

General Description

The MAX16025–MAX16030 are dual-/triple-/quad-voltage monitors and sequencers that are offered in a small TQFN package. These devices offer enormous design flexibility as they allow fixed and adjustable thresholds to be selected through logic inputs and provide sequence timing through small external capacitors. These versatile devices are ideal for use in a wide variety of multivoltage applications.

As the voltage at each monitored input exceeds its respective threshold, its corresponding output goes high after a propagation delay or a capacitor-set time delay. When a voltage falls below its threshold, its respective output goes low after a propagation delay. Each detector circuit also includes its own enable input, allowing the power-good outputs to be shut off independently. The independent output for each detector is available with push-pull or open-drain configuration with the open-drain version capable of supporting voltages up to 28V, thereby allowing them to interface to shutdown and enable inputs of various DC-DC regulators. Each detector can operate independently as four separate supervisory circuits or can be daisy-chained to provide controlled power-supply sequencing.

The MAX16025–MAX16030 also include a reset function that deasserts only after all of the independently monitored voltages exceed their threshold. The reset timeout is internally fixed or can be adjusted externally. These devices are offered in a 4mm x 4mm TQFN package and are fully specified from -40°C to +125°C.

Applications

Multivoltage Systems DC-DC Supplies Servers/Workstations Storage Systems Networking/Telecommunication Equipment

PART	MONITORED VOLTAGES	INDEPENDENT OUTPUTS	RESET OUTPUT
MAX16025	2	2 (Open-drain)	Open-drain
MAX16026	2	2 (Push-pull)	Push-pull
MAX16027	3	3 (Open-drain)	Open-drain
MAX16028	3	3 (Push-pull)	Push-pull
MAX16029	4	4 (Open-drain)	Open-drain
MAX16030	4	4 (Push-pull)	Push-pull

Selector Guide

M/IXI/M

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Features

- 2.2V to 28V Operating Voltage Range
- Fixed Thresholds for 3.3V, 2.5V, 1.8V, 1.5V, and 1.2V Systems
- 1.5% Accurate Adjustable Threshold Monitors Voltages Down to 0.5V
- 2.7% Accurate Fixed Thresholds Over Temperature
- Fixed (140ms min)/Capacitor-Adjustable Delay Timing
- Independent Open-Drain/Push-Pull Outputs
- Enable Inputs for Each Monitored Voltage
- ♦ 9 Logic-Selectable Threshold Options
- ♦ Manual Reset and Tolerance Select (5%/10%) Inputs
- Small, 4mm x 4mm TQFN Package
- ♦ Fully Specified from -40°C to +125°C

Ordering Information

PART*	TEMP RANGE	PIN- PACKAGE	PKG CODE
MAX16025TE+	-40°C to +125°C	16 TQFN	T1644-4
MAX16026TE+	-40°C to +125°C	16 TQFN	T1644-4
MAX16027TP+	-40°C to +125°C	20 TQFN	T2044-3
MAX16028TP+	-40°C to +125°C	20 TQFN	T2044-3
MAX16029TG+	-40°C to +125°C	24 TQFN	T2444-4
MAX16030TG+	-40°C to +125°C	24 TQFN	T2444-4

+Denotes lead-free package.

*For tape and reel, add a "T" after the "+." All tape and reel orders are available in 2.5k increments.

Pin Configurations

___ Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)

V _{CC}	-0.3V to +30V
EN1–EN4	
OUT1–OUT4 (push-pull)	0.3V to (V _{CC} + 0.3V)
OUT1-OUT4 (open-drain)	0.3V to +30V
RESET (push-pull)	0.3V to (V _{CC} + 0.3V)
RESET (open-drain)	0.3V to 30V
IN1–IN4	0.3V to (V _{CC} + 0.3V)
MR, TOL, TH1, TH0	0.3V to (V _{CC} + 0.3V)
CDLY1-CDLY4	-0.3V to +6V

CRESET	0.3V to (V _{CC} + 0.3V)
Input/Output Current (all pins)	±20mA
Continuous Power Dissipation ($T_A = +70^{\circ}$	C)
16-Pin TQFN (derate 25mW/°C above +	70°C)2000mW
20-Pin TQFN (derate 25.6mW/°C above	+70°C)2051mW
24-Pin TQFN (derate 27.8mW/°C above	+70°C)2222mW
Operating Temperature Range	40°C to +125°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC} = 2.2V to 28V, T_A = -40°C to +125°C, unless otherwise specified. Typical values are at V_{CC} = 3.3V and T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITI	ONS	MIN	TYP	MAX	UNITS
SUPPLY	•			•			
Operating Voltage Range	Vcc	(Note 2)		2.2		28.0	V
Undervoltage Lockout	UVLO	(Note 2)		1.8	1.9	2.0	V
Undervoltage-Lockout Hysteresis	UVLO _{HYST}	V _{CC} falling			50		mV
		All OUT_ and RESET at	$V_{CC} = 3.3V$		40	75	
V _{CC} Supply Current	Icc	logic-high (IN_ current	$V_{CC} = 12V$		47	75	μA
		excluded)	$V_{\rm CC} = 28V$		52	80	
INPUTS (IN_)							
		3.3V threshold, TOL = G	ND	2.970	3.052	3.135	
		3.3V threshold, TOL = V_0	CC	2.805	2.888	2.970	
		2.5V threshold, TOL = G	ND	2.250	2.313	2.375	
		2.5V threshold, TOL = V_{c}	CC	2.125	2.187	2.250	
N. Threeholds (N. Falling)		1.8V threshold, TOL = G	ND	1.620	1.665	1.710	V
IN_ Thresholds (IN_ Falling)	V _{TH}	1.8V threshold, TOL = V	00	1.530	1.575	1.620	v
		1.5V threshold, TOL = G	ND	1.350	1.387	1.425	
		1.5V threshold, TOL = V_0	CC	1.275	1.312	1.350	
		1.2V threshold, TOL = G	ND	1.080	1.110	1.140	
		1.2V threshold, $TOL = V_0$	00	1.020	1.050	1.080	
Adjustable Threshold (IN_		TOL = GND		0.492	0.5	0.508	
Falling)	V _{TH}	TOL = V _{CC}		0.463	0.472	0.481	V
IN_ Hysteresis (IN_ Rising)	VHYST				0.5		%
IN_ Input Resistance		Fixed threshold		500	918		kΩ
IN_ Input Current	١L	Adjustable threshold only	$y(V_{\rm IN} = 1V)$	-100		+100	nA

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = 2.2V \text{ to } 28V, T_A = -40^{\circ}C \text{ to } +125^{\circ}C, \text{ unless otherwise specified. Typical values are at } V_{CC} = 3.3V \text{ and } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
CRESET AND CDLY_						
CRESET Threshold	VTH-RESET	CRESET rising, $V_{CC} = 3.3V$	0.465	0.5	0.535	V
CRESET Charge Current	I _{CH-RESET}	$V_{CC} = 3.3V$	380	500	620	nA
CDLY_ Threshold	VTH-CDLY	CDLY_ rising, $V_{CC} = 3.3V$	0.95	1	1.05	V
CDLY_ Charge Current	ICH-CDLY	$V_{CC} = 3.3V$	200	250	300	nA
DIGITAL LOGIC INPUTS (EN_, \overline{M}	R, TOL, TH1,	TH0)				
Input Low Voltage	VIL				0.4	V
Input High Voltage	VIH		1.4			V
TH1, TH0 Logic-Input Floating				0.6		V
TOL, TH1, TH0 Logic-Input Current		V_{TOL} , V_{TH1} , V_{TH0} = GND or V_{CC}	-1		+1	μA
EN_ Input Leakage Current		$V_{EN_{-}} = V_{CC}$ or GND	-100		+100	nA
MR Internal Pullup Current		V _{CC} = 3.3V	250	535	820	nA
OUTPUTS (OUT_, RESET)	•		•			<u>.</u>
		V _{CC} ≥ 1.2V, I _{SINK} = 90µA			0.3	
Output Low Voltage (Open-Drain or Push-Pull)	VOL	V _{CC} ≥ 2.25V, I _{SINK} = 0.5mA			0.3	V
or Fusil-Full)		V _{CC} ≥ 4.5V, I _{SINK} = 1mA			0.35]
Output High Voltage (Duch Dull)	Val	V _{CC} ≥ 3V, I _{SOURCE} = 500µA	0.8 x V _{CC}			V
Output High Voltage (Push-Pull)	Vон	$V_{CC} \ge 4.5V$, ISOURCE = $800\mu A$	0.8 x V _{CC}			v
Output Leakage Current (Open- Drain)	ILKG	Output not asserted low, V _{OUT} = 28V			1	μA
		CRESET = V _{CC} , V _{CC} = 3.3V	140	190	260	
Reset Timeout Period	t _{RP}	CRESET open		0.030		ms
TIMING						
IN to OUT Propagation Delay	tDELAY+	IN_ rising, CDLY_ open		35		
IN_ to OUT_ Propagation Delay	tDELAY-	IN_ falling, CDLY_ open		20		μs
IN_ to RESET Propagation Delay	trst-delay	IN_ falling		35		μs
MR Minimum Input Pulse Width		(Note 3)	2			μs
EN_ or MR Glitch Rejection				280		ns
·	tOFF	From device enabled to device disabled		3		
EN_ to OUT_ Delay	ton	From device disabled to device enabled (CDLY_ open)		30		μs
MR to RESET Delay		MR falling		3		μs

Note 1: Devices are production tested at $T_A = +25^{\circ}C$. Limits over temperature are guaranteed by design.

Note 2: Operating below the UVLO causes all outputs to go low. The outputs are guaranteed to be in the correct state for V_{CC} down to 1.2V.

Note 3: In order to guarantee an assertion, the minimum input pulse width must be greater than 2µs.

MAX16025-MAX16030

 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

SUPPLY CURRENT SUPPLY CURRENT NORMALIZED ADJUSTABLE THRESHOLD vs. SUPPLY VOLTAGE vs. TEMPERATURE vs. TEMPERATURE 60 1.003 60 MAX16026 = 28V 1.002 MAX16026 Vcc : $TOL = \dot{V}_{CC}$ 55 1.001 55 1.000 **VORMALIZED THRESHOLD** SUPPLY CURRENT (µA) SUPPLY CURRENT (µA) 0.999 50 50 0.998 0.997 45 45 TOI = GND0.996 $V_{CC} = 12V$ 0.995 40 40 0.994 0.993 35 35 V_{CC} = 3.3V 0.992 0.991 ADJUSTABLE THRESHOLD 30 30 0.990 14 2 6 10 18 22 26 30 -40 -25 -10 5 20 35 50 65 80 95 110 125 -40 -25 -10 5 20 35 50 65 80 95 110 125 SUPPLY VOLTAGE (V) TEMPERATURE (°C) TEMPERATURE (°C) **RESET TIMEOUT PERIOD** NORMALIZED ADJUSTABLE THRESHOLD OUT_ DELAY vs. C_{CDLY} **vs.** CCRESET vs. TEMPERATURE 5000 1200 1.003 1.002 1100 TÓL = V_{CC} 4500 1.001 1000 4000 TIMEOUT PERIOD (ms) 900 THRESHOL 3500 0.999 800 DELAY (ms) 0.998 3000 700 0.997 600 2500 NORMALIZED = GND 0.996 TOL 500 DUT 2000 0.995 400 RESET 0.994 1500 300 0.993 1000 200 0.992 500 3.3V THRESHOLD 100 0 991 0.990 0 0 -40 -25 -10 5 20 35 50 65 80 95 110 125 0 100 200 300 400 500 600 700 800 900 1000 TEMPERATURE (°C) C_{CDLY} (nF) CCRESET (nF) OUT LOW VOLTAGE FIXED RESET TIMEOUT PERIOD OUT_ HIGH VOLTAGE vs. TEMPERATURE vs. SINK CURRENT vs. SOURCE CURRENT 195 1.0 3.5 CRESET = V_{CC} 194 3.0 FIXED RESET TIMEOUT PERIOD (ms) 0.8 193 2.5 192 191 0.6 S S 2.0 Vour Vout_ (190 1.5 0.4 189 188 1.0 0.2 187 0.5 186 PUSH-PULL VERSIONS 0 185 0 -40 -25 -10 5 20 35 50 65 80 95 110 125 0 1 2 3 4 5 6 7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 SINK CURRENT (mA) TEMPERATURE (°C)

Typical Operating Characteristics

4

Typical Operating Characteristics (continued)

 $(V_{CC} = 3.3V, T_A = +25^{\circ}C, unless otherwise noted.)$

MAX16025-MAX16030

Pin Description

	PIN			
MAX16025/ MAX16026	MAX16027/ MAX16028	MAX16029/ MAX16030	NAME	FUNCTION
1	1	1	V _{CC}	Supply Voltage Input. Connect a 2.2V to 28V supply voltage to power the device. All outputs are low when V _{CC} is below the UVLO. For noisy systems, bypass V _{CC} to GND with a 0.1 μ F capacitor.
2	2	2	IN1	Monitored Input 1. When the voltage at IN1 exceeds its threshold, OUT1 goes high after the capacitor-adjustable delay period. When the voltage at IN1 falls below its threshold, OUT1 goes low after a propagation delay.
3	3	3	IN2	Monitored Input 2. When the voltage at IN2 exceeds its threshold, OUT2 goes high after the capacitor-adjustable delay period. When the voltage at IN2 falls below its threshold, OUT2 goes low after a propagation delay.
_	4	4	IN3	Monitored Input 3. When the voltage at IN3 exceeds its threshold, OUT3 goes high after the capacitor-adjustable delay period. When the voltage at IN3 falls below its threshold, OUT3 goes low after a propagation delay.
	_	5	IN4	Monitored Input 4. When the voltage at IN4 exceeds its threshold, OUT4 goes high after the capacitor-adjustable delay period. When the voltage at IN4 falls below its threshold, OUT4 goes low after a propagation delay.
4	5	6	TOL	Threshold Tolerance Input. Connect TOL to GND to select thresholds 5% below nominal. Connect TOL to V_{CC} to select thresholds 10% below nominal.
5	6	7	GND	Ground
6	7	8	EN1	Active-High Logic-Enable Input 1. Driving EN1 low causes OUT1 to go low regardless of the input voltage. Drive EN1 high to enable the monitoring comparator.
7	8	9	EN2	Active-High Logic-Enable Input 2. Driving EN2 low causes OUT2 to go low regardless of the input voltage. Drive EN2 high to enable the monitoring comparator.
	9	10	EN3	Active-High Logic-Enable Input 3. Driving EN3 low causes OUT3 to go low regardless of the input voltage. Drive EN3 high to enable the monitoring comparator.
		11	EN4	Active-High Logic-Enable Input 4. Driving EN4 low causes OUT4 to go low regardless of the input voltage. Drive EN4 high to enable the monitoring comparator.
8	10	12	TH1	Threshold Select Input 1. Connect TH1 to V_{CC} or GND, or leave it open to select the input-voltage threshold option in conjunction with TH0 (see Table 2).
9	11	13	TH0	Threshold Select Input 0. Connect TH0 to V_{CC} or GND, or leave it open to select the input-voltage threshold option in conjunction with TH1 (see Table 2).
		14	OUT4	Output 4. When the voltage at IN4 is below its threshold or EN4 goes low, OUT4 goes low.
—	12	15	OUT3	Output 3. When the voltage at IN3 is below its threshold or EN3 goes low, OUT3 goes low.
10	13	16	OUT2	Output 2. When the voltage at IN2 is below its threshold or EN2 goes low, OUT2 goes low.

Pin Description (continued)

	PIN			
MAX16025/ MAX16026	MAX16027/ MAX16028	MAX16029/ MAX16030	NAME	FUNCTION
11	14	17	OUT1	Output 1. When the voltage at IN1 is below its threshold or EN1 goes low, OUT1 goes low.
12	15	18	RESET	Active-Low Reset Output. RESET asserts low when any of the monitored voltages (IN_) falls below its respective threshold, any EN_ goes low, or $\overline{\text{MR}}$ is asserted. RESET remains asserted for the reset timeout period after all of the monitored voltages exceed their respective threshold, all EN_ are high, all OUT_ are high, and $\overline{\text{MR}}$ is deasserted.
13	16	19	MR	Active-Low Manual Reset Input. Pull $\overline{\text{MR}}$ low to assert $\overline{\text{RESET}}$ low. $\overline{\text{RESET}}$ remains low for the reset timeout period after $\overline{\text{MR}}$ is deasserted (as long as all OUT_ are high).
14	17	20	CRESET	Capacitor-Adjustable Reset Delay Input. Connect an external capacitor from CRESET to GND to set the reset timeout period or connect to V_{CC} for the default 140ms minimum reset timeout period. Leave CRESET open for internal propagation delay.
_		21	CDLY4	Capacitor-Adjustable Delay Input 4. Connect an external capacitor from CDLY4 to GND to set the IN4 to OUT4 (and EN4 to OUT4) delay period. Leave CDLY4 open for internal propagation delay.
_	18	22	CDLY3	Capacitor-Adjustable Delay Input 3. Connect an external capacitor from CDLY3 to GND to set the IN3 to OUT3 (and EN3 to OUT3) delay period. Leave CDLY3 open for internal propagation delay.
15	19	23	CDLY2	Capacitor-Adjustable Delay Input 2. Connect an external capacitor from CDLY2 to GND to set the IN2 to OUT2 (and EN2 to OUT2) delay period. Leave CDLY2 open for internal propagation delay.
16	20	24	CDLY1	Capacitor-Adjustable Delay Input 1. Connect an external capacitor from CDLY1 to GND to set the IN1 to OUT1 (and EN1 to OUT1) delay period. Leave CDLY1 open for internal propagation delay.
_	_	_	EP	Exposed Pad. EP is internally connected to GND. Connect EP to the ground plane.

Table 1. Output State*

EN_	IN_	OUT_
Low	$V_{IN} < V_{TH}$	Low
High	$V_{IN} < V_{TH}$	Low
Low	$V_{IN} > V_{TH}$	Low
Llich		OUT_ = high (MAX16026/MAX16028/ MAX16030)
High	Vin_ > Vth	OUT_ = high impedance (MAX16025/MAX16027/ MAX16029)

*When V_{CC} falls below the UVLO, all outputs go low regardless of the state of EN_ and V_{IN}. The outputs are guaranteed to be in the correct state for V_{CC} down to 1.2V.

Table 2. Input-Voltage Threshold Selector

TH1/TH0 LOGIC	IN1 (ALL VERSIONS) (V)	IN2 (ALL VERSIONS) (V)	IN3 (MAX16027/ MAX16028) (V)	IN4 (MAX16029/ MAX16030) (V)
Low/Low	3.3	2.5	1.8	1.5
Low/High	3.3	1.8	Adj	Adj
Low/Open	3.3	1.5	Adj	Adj
High/Low	3.3	1.2	1.8	2.5
High/High	2.5	1.8	Adj	Adj
High/Open	3.3	Adj	2.5	Adj
Open/Low	3.3	Adj	Adj	Adj
Open/High	2.5	Adj	Adj	Adj
Open/Open	Adj	Adj	Adj	Adj

Figure 1. MAX16029/MAX16030 Simplified Functional Diagram

Figure 2. Timing Diagram (CDLY_ Open)

Detailed Description

The MAX16025–MAX16030 are low-voltage, accurate, dual-/triple-/quad-voltage microprocessor (μ P) supervisors in a small TQFN package. These devices provide supervisory and sequencing functions for complex multivoltage systems. The MAX16025/MAX16026 monitor two voltages, the MAX16027/MAX16028 monitor three voltages, and the MAX16029/MAX16030 monitor four voltages.

The MAX16025–MAX16030 offer independent outputs and enable functions for each monitored voltage. This configuration allows the device to operate as four separate supervisory circuits or be daisy-chained together to allow controlled sequencing of power supplies during power-up initialization. When all of the monitored voltages exceed their respective thresholds, an independent reset output deasserts to allow the system processor to operate.

These devices offer enormous flexibility as there are nine threshold options that are selected through two threshold-select logic inputs. Each monitor circuit also offers an independent enable input to allow both digital and analog control of each monitor output. A tolerance select input allows these devices to be used in systems requiring 5% or 10% power-supply tolerances. In addition, the time delays and reset timeout can be adjusted using small capacitors. There is also a fixed 140ms minimum reset timeout feature.

Applications Information

Tolerance

The MAX16025–MAX16030 feature a pin-selectable threshold tolerance. Connect TOL to GND to select the thresholds 5% below the nominal value. Connect TOL to V_{CC} to select the threshold tolerance 10% below the nominal voltage. Do not leave TOL unconnected.

Adjustable Input

These devices offer several monitoring options with both fixed and/or adjustable reset thresholds (see Table 2). For the adjustable threshold inputs, the threshold voltage (V_{TH}) at each adjustable IN_ input is typically 0.5V (TOL = GND) or 0.472V (TOL = V_{CC}). To monitor a voltage V_{INTH}, connect a resistive divider network to the circuit as shown in Figure 3 and use the following equation to calculate the threshold voltage:

$$V_{INTH} = V_{TH} \times \left(1 + \frac{R1}{R2}\right)$$

Choosing the proper external resistors is a balance between accuracy and power use. The input to the voltage monitor is a high-impedance input with a small 100nA leakage current. This leakage current contributes to the overall error of the threshold voltage where the output is asserted. This induced error is proportional to the value of the resistors used to set the threshold. With lower value resistors, this error is reduced, but the amount of power consumed in the resistors increases.

Figure 3. Setting the Adjustable Input

The following equation is provided to help estimate the value of the resistors based on the amount of acceptable error:

$$R_1 = \frac{e_A \times V_{INTH}}{I_L}$$

where e_A is the fraction of the maximum acceptable absolute resistive divider error attributable to the input leakage current (use 0.01 for ±1%), V_{INTH} is the voltage at which the output (OUT_) should assert, and I_L is the worst-case IN_ leakage current (see the *Electrical Characteristics*). Calculate R2 as follows:

$$R_2 = \frac{V_{TH} \times R1}{V_{INTH} - V_{TH}}$$

Unused Inputs

Connect any unused IN_ and EN_ inputs to VCC.

OUT_ Output

An OUT_ goes low when its respective IN_ input voltage drops below its specified threshold or when its EN_ goes low (see Table 1). OUT_ goes high when EN_ is high and VIN_ is above its threshold after a time delay. The MAX16025/MAX16027/MAX16029 feature open-drain, outputs while the MAX16026/MAX16028/MAX16030 have push-pull outputs. Open-drain outputs require an external pullup resistor to any voltage from 0 to 28V.

RESET Output

RESET asserts low when any of the monitored voltages (IN_) falls below its respective threshold, any EN_ goes low, or MR is asserted. RESET remains asserted for the reset timeout period after all of the monitored voltages exceed their respective threshold, all EN_ are high, all OUT_ are high, and MR is deasserted. The MAX16025/MAX16027/MAX16029 have an open-drain, active-low reset output, while the MAX16026/MAX16028/MAX16030 have a push-pull, active-low reset output. Open-drain RESET requires an external pullup resistor to any voltage from 0 to 28V.

Adjustable Reset Timeout Period (CRESET)

All of these parts offer an internally fixed reset timeout (140ms min) by connecting CRESET to V_{CC}. The reset timeout can also be adjusted by connecting a capacitor from CRESET to GND. When the voltage at CRESET reaches 0.5V, RESET goes high. When RESET goes high, CRESET is immediately held low.

Calculate the reset timeout period as follows:

 $t_{RP} = \frac{V_{TH-RESET}}{I_{CH-RESET}} \times C_{CRESET} + 35 \times 10^{-6}$

where VTH-RESET is 0.5V, ICH-RESET is 0.5 μ A, trp is in seconds, and CCRESET is in Farads. To ensure timing accuracy and proper operation, minimize leakage at CCRESET.

Adjustable Delay (CDLY_)

When V_{IN} rises above V_{TH} with EN_ high, the internal 250nA current source begins charging an external capacitor connected from CDLY_ to GND. When the voltage at CDLY_ reaches 1V, OUT_ goes high. When OUT_ goes high, CDLY_ is immediately held low. Adjust the delay (tDELAY) from when V_{IN} rises above V_{TH} (with EN_ high) to OUT_ going high according to the equation:

$$t_{\text{DELAY}} = \frac{V_{\text{TH-CDLY}}}{I_{\text{CH-CDLY}}} \times C_{\text{CDLY}} + 35 \times 10^{-6}$$

where V_{TH-CDLY} is 1V, I_{CH-CDLY} is 0.25 μ A, C_{CDLY} is in Farads, t_{DELAY} is in seconds, and t_{DELAY+} is the internal propagation delay of the device. To ensure timing accuracy and proper operation, minimize leakage at CDLY.

Manual-Reset Input (MR)

Many µP-based products require manual-reset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. A logic-low on MR asserts RESET low. RESET remains asserted while MR is low and during the reset timeout period (140ms fixed or capacitor adjustable) after MR returns high. The MR input has a 500nA internal pullup, so it can be left unconnected, if not used. MR can be driven with TTL or CMOS logic levels, or with open-drain/collector outputs. Connect a normally open momentary switch from MR to GND to create a manual-reset function. External debounce circuitry is not required. If $\overline{\text{MR}}$ is driven from long cables or if the device is used in a noisy environment, connect a 0.1µF capacitor from $\overline{\text{MR}}$ to GND to provide additional noise immunity.

Pullup Resistor Values

The exact value of the pullup resistors for the opendrain outputs is not critical, but some consideration should be made to ensure the proper logic levels when the device is sinking current. For example, if $V_{CC} = 2.25V$ and the pullup voltage is 28V, keep the sink current less than 0.5mA as shown in the *Electrical Characteristics* table. As a result, the pullup resistor should be greater than 56k Ω . For a 12V pullup, the resistor should be larger than 24k Ω . Note that the ability to sink current is dependent on the V_{CC} supply voltage.

Power-Supply Bypassing

The device operates with a V_{CC} supply voltage from 2.2V to 28V. When V_{CC} falls below the UVLO threshold, all the outputs go low and stay low until V_{CC} falls below 1.2V. For noisy systems or fast rising transients on V_{CC}, connect a 0.1 μ F ceramic capacitor from V_{CC} to GND as close to the device as possible to provide better noise and transient immunity.

Ensuring Valid Output with Vcc Down to OV (MAX16026/MAX16028/MAX16030 Only)

When V_{CC} falls below 1.2V, the ability for the output to sink current decreases. In order to ensure a valid output as V_{CC} falls to 0V, connect a 100k Ω resistor from OUT/RESET to GND.

Typical Application Circuits

Figures 4 and 5 show typical applications for the MAX16025–MAX16030. In high-power applications, using an n-channel device reduces the loss across the MOSFETs as it offers a lower drain-to-source on-resistance. However, an n-channel MOSFET requires a sufficient VGs voltage to fully enhance it for a low RDS_ON. The application in Figure 4 shows the MAX16027 configured in a multiple-output sequencing application. Figure 5 shows the MAX16029 in a power-supply sequencing application using n-channel MOSFETs.

Figure 4. Sequencing Multiple-Voltage System

Figure 5. Multiple-Voltage Sequencing Using n-Channel FETs

M/X/W

Pin Configurations (continued)

Chip Information

PROCESS: BICMOS TRANSISTOR COUNT: 3642

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

					10N	DIME	INSIE	INS									E	XPDS	ED	PAD	VAR	RIATI	ONS	
PKG	12	2L 4x	4	16	L 4x	4	20	L 4x	4	24	4L 4>	<4	28	3L 4×	< 4		PKG.		D2			E5		DOWN BONDS
REF.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MEN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.		CUDES	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	ALLOVE
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80		T1244-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
A1	0.0	0.02	0.05	0.0	20.0	0.05	0,0	0.02	0.05	0,0	0.02	0.05	0,0	20.0	0.05		T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
A2	0	.20 RE	F	0.	20 RE	F	0.	20 REI	F	0	20 RE	F	0.	20 RE	F	1	T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	0.15	0.20	0.25	1	T1644-4	1.95	2.10	2.25	1.95	2.10	2.25	ND
D	3,90	4,00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	1	T2044-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
E	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00		3.90	4.00	4.10	4	T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	ND
e		08.08			65 BS			50 BS			1.50 BS	1	-	.40 BS	1	-	T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES
ĸ	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-	-	T2444-3	2.45	2.60	2.63	2.45	2.60	2.63	YES
<u>L</u>	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50	0.30	0.40	0.50	-	T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	ND
N		12 3			16			20			24			28		-	T2844-1	2.50	2.60	2.70	2.50	2.60	2.70	ND
ND	<u> </u>	3			4 4			5			6			7		1								
Jedec Var.	 	VGGB			VGGC		,	 /GGD-1			WGGD-		<u> </u>	VGGE		1								
2.	es: Dimensi All din N IS Ti	MENSIO	NS ARE	IN MI	LUNETI	ERS. AN																		
1. 2. 3.	dimensi All din	Mensioi He tot Rminal 15—1 si	NS ARE AL NUM . #1 10 PP-012	: IN MI MBER C ENTIFIE 2. DETA	llimeti)f teri r and ils of	ERS. AN MINALS. TERMIN TERMIN	NGLES / NAL NU NAL #1	are in Mberin Identii	DEGR	ees. Nventk Re opt	IONAL,	BUT M	UST BE	LOCAT		THIN	ı							
1. 2. 3.	DIMENSI ALL DIN N IS TH THE TED JESD 9	MENSION HE TOT (RMINAL 15—1 SI (NE INE NE INE 10N b	NS ARE AL NUI PP-012 DICATED	in Mi MBER C Entifie 2. Detai . The	LUMETI DF TER R AND ILS OF TERMIN	ers, an Minals, Termin Termin Ial #1	igles i Nal nu Ial #1 Identif	are in Mberii Identii Tier M	i degr Ng coi Fier Ai Ay Be	ees. Nventk Re opt Eithef	ional, R A MC	BUT N	ust be Marke	ED FEA	TURE.		ı							
1. 2. 3. (A)	DIMENSI ALL DIN N IS THE JESD 91 THE ZO DIMENSI	Mension Rentot Reninal 5—1 SI 5—1 SI	NS ARE AL NUE PP-012 DICATED APPLIE AL TIP. REFER	in Mi MBER C Entifie Detain The S TO N TO THE	LUMETI DF TER R AND ILS OF TERMIN IETALU	ERS. AN MINALS. TERMIN TERMIN IAL #1 ZED TE ER OF	NAL NU IAL #1 IDENTIF RMINAL TERMIN	ARE IN Mberin Identii Ter M AND I AND I	I DEGR NG COI FIER AI AY BE IS MEA IN EAC	ees. Nventk Re opt Eithef Sured	ional, R A MC Betw	BUT M OLD OR EEN 0.	UST BE MARKE 25 mm	ed fea AND	TURE.		ı							
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENSI ALL DIN N IS THE THE TED JESD 9 THE ZO DIMENSI FROM T ND AND	Mensioi He tot 15—1 si DNE ine 10N b Termin/ D ne fi Ulation	NS ARE TAL NUI PP-012 DICATED APPLIE AL TIP, REFER	in Mi MBER (Entifie Detail Detail The S TO N To The DSSIBLE	Lumeti Df teri R and ILS of Termin Netalu Numb	ers. An minals. Termin termin Mal #1 Zed te er of Symme	NGLES A NAL NU IAL ∯1 IDENTIF RMINAL TERMIN TRICAL	Are in Identii Tier M. And I WLS O Fashk	I DEGR NG COI FIER AI AY BE IS MEA IS MEA IN EAC DN.	ees. Nventk Re opt Eithef Sured H d ai	NDAL, BETW NDE	BUT N SLD OR EEN 0.1 SIDE RI	UST BE MARKE 25 mm ESPECTI	LOCAT ED FEA AND VELY.	TURE.		ı							
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENSI ALL DIN N IS THE THE TEI JESD 9 THE ZO DIMENSI FROM 1 ND AND DEPOPU	Mensioi He tot Rminal 5-1 Si Dne ine ion 6 Termin/ D ne f Ulation Varity	NS ARE TAL NUH PP-012 DICATED APPLIE AL TIP. REFER I IS PC APPLIE	IN MI MBER (ENTIFIE DETA DETA DETA STO N STO N DSSIBLE STO T	LUMETI DF TER R AND ILS OF TERMIN METALU NUMB NUMB NUMB	ERS. AN MINALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME POSED	IGLES A NAL NU IDENTIF IDENTIF RMINAL TERMIN TRICAL HEAT S	nre in Identii Tier M And I MLS O Fashk Sink Si	I DEGR NG COI FIER AI AY BE IS MEA IS MEA IN EAC DN.	ees. Nventik Re opt Eithef Sured H d Ai S Well	IONAL, RAMC BETW NDES	BUT M ALD OR EEN 0. SIDE RI HE TER	UST BE MARKE 25 mm ESPECTI MINALS.	LOCAT ED FEA AND VELY.	TURE.		ı							
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENSI ALL DIN N IS THE THE TEI JESD 91 THE ZO DIMENSI FROM 1 ND AND DEPOPL COPLAN	MENSION HE TOT RMINAL 5-1 SI SNE INE SNE INE ION 6 TERMIN/ D NE F ULATION VARITY IG CON	NS ARE TAL NUM #1 ID PP-012 DICATED APPLIE AL TIP. REFER I IS PO APPLIE IFORMS	in Mi Meer C Entifie Detail The S TO M S TO M S TO M S TO T TO JE	LUMETI DF TERI R AND ILS OF TERMIN (ETALU NUMB NUMB NUMB NUMB NUMB NUMB NUMB	ERS. AN MINALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME POSED 0220, 1	IGLES A NAL NU IAL #1 IDENTIF RMINAL TERMIN TRICAL HEAT S EXCEPT	Mberin Identii Ier M And I MLS O Fashk Sink Si For	I DEGR NG COI FIER AI AY BE IS MEA IN EAC DN. LUG AS T2444	ees. Nventik Re opt Eithef Sured H d Ai S Well	IONAL, RAMC BETW NDES	BUT M ALD OR EEN 0. SIDE RI HE TER	UST BE MARKE 25 mm ESPECTI MINALS.	LOCAT ED FEA AND VELY.	TURE.		I							
1. 2. 3. (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	DIMENSI ALL DIM N IS THE THE TEI JESD 9 THE ZO DIMENSI FROM 1 ND AND DEPOPL COPLAN DRAWIN	MENSION HE TOT RMINAL 5-1 SI 5-1 SI 5-1 SI 5-1 SI 10 NE F ULATION NARITY IG CON 5 IS FO	NS ARE TAL NUE PP-012 DICATED APPLIE AL TIP. REFER I IS PC APPLIE FORMS DR PAC	IN MI MBER C ENTIFIE DETAIL THE S TO N S TO N E S TO T TO JE KAGE C	LUMETI DF TER R AND ILS OF TERMIN METALU NUMB NUMB NUMB NUMB NUMB NUMB NUMB NUM	ERS. AN MINALS. TERMIN TERMIN VAL #1 ZED TE ER OF SYMME POSED 0220, H TION R	IGLES A	Mberin Identii Ier M And I MLS O Fashk Sink Si For	I DEGR NG COI FIER AI AY BE IS MEA IN EAC DN. LUG AS T2444	ees. Nventik Re opt Eithef Sured H d Ai S Well	IONAL, RAMC BETW NDES	BUT M ALD OR EEN 0. SIDE RI HE TER	UST BE MARKE 25 mm ESPECTI MINALS.	LOCAT ED FEA AND VELY.	TURE.		I							
1. 2. 3. 4. 7. 9. 11. 0	DIMENSI ALL DIM N IS THE THE TEI JESD 91 THE ZO DIMENSI FROM 1 ND AND DEPOPL COPLAN DRAWIN JARKING	MENSION HE TOT RMINAL 5-1 SI 5-1 SI 5-1 SI 5-1 SI 10N B TERMIN/ D NE F ULATION VARITY IG CON G IS FO ARITY S	NS ARE TAL NUI PP-012 DICATED APPLIE A IS PC APPLIE FORMS DR PACE	IN MI MBER C ENTIFIE DETA DETA S TO N S TO N S TO N S TO N S TO T TO JE KAGE C NOT EX	LUMETI OF TERM R AND ILS OF TERMIN METALU IN A THE EXI DEC M DRIENTA CEED (ERS. AN MINALS. TERMIN TERMIN VAL #1 ZED TE ER OF SYMME POSED 0220, I TION R	IGLES A	Mberin Identii Ier M And I MLS O Fashk Sink Si For	I DEGR NG COI FIER AI AY BE IS MEA IN EAC DN. LUG AS T2444	ees. Nventik Re opt Eithef Sured H d Ai S Well	IONAL, RAMC BETW NDES	BUT M ALD OR EEN 0. SIDE RI HE TER	UST BE MARKE 25 mm ESPECTI MINALS.	LOCAT ED FEA AND VELY.	TURE.		-							
1. 2. 3. 4. 7. 9. 11. C 12. W	DIMENSI ALL DIM N IS TH THE TEI JESD 91 THE ZO DIMENSI FROM 1 ND ANE DEPOPL COPLAN MARKING COPLAN	MENSION HE TOT IRMINAL 5-1 SI 5-1 SI 5-1 SI 5-1 SI 10N b TERMIN D NE F ULATION VARITY IG CON G IS FO ARITY S E SHAL ENTERLI	NS ARE AL NUI AL NUI PP-012 DICATED APPLIE APPLIE I IS PC APPLIE IFORMS DR PAC DR PAC DR PAC DR PAC DR DAC DR D	IN MI MBER C ENTIFIE DETAIL TO THE STO IN SSIBLE STO T TO JE KAGE C NOT EX EXCEE D BE A	LUMETI R AND ILS OF TERMIN AETALU IN A IETALU IN A HE EXI DEC M DRIENTA CEED (ND 0.1 T TRUE	ERS. AN MINALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME POSED 0220, 1 TION R 0.08mm 0.08mm 0mm	IGLES A NAL NU IAL #1 IDENTIF RMINAL TERMIN TRICAL HEAT S EXCEPT EFEREN	MBERIN IDENTII IDENTII IER M AND I IALS O FASHK SINK SI FOR ICE ON DEFIN	I DEGR NG COI FIER AI AY BE IS MEA IN EAC DN. LUG AS T2444- NLY.	ees. Nventk Re opt Sured H D AI S Well -3, T2	10 nal, R A MC BETW ND E S . AS TI 444-4	BUT M DLD OR EEN 0, SIDE RI HE TER	UST BE MARKE 25 mm ESPECTI MINALS. 12844-	LOCAT ED FEA AND VELY.	TURE.		-			S			X	1/1
1. 2. 3. 4. 7. 9. 11. C 12. W	DIMENSI ALL DIM N IS TH THE TEI JESD 93 THE ZO DIMENSI FROM 1 ND AND DEPOPL COPLAN MARKING COPLANA VARPAGE EAD CE	MENSION HE TOT IRMINAL 5-1 SI 5-1 SI 5-1 SI 5-1 SI 10N b TERMIN D NE F ULATION VARITY IG CON G IS FO ARITY S E SHAL ENTERLI	NS ARE AL NUI AL NUI PP-012 DICATED APPLIE APPLIE I IS PC APPLIE IFORMS DR PAC DR PAC DR PAC DR PAC DR DAC DR D	IN MI MBER C ENTIFIE DETAIL TO THE STO IN SSIBLE STO T TO JE KAGE C NOT EX EXCEE D BE A	LUMETI R AND ILS OF TERMIN AETALU IN A IETALU IN A HE EXI DEC M DRIENTA CEED (ND 0.1 T TRUE	ERS. AN MINALS. TERMIN TERMIN AL #1 ZED TE ER OF SYMME POSED 0220, 1 TION R 0.08mm 0.08mm 0mm	IGLES A NAL NU IAL #1 IDENTIF RMINAL TERMIN TRICAL HEAT S EXCEPT EFEREN	MBERIN IDENTII IDENTII IER M AND I IALS O FASHK SINK SI FOR ICE ON DEFIN	I DEGR NG COI FIER AI AY BE IS MEA IN EAC DN. LUG AS T2444- NLY.	ees. Nventk Re opt Sured H D AI S Well -3, T2	10 nal, R A MC BETW ND E S . AS TI 444-4	BUT M DLD OR EEN 0, SIDE RI HE TER	UST BE MARKE 25 mm ESPECTI MINALS. 12844-	LOCAT ED FEA AND VELY.	TURE.			PAC	KAGE	OUTLI 24, 281		QFN, 4		

MAX16025-MAX16030

٦

Revision History

Pages changed at Rev 1: 1, 3, 15

Г

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ___

is a registered trademark of Maxim Integrated Products, Inc.