{2} \times \frac{2.5 \mu s}{0.5 V}$$ Both tantalum and ceramic capacitors are suitable in most applications. For equivalent size and voltage rating, tantalum capacitors have higher capacitance, but also higher ESR than ceramic capacitors. This makes it more critical to consider ripple current and power-dissipation ratings when using tantalum capacitors. A single ceramic capacitor often can replace two tantalum capacitors in parallel. #### **Output Capacitor** The output capacitor absorbs the inductor ripple current. The output capacitor impedance must be significantly less than that of the battery to ensure that it absorbs the ripple current. Both the capacitance and ESR rating of the capacitor are important for its effectiveness as a filter and to ensure stability of the DC-DC converter (see the *Compensation* section). Either tantalum or ceramic capacitors can be used for the output filter capacitor. #### **MOSFETs and Diodes** Schottky diode D1 provides power to the load when the AC adapter is inserted. This diode must be able to deliver the maximum current as set by RS1. For reduced power dissipation and improved dropout performance, replace D1 with a p-channel MOSFET (P1) as shown in Figure 2. Take caution not to exceed the maximum VGS of P1. Choose resistors R11 and R12 to limit the VGS. The n-channel MOSFETs (N1a, N1b) are the switching devices for the buck controller. High-side switch N1a should have a current rating of at least the maximum charge current plus one-half the ripple current and have an on-resistance (RDS(ON)) that meets the power dissipation requirements of the MOSFET. The driver for N1a is powered by BST. The gate-drive requirement for N1a should be less than 10mA. Select a MOSFET with a low total gate charge (QGATE) and determine the required drive current by IGATE = QGATE \times f (where f is the DC-DC converter's maximum switching frequency). The low-side switch (N1b) has the same current rating and power dissipation requirements as N1a, and should have a total gate charge less than 10nC. N2 is used to provide the starting charge to the BST capacitor (C15). During the dead time (50ns, typ) between N1a and N1b, the current is carried by the body diode of the MOSFET. Choose N1b with either an internal Schottky diode or body diode capable of carrying the maximum charging current during the dead time. The Schottky diode D3 provides the supply current to the high-side MOSFET driver. ### Layout and Bypassing Bypass DCIN with a 1 μ F capacitor to power ground (Figure 1). D2 protects the MAX1908/MAX8724/MAX8765 when the DC power source input is reversed. A signal diode for D2 is adequate because DCIN only powers the internal circuitry. Bypass LDO, REF, CCV, CCI, CCS, ICHG, and IINP to analog ground. Bypass DLOV to power ground. Good PC board layout is required to achieve specified noise, efficiency, and stable performance. The PC board layout artist must be given explicit instructions—preferably, a pencil sketch showing the placement of the power-switching components and high-current routing. Refer to the PC board layout in the MAX1908 evaluation kit for examples. Separate analog and power grounds are essential for optimum performance. Use the following step-by-step guide: - 1) Place the high-power connections first, with their grounds adjacent: - a) Minimize the current-sense resistor trace lengths, and ensure accurate current sensing with Kelvin connections. - b) Minimize ground trace lengths in the high-current paths. - c) Minimize other
trace lengths in the high-current paths. - d) Use > 5mm wide traces. - e) Connect C1 to high-side MOSFET (10mm max length). - f) LX node (MOSFETs, inductor (15mm max length)). Ideally, surface-mount power components are flush against one another with their ground terminals almost touching. These high-current grounds are then connected to each other with a wide, filled zone of top-layer copper, so they do not go through vias. The resulting top-layer power ground plane is connected to the normal ground plane at the MAX1908/MAX8724/MAX8765s' backside exposed pad. Other high-current paths should also be minimized, but focusing primarily on short ground and current-sense connections eliminates most PC board layout problems. - 2) Place the IC and signal components. Keep the main switching node (LX node) away from sensitive analog components (current-sense traces and REF capacitor). Important: The IC must be no further than 10mm from the current-sense resistors. - Keep the gate-drive traces (DHI, DLO, and BST) shorter than 20mm, and route them away from the - current-sense lines and REF. Place ceramic bypass capacitors close to the IC. The bulk capacitors can be placed further away. - 3) Use a single-point star ground placed directly below the part at the backside exposed pad of the MAX1908/MAX8724/MAX8765. Connect the power ground and normal ground to this node. #### Table 3. Component List for Circuit of Figure 2 | DESIGNATION | QTY | DESCRIPTION | |-----------------------|-----|--| | C1 | 2 | 10μF, 50V 2220-size ceramic capacitors
TDK C5750X7R1H106M | | C4 | 1 | 22μF, 25V 2220-size ceramic
capacitor
TDK C5750X7R1E226M | | C5 | 1 | 1μF, 25V X7R ceramic capacitor
(1206)
Murata GRM31MR71E105K
Taiyo Yuden TMK316BJ105KL
TDK C3216X7R1E105K | | C9, C10 | 2 | 0.01µF, 16V ceramic capacitors (0402)
Murata GRP155R71E103K
Taiyo Yuden EMK105BJ103KV
TDK C1005X7R1E103K | | C11, C14,
C15, C20 | 4 | 0.1µF, 25V X7R ceramic capacitors
(0603)
Murata GRM188R71E104K
TDK C1608X7R1E104K | | C12, C13, C16 | 3 | 1μF, 6.3V X5R ceramic capacitors
(0603)
Murata GRM188R60J105K
Taiyo Yuden JMK107BJ105KA
TDK C1608X5R1A105K | | D1 (optional) | 1 | 10A Schottky diode (D-PAK) Diodes, Inc. MBRD1035CTL ON Semiconductor MBRD1035CTL | | D2 | 1 | Schottky diode
Central Semiconductor
CMPSH1-4 | | DESIGNATION | QTY | DESCRIPTION | | | | | | | | | |-------------|-----|---|--|--|--|--|--|--|--|--| | D3 | 1 | Schottky diode
Central Semiconductor CMPSH1-4 | | | | | | | | | | L1 | 1 | 10µH, 4.4A inductor
Sumida CDRH104R-100NC
TOKO 919AS-100M | | | | | | | | | | N1 | 1 | Dual, n-channel, 8-pin SO MOSFET
Fairchild FDS6990A or FDS6990S | | | | | | | | | | P1 | 1 | Single, p-channel, 8-pin SO MOSFET
Fairchild FDS6675 | | | | | | | | | | R5 | 1 | 1kΩ ±5% resistor (0603) | | | | | | | | | | R6 | 1 | 59kΩ ±1% resistor (0603) | | | | | | | | | | R7 | 1 | 19.6kΩ ±1% resistor (0603) | | | | | | | | | | R11 | 1 | 12kΩ ±5% resistor (0603) | | | | | | | | | | R12 | 1 | 15kΩ ±5% resistor (0603) | | | | | | | | | | R13 | 1 | 33Ω ±5% resistor (0603) | | | | | | | | | | R14 | 1 | 10.5kΩ ±1% resistor (0603) | | | | | | | | | | R15, R16 | 2 | 8.25kΩ ±1% resistors (0603) | | | | | | | | | | R17 | 1 | 19.1kΩ ±1% resistor (0603) | | | | | | | | | | R18 | 1 | 22kΩ ±1% resistor (0603) | | | | | | | | | | R19, R20 | 2 | 10k Ω ±1% resistors (0603) | | | | | | | | | | RS1 | 1 | 0.01Ω ±1%, 0.5W 2010 sense resistor
Vishay Dale WSL2010 0.010 1.0%
IRC LRC-LR2010-01-R010-F | | | | | | | | | | RS2 | 1 | 0.015Ω ±1%, 0.5W 2010 sense resistor Vishay Dale WSL2010 0.015 1.0% IRC LRC-LR2010-01-R015-F | | | | | | | | | | U1 | 1 | MAX1908ETI, MAX8724ETI, or
MAX8765ETI | | | | | | | | | **Chip Information** **TRANSISTOR COUNT: 3772** PROCESS: BiCMOS ### Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) | FMGDL IMP. (MM MAX MIN, MOM | | | | С | OMM | ON DI | IMEN | SION | S | | | | | | | | | EXI | POSE | PAD | VARI | ATION | S | | | |--|--------------------------------|-------------------------|---------------------------|--------------------------------|-----------------------------------|-------------------------|---------------------------------|--------------|------------------------|------------------------|-------------------------|-----------------------|----------------|--------|--------------|--------|----------|------|------|------|--------------|-------|--------|-------|------------------| | SYMBOL MIN. NOM, MAX, M | 10E 3X3 | | | | | | | | | | | | PKG | | D2 | | | E2 | | L | | | | | | | A1 0 0 002 0.05 0 0.05 0 0.02 0.05 0 0.02 0.05 0 0.05 | SYMBOL | MIN. | NOM. | MAX. | | MIN. | NOM. | MAX. | MIN. | NOM. | MAX. | ±0.15 | BONDS
ALLOWER | | A3 0 20 REF. | | + | | | _ | - | | | _ | | _ | _ | | _ | _ | | T1655-2 | 3.00 | 3.10 | 3.20 | 3.00 | 3.10 | 3.20 | ** | YES | | D 25 0.30 0.35 0.25 0.25 0.25 0.25 0.25 0.30 0.2 0.25 0.30 0.15 0.20 0.25 | | - | | | _ | | | _ | | - | _ | - | | _ | - | | T1655-3 | 3.00 | 3.10 | 3.20 | 3.00 | 3.10 | 3.20 | ** | NO | | D 490 500 510 490 510 490 510 490 510 490 510 490 510 490 510 490 510
490 510 490 | | _ | | | - | | | | | | | | | | | | T1655N-1 | 3.00 | 3.10 | 3.20 | 3.00 | 3.10 | 3.20 | ** | NO | | E 490 [S.00] [S.10] 4.90 [S.00] 5.10 [4.90] [S.00] 5.10 [4.90] [S.00] [S.10] [| - | | | | | | | | | | | | | | | | T2055-3 | 3.00 | 3.10 | 3.20 | 3.00 | 3.10 | 3.20 | ** | YES | | E | | | | | | | | | | | | | | | | | T2055-4 | 3.00 | 3.10 | 3.20 | 3.00 | 3.10 | 3.20 | ** | NO | | k 0.25 - 0.25 - 0.25 - 0.25 - 0.25 - 0.25 - 0.25 - 0.25 - 0.25 0.50 0.40 0.25 0.20 0 | | - | | _ | _ | - | _ | - | | _ | - | _ | | _ | _ | _ | T2055-5 | 3.15 | 3.25 | 3.35 | 3.15 | 3.25 | 3.35 | 0.40 | YES | | L 030 0.40 0.50 0.45 0.55 0.65 0.45 0.55 0.65 0.50 0.40 0.4 | | _ | | _ | | | | | | 5U. | | | | | | | T2855-3 | 3.15 | 3.25 | 3.35 | 3.15 | 3.25 | 3.35 | ** | YES | | Table Tabl | | _ | | | | | - | | - | 0.05 | - | _ | | - | _ | _ | T2855-4 | 2.60 | 2.70 | 2.80 | 2.60 | 2.70 | 2.80 | ** | YES | | N | | 0.30 | 0.40 | 0.50 | 0.40 | 0.55 | 0.05 | | 0.55 | 0.65 | 0.30 | | 0.50 | | | | T2855-5 | 2.60 | 2.70 | 2.80 | 2.60 | 2.70 | 2.80 | ** | NO | | NO 4 5 7 8 10 12855-7 2.6 2.70 2.80 2.70 2.70 2.80 2.70 2.80 2.70 2.80 2.70 2.70 2.70 2.70 2.70 2.70 2.80 2.70 | | ÷ | 16 | - | - | 20 | _ | Ė | 28 | _ | - | | - | 0.50 | | 10.50 | T2855-6 | 3.15 | 3.25 | 3.35 | 3.15 | 3.25 | 3.35 | ** | NO | | New York 1 | | - | | | | | | | | | | | | | | | T2855-7 | 2.60 | 2.70 | 2.80 | 2.60 | 2.70 | 2.80 | ** | YES | | JEDEC | NE | | | | | | | | | | | | | | | | T2855-8 | 3.15 | 3.25 | 3.35 | 3.15 | 3.25 | 3.35 | 0.40 | YES | | Table Tabl | JEDEC | | WHHE | 3 | ١ | WHHO | 0 | ١ | VHHC |)-1 | ٧ | VHHD | -2 | | | | T2855N-1 | 3.15 | 3.25 | 3.35 | 3.15 | 3.25 | 3.35 | ** | | | 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONING ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. IN 15 THE TOTAL NUMBER OF TERMINAL. BY IDENTIFIER ARE OPTIONAL, BUT MUST BELL COATED WITHIN THE ZONE INDICATED. THE TERMINAL BY IDENTIFIER AND TERMINAL BY IDENTIFIER ARE OPTIONAL, BUT MUST BELL COATED WITHIN THE ZONE INDICATED. THE TERMINAL BY IDENTIFIER ARE OPTIONAL, BUT MUST BELL COATED WITHIN THE ZONE INDICATED. THE TERMINAL BY IDENTIFIER ARE OPTIONAL, BUT MUST BELL COATED WITHIN THE ZONE INDICATED. THE TERMINAL BY IDENTIFIER ARE OPTIONAL, BUT MUST BELL COATED WITHIN THE ZONE INDICATED. THE TERMINAL BY IDENTIFIER AND YES ETHER AND LOT OF MARKED FEATURE. AD INDIRNSION DA APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 3.05 mm FROM TERMINAL IN COMMON TO STAND THE AND | | | | | | | | | | | | | | | | | T3255-3 | 3.00 | 3.10 | 3.20 | 3 .00 | 3.10 | .20 | ** | YES | | 1. DIMENSIONING ARE IM MILLIMETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. 3. N IS THE TOTAL NUMBER OF TERMINALS. 3. N IS THE TOTAL NUMBER OF TERMINAL S. 4. THE TERMINAL #1 IDENTIFIER AND TERMINAL PILIMETER AND TERMINAL #1 IDENTIFIER | IOTES: | | | | | | | | | | | | | | | | T3255-4 | 3.00 | 3.10 | 3.20 | 3 .00 | 3.10 | .20 | ** | NO | | 2. ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES ARE IN DECREES. A THE TERMINAL BY IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL COMPORATE OF TERMINALS OF TERMINAL BY IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL BY IDENTIFIER AND TERMINAL BY IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL BY IDENTIFIER AND THE ANDLO OF MARKED FEATURE. A DIMENSION DA APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 3.05 mm FROM TERMINAL BY IDENTIFIER OF TERMINAL BY IDENTIFIER OF THE MUST IDENTIFIED BY IDENTIFIER OF THE MUST BY IDENTIFIED BY IDENTIFIER OF THE MUST BY IDENTIFIED BY IDENTIFIED BY IDENTIFIER OF THE MUST BY IDENTIFIED IDENTIFIER BY IDENTIFIED | 1. DIN | IENSI | ONING | & TC | DLERA | NCIN | IG CO | NFOF | RM TC | ASM | E Y14 | .5M-1 | 994. | | | | | | | | | | | | | | 3. N IS THE TOTAL NUMBER OF TERMINAL S. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER AND TERMINAL #1 IDENTIFIER AND TERMINAL #1 IDENTIFIER AND TERMINAL #1 IDENTIFIER AND THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. DIMENSION A PPLIES TO METALLIZE D'ERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. M DAND NE REFER TO THE NUMBER OF TERMINALS ON EACH DAND E SIDE RESPECTIVELY. 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. DO CHANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. DRAWING GONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR 1255-3 AND T285-5. WARPAGE SHALL NOT EXCEED 0.10 mm. MARKHON IS FOR PACKAGE ORIENTATION REFERENCE ONLY. | 2. ALL | DIME | NSIO | NS AF | RE IN I | MILLIN | ИЕТЕ | RS. A | NGLE | SARE | IN D | EGRE | ES. | | | | | 0.00 | | 0 | 0.00 | | 0.00 | | | | A THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM OL SED 96-1 SPO-12. DETAILS OF TERMINAL #1 IDENTIFIER AND CONFORM OL SED 96-1 SPO-12. DETAILS OF TERMINAL #1 IDENTIFIER AND DESTIFIER MAY SE ETHER AND LOD OR MARKED FEATURE. A DIAMENSION DAPPLIES TO METAILIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. A NO AND NE REFER TO THE NUMBER OF TERMINAL SOL SIDE RESPECTIVELY. 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. DOPAUMARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 9. DRAWING COMPORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR TESSS-3 AND T2865-6. WARPAGE SHALL NOT EXCEED 0.10 mm. 11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY. DEALERS FOR PACKAGE ORIENTATION REFERENCE ONLY. | 3. N IS | STHE | TOTAL | NUN | MBER | OF TE | ERMII | NALS. | | | | | | | | | T4055-1 | 3.20 | 3.30 | 3.40 | | | | | | | 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. A COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 9. DRAWING GONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-3 AND T2855-6. WARPAGE SHALL NOT EXCEED 0.10 mm. 11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY. | COI
OP
IDE | NFOR
TIONA
NTIFII | M TO .
L, BUT
ER MA | JESD
F MUS
Y BE
PPLII | 95-1 S
ST BE
EITHE
ES TO | SPP-0
LOCA
ER A N | 112. E
ATED
MOLD
ALLIZ | WITH
OR M | S OF
IN TH
IARKI | TERM
E ZON
ED FE | MINAL
NE INI
ATUF | #1 ID
DICAT
RE. | ENTII
ED. T | FIER A | ARE
ERMIN | NAL #1 | | | | | | | | | | | © COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 9. DRAWING CONFORMS TO JEDEC MICEOZO, EXCEPT EXPOSED PAD DIMENSION FOR 1285-3 AND 1285-4. WARPAGE SHALL NOT TEXCEED 0.10 mm. 1. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY. | 0.2 | | | | | | | | | | | |) ANE | E SI | DE RE | ESPECT | /ELY. | | | | | | | | | | 9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T38553 AND T28554. 11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY. | <u>∕</u> 6∖ ND | | | | | | | | | | | | WEII | LAST | THET | ERMINA | .s. | | | | | | | | | | MARPAGE SHALL NOT EXCEED 0.10 mm. 11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY. DALLAS BENECOROLOGY B | ND
7. DEI |
PLAN/ | | FOR | MS TO | 11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY. | A ND 7. DEI A COI 9. DR | AWING | | | | | 0.10 | mm. | | | | | | | | | | Г | | | | | | | | | | A ND 7. DEI A COI 9. DR T28 | AWIN0 | AND T | | OT EX | | | | | | | | | | | | | | ŒΠ | ALI | AS | 40. | 48 4 | TAPE | B 48 | | | A ND 7. DEI A CO 9. DR T28 WA | AWING
355-3 A | AND T | LL N | | | IENT | ATION | REF | EREN | CE O | NLY. | | | | | | | | | | | 7 N A9 | 200 | N 28 | Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.