General Description

The MAX1595 charge-pump regulator generates either 3.3V or 5V from a 1.8V to 5.5V input. The unique control architecture allows the regulator to step up or step down the input voltage to maintain output regulation. The 1MHz switching frequency, combined with a unique control scheme, allows the use of a ceramic capacitor as small as 1 μ F for 125mA of output current. The complete regulator requires three external capacitors—no inductor is needed. The MAX1595 is specifically designed to serve as a high-power, high-efficiency auxiliary supply in applications that demand a compact design. The MAX1595 is offered in space-saving 8-pin μ MAX and high-power 12-pin thin QFN packages.

Applications

White LED Power

Flash Memory Supplies

Battery-Powered Applications

Miniature Equipment

PCMCIA Cards

3.3V to 5V Local Conversion Applications

Backup-Battery Boost Converters

3V to 5V GSM SIMM Cards

_Typical Operating Circuit

For pricing delivery, and ordering information please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

_Features

- Ultra-Small: Requires Only Three Ceramic Capacitors
- No Inductors Required
- Up to 125mA Output Current
- Regulated ±3% Output Voltage
- 1MHz Switching Frequency
- ♦ 1.8V to 5.5V Input Voltage
- 220µA Quiescent Current
- ♦ 0.1µA Shutdown Current
- Load Disconnect in Shutdown

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1595EUA33	-40°C to +85°C	8 µMAX
MAX1595ETC33	-40°C to +85°C	12 Thin QFN
MAX1595EUA50	-40°C to +85°C	8 µMAX
MAX1595ETC50	-40°C to +85°C	12 Thin QFN

Selector Guide

PART	Vout *	TOP MARK
MAX1595EUA33	3.3V	—
MAX1595ETC33	3.3V	AAAP
MAX1595EUA50	5.0V	—
MAX1595ETC50	5.0V	AAAM

*Contact factory for other fixed-output voltages from 2.7V to 5.0V.

Pin Configurations

Pin Configurations continued at end of data sheet.

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

MAX1595

IN, OUT, AOUT to GND0.3V to +6V SHDN to PGND0.3V to +6V PGND to GND0.3V to +0.3V	Continuous Power Dissipation (T _A = +70°C) 8-Pin μMAX (derate 4.5mW/°C above +70°C)362mW 12-Pin Thin QFN (derate 18.5mW/°C
CXN to PGND0.3V to (Lower of IN + 0.8V or 6.3V)	above +70°C)1481mW
CXP to GND0.8V to (Higher of OUT + 0.8V	Operating Temperature Range40°C to +85°C
or IN + 0.8V but not greater than 6V)	Junction Temperature+150°C
Continuous Output Current	Storage Temperature Range65°C to +150°C
	Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = 2V \text{ for MAX1595}_ _33, V_{IN} = 3V \text{ for MAX1595}_ _50, C_{IN} = 1\mu\text{F}, C_X = 0.22\mu\text{F}, C_{OUT} = 1\mu\text{F}, T_A = -40^{\circ} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ noted. Typical values are at T_A = +25^{\circ}\text{C}.) (Note 1)

PARAMETER	SYMBOL	COND	TIONS	MIN	ТҮР	MAX	UNITS	
Input Voltage Range	VIN			1.8		5.5	V	
Input Undervoltage Lockout Threshold				1.40	1.60	1.72	V	
Input Undervoltage Lockout Hysteresis					40		mV	
		0 < I _{LOAD} < 125mA,	$T_A = 0$ to +85°C	4.85	5.05	5.15		
		$V_{IN} = +3.0V$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.80		5.20		
	Vour	$0 < I_{LOAD} < 75 mA, V_{IN}$	$T_A = 0$ to +85°C	3.20	3.33	3.40	V	
Output Voltage	Vout	= +2.0V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	3.16		3.44		
		$0 < I_{LOAD} < 30 mA, V_{IN}$	$T_{A} = 0 \text{ to } +85^{\circ}\text{C}$	3.20	3.33	3.40		
		= +1.8V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	3.16		3.44		
No-Load Input Current		V _{IN} = +2.0V, MAX1595_	33		220	320		
No-Load input Current	lQ	V _{IN} = +3.0V, MAX1595_	50		240	350	μA	
Switching Frequency	fosc	$I_{LOAD} > 20mA, V_{OUT} > V_{OUT}$	/ _{IN}	0.85	1.0	1.15	MHz	
Shutdown Supply Current	SHDN	$\overline{\text{SHDN}} = 0, V_{\text{IN}} = +5.5V$, V _{OUT} = 0			5	μA	
SHDN Input Voltage Low	VINL	$V_{IN} = 2.0V \text{ to } 5.5V$				0.6	V	
SHDN Input Voltage High	VINH	$V_{IN} = 2.0V \text{ to } 5.5V$		1.6			V	
SHDN Input Leakage Current						0.1	μA	

Note 1: Specifications to -40°C are guaranteed by design, not production tested.

MAX1595 toc02

 $V_{OUT} = 5V$

Typical Operating Characteristics

IN : 3.3\

5.06

5.04

5.02

OUTPUT VOLTAGE (V) 5.00

50mV/div

(Circuit of Figure 4, $V_{IN} = 2V$ for MAX1595___33, $V_{IN} = 3V$ for MAX1595___50, $T_A = +25^{\circ}$ C, unless otherwise noted.)

OUTPUT WAVEFORM

OUTPUT VOLTAGE vs. LOAD CURRENT = 3.6V Vin

3V EFFICIENCY vs. LOAD CURRENT

3 4

SUPPLY VOLTAGE (V)

= 5V

6

А

VOUT

5

NO LOAD SUPPLY CURRENT

vs. SUPPLY VOLTAGE

10000

1000

100

10

1

0.1

0

1

2

SUPPLY CURRENT (µA)

LINE-TRANSIENT RESPONSE

A: INPUT VOLTAGE: VIN = 3.1V TO 3.6V, 500mV/div B: OUTPUT VOLTAGE: ILOAD = 50mA, 100mV/div

M/IXI/M

200ns/div

OUTPUT WAVEFORM. AC-COUPLED.

 $V_{IN}=3.6V,\ I_{LOAD}=100mA,\ C_{OUT}=1\mu F$

LOAD-TRANSIENT RESPONSE

SHUTDOWN TIMING

A: <u>OUTPUT VOLTAGE</u>: $R_L = 100\Omega$, 2V/div B: SHDN VOLTAGE: 2V/div

OUTPUT VOLTAGE vs. SUPPLY VOLTAGE

Pin Description

P	IN		
MAX1595 μMAX	MAX1595 THIN QFN	NAME	FUNCTION
1	12	AOUT	Analog Power and Sense Input for Error Amplifier/Comparator. Connect to OUT at output filter capacitor.
2	1	SHDN	Shutdown Input. When $\overline{\text{SHDN}}$ = low, the device turns off; when $\overline{\text{SHDN}}$ = high, the device activates. In shutdown, OUT is disconnected from IN.
3	2, 3	IN	Input Supply. Can range from 1.8V to 5.5V. Bypass to GND with a 1μ F capacitor.
4	4	GND	Ground
5	5, 6	PGND	Power Ground
6	7, 8	CXN	Negative Terminal of the Charge-Pump Transfer Capacitor
7	9	CXP	Positive Terminal of the Charge-Pump Transfer Capacitor
8	10, 11	OUT	Output. Bypass to GND with output capacitor filter.

Detailed Description

The MAX1595 charge pump provides either a 3.3V or 5V regulated output. It delivers a maximum 125mA load current. In addition, to boost regulating from a lower supply, it is also capable of buck regulating from supplies that exceed the regulated output by a diode drop or more. Designed specifically for compact applications, a complete regulator circuit requires only three small external capacitors. An innovative control scheme provides constant frequency operation from medium to heavy loads, while smoothly transitioning to low-power mode at light loads to maintain optimum efficiency. In buck mode. switch S1 (in Figure 1) is switched continuously to IN, while switch S2 alternates between IN and OUT. An amount of charge proportional to the difference between the output voltage and the supply voltage is stored on Cx, which gets transferred to the output when the regulation point is reached. Maximum output ripple is proportional to the difference between the supply voltage and the output voltage, as well as to the ratio of the transfer capacitor (C_X) to the output capacitor (C_{OUT}) .

The MAX1595 consists of an error amplifier, a 1.23V bandgap reference, internal resistive feedback network, oscillator, high-current MOSFET switches, and shutdown and control logic. Figure 1 shows an idealized unregulated charge-pump voltage doubler. The oscillator runs at a 50% duty cycle. During one half of the period, the transfer capacitor (C_X) charges to the input voltage. During the other half, the doubler transfers the sum of C_X and input voltage to the output filter capacitor (C_{OUT}). Rather than doubling the input voltage, the MAX1595 provides a regulated output voltage of either 3.3V or 5.0V.

Figure 1. Unregulated Voltage Doubler

Shutdown

Driving \overline{SHDN} low places the device in shutdown mode. The device draws 0.1µA of supply current in this mode. When driven high, the MAX1595 enters a soft-start mode. Soft-start mode terminates when the output voltage regulates, or after 2ms, whichever comes first. In shutdown, the output disconnects from the input.

Undervoltage Lockout

The MAX1595 has an undervoltage-lockout that deactivates the devices when the input voltage falls below 1.6V. Below UVLO, hysteresis holds the device in shutdown until the input voltage rises 40mV above the lockout threshold.

Applications Information

Using white LEDs to backlight LCDs is an increasingly popular approach for portable information devices (Figure 2). Because the forward voltage of white LEDs

exceeds the available battery voltage, the use of a charge pump such as the MAX1595 provides high efficiency, small size, and constant light output with changing battery voltages. If the output is used only to light LEDs, the output capacitor can be greatly reduced. The frequency modulation of the LED intensity is not discernible to the human eye, and the smaller capacitor saves both size and cost.

Adding two Schottky diodes and two capacitors implements a tripler and allows the MAX1595_ _ _50 to regulate a current of 75mA with a supply voltage as low as 2.3V (Figure 3).

Capacitor Selection

The MAX1595 requires only three external capacitors (Figure 4). Their values are closely linked to the output current capacity, oscillator frequency, output noise content, and mode of operation.

Generally, the transfer capacitor (C_X) will be the smallest, and the input capacitor (C_{IN}) is twice as large as C_X. Higher switching frequencies allow the use of the smaller C_X and C_{IN}. The output capacitor (C_{OUT}) can be anywhere from 5-times to 50-times larger than C_X. Table 1 shows recommended capacitor values.

In addition, the following equation approximates output ripple:

Table 2 lists the manufacturers of recommended capacitors. Ceramic capacitors will provide the lowest ripple due to their typically lower ESR.

Power Dissipation

The power dissipated in the MAX1595 depends on output current and is accurately described by:

PDISS = IOUT (2VIN - VOUT)

 P_{DISS} must be less than that allowed by the package rating.

Layout Considerations

All capacitors should be soldered in close proximity to the IC. Connect ground and power ground through a short, low-impedance trace. The input supply trace should be as short as possible. Otherwise, an additional input supply filter capacitor (tantalum or electrolytic) may be required.

Figure 2. White LED Bias Supply

Figure 3. Regulated Voltage Tripler

Figure 4. Standard Operating Circuit

MAX1595

Table 1. Recommended Capacitor Values

OUTPUT RIPPLE (mV)	C _{IN} (μF)	C _X (μF)	С _{ОUT} (μF)
70	1	0.22	1
35	2.2	0.47	2.2

Table 2. Recommended Capacitor Manufacturers

VALUE (µF)	VOLTAGE (V)	TYPE	SIZE	MANUFACTURER	PART
1	10	X7R	0805	Taiyo Yuden	LMK212BJ105MG
0.22	10	X7R	0603	Taiyo Yuden	LMK107BJ224MA
0.47	10	X7R	0603	Taiyo Yuden	LMK107BJ474MA
0.1	10	X7R	0603	Taiyo Yuden	LMK107BJ104MA

_Pin Configurations (continued)

Chip Information

TRANSISTOR COUNT: 1370

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

					COMM	ON DI	MENS	SIDNS					EXP0	SED	PAD	VAF	RIATI	[DNS	
PKG	1	2L 4×4	1	1	6L 4×4	ŀ	2	20L 4×	4	6	24L 4×4	4	PKG.		D2			E2	
REF.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	CODES	MIN.	NDM.	MAX.	MIN.	NDM.	MA
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	T1244-2	1.95	2.10	2.25	1.95	2.10	2.2
A1	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	0.0	0.02	0.05	T1644-2	1.95	2.10	2.25	1.95	2.10	2.2
A2		0.20 REF			0.20 REF	-	(0.20 REF			0.20 REF		T2044-1	1.95	2.10	2.25	1.95	2.10	2.2
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30	T2444-1	2.45	2.60	2.63	2.45	2.60	2.6
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10							
Е	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10							
6	-	0.80 B20	1		0.65 BSC			0.50 BSC			0.50 BSC								
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-							
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50							
N		12			16			20			24								
ND	-	3			4 4			5			6								
INE.					4 WGGC			S WGGD-			6 WGGD-i	_							
NOTES		WGGB				T0. 101			-			-	I						
NOTES 1. DII 2. AL 3. N 4. TH JE TH 5. DII	IMENSION L DIMEN IS THE HE TERM SD 95- HE ZONE IMENSION	NING & NING & NING & I NSIONS J I TOTAL I MINAL #1 -1 SPPI E INDICAT N b APP	ARE IN NUMBER IDENTI 012. DE TED. TH LIES TO	MILLIMET OF TEF FIER AND TAILS OF E TERMI	ONFORM TERS. AN RMINALS. D TERMIN F TERMIN NAL #1	GLES AR IAL NUMI AL #1 ID IDENTIFIE	e in d Bering Entifiei R May	5M-1994 EGREES. CONVEN R ARE O BE EITH	TION SP PTIONAL IER A M	, BUT M IOLD OR	NFORM T IUST BE I MARKED 25 mm	O LOCATED P FEATUR	Ε.						
NOTES 1. DII 2. AL 3. N 4. TH 5. DII FF 6. NE 7. DE	IMENSION L DIMEL IS THE HE TERM SD 95- HE ZONE IMENSION ROM TER D AND I EPOPUL/	NING & NSIONS / TOTAL I MINAL #1- I SPP- I NDICAT N b APP RMINAL T NE REFE ATION IS	ARE IN NUMBER IDENTI 012. DE TED. TH LIES TO IP. R TO T POSSIE	MILLIMET OF TEF FIER AND TAILS OF E TERMI METALL HE NUM BLE IN A	ONFORM TERS. AN RMINALS. D TERMIN NAL #1 LIZED TEF BER OF SYMMET	GLES AR IAL NUMI AL #1 ID IDENTIFIE RMINAL # TERMINAL # TERMINAL #	E IN D BERING ENTIFIEI R MAY ND IS LS ON ASHION.	5M-1994 EGREES. CONVEN R ARE O BE EITH MEASURI EACH D	TION SH PTIONAL IER A M ED BETM AND E	, BUT M IOLD OR NEEN 0. SIDE RI	IUST BE I MARKED 25 mm / ESPECTIVI	O LOCATED FEATUR AND 0.3(Ε.						
NOTES 1. DII 2. AL 3. N 4. TH JE TH 5. DII 6. NE 7. DE 6. CO	Imension IL Dimen IS The HE TERM ISD 95- HE ZONE IMENSION ROM TER D AND I EPOPULI OPLANAF	NING & NSIONS / TOTAL I INDIAL #1- I SPP- I INDICAT N & APP RMINAL T NE REFE ATION IS RITY APP	ARE IN NUMBER IDENTI 012. DE TED. TH LIES TO POSSIE LIES TO	MILLIMET OF TEF FIER AND TAILS OF E TERMI METALL HE NUM BLE IN A THE E	ONFORM TERS. AN RMINALS. D TERMIN TERMIN NAL #1 JZED TEF BER OF SYMMET XPOSED	GLES AR IAL NUMI AL #1 ID IDENTIFIE RMINAL # TERMINAL # TERMINAL #	E IN D BERING ENTIFIEI R MAY ND IS LS ON ASHION.	5M-1994 EGREES. CONVEN R ARE O BE EITH MEASURI EACH D	TION SH PTIONAL IER A M ED BETM AND E	, BUT M IOLD OR NEEN 0. SIDE RI	IUST BE I MARKED 25 mm / ESPECTIVI	O LOCATED FEATUR AND 0.3(E.) mm	RY INFORM					
NOTES 1. DII 2. AL 3. N 4. TH JE TH 5. DII 6. NE 7. DE 6. CO	Imension IL Dimen IS The HE TERM ISD 95- HE ZONE IMENSION ROM TER D AND I EPOPULI OPLANAF	NING & NSIONS / TOTAL I MINAL #1- I SPP- I NDICAT N b APP RMINAL T NE REFE ATION IS	ARE IN NUMBER IDENTI 012. DE TED. TH LIES TO POSSIE LIES TO	MILLIMET OF TEF FIER AND TAILS OF E TERMI METALL HE NUM BLE IN A I THE E	ONFORM TERS. AN RMINALS. D TERMIN TERMIN NAL #1 JZED TEF BER OF SYMMET XPOSED	GLES AR IAL NUMI AL #1 ID IDENTIFIE RMINAL # TERMINAL # TERMINAL #	E IN D BERING ENTIFIEI R MAY ND IS LS ON ASHION.	5M-1994 EGREES. CONVEN R ARE O BE EITH MEASURI EACH D	TION SH PTIONAL IER A M ED BETM AND E	, BUT M IOLD OR NEEN 0. SIDE RI	IUST BE I MARKED 25 mm / ESPECTIVI	O LOCATED FEATUR AND 0.3(RY INFORM	OUTLI	INE			
NOTES 1. DII 2. AL 3. N 4. TH JE TH 5. DII 6. NE 7. DE 6. CO	Imension IL Dimen IS The HE TERM ISD 95- HE ZONE IMENSION ROM TER D AND I EPOPULI OPLANAF	NING & NSIONS / TOTAL I INDIAL #1- I SPP- I INDICAT N & APP RMINAL T NE REFE ATION IS RITY APP	ARE IN NUMBER IDENTI 012. DE TED. TH LIES TO POSSIE LIES TO	MILLIMET OF TEF FIER AND TAILS OF E TERMI METALL HE NUM BLE IN A I THE E	ONFORM TERS. AN RMINALS. D TERMIN TERMIN NAL #1 JZED TEF BER OF SYMMET XPOSED	GLES AR IAL NUMI AL #1 ID IDENTIFIE RMINAL # TERMINAL # TERMINAL #	E IN D BERING ENTIFIEI R MAY ND IS LS ON ASHION.	5M-1994 EGREES. CONVEN R ARE O BE EITH MEASURI EACH D	TION SH PTIONAL IER A M ED BETM AND E	, BUT M IOLD OR NEEN 0. SIDE RI	IUST BE I MARKED 25 mm / ESPECTIVI	O LOCATED FEATUR AND 0.3(RY INFORM ACKAGE 2,16,2	OUTLI 0,24L	INE	THIN,	4x4x0	

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2002 Maxim Integrated Products

8

Printed USA

MAXIM is a registered trademark of Maxim Integrated Products.