

Matched Monolithic Dual Transistor

MAT01

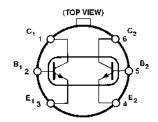
FEATURES

Low V_{OS} (V_{BE} Match): 40 μV typ, 100 μV max

Low TCV $_{OS}$: 0.5 μ V/ $^{\circ}$ C max

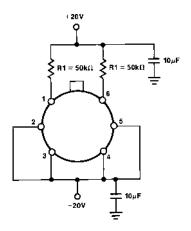
High h_{FE}: 500 min

Excellent h_{FE} Linearity from 10 nA to 10 mA Low Noise Voltage: 0.23 μ V p-p-0.1 Hz to 10 Hz


High Breakdown: 45 V min Available in Die Form

PRODUCT DESCRIPTION

The MAT01 is a monolithic dual NPN transistor. An exclusive Silicon Nitride "Triple-Passivation" process provides excellent stability of critical parameters over both temperature and time. Matching characteristics include offset voltage of 40 μV , temperature drift of 0.15 $\mu V/^{\circ}C$, and h_{FE} matching of 0.7%. Very high h_{FE} is provided over a six decade range of collector current, including an exceptional h_{FE} of 590 at a collector current of only 10 nA. The high gain at low collector current makes the MAT01 ideal for use in low power, low level input stages.


PIN CONNECTION

TO-78 (H Suffix)

NOTE: Substrate is connected to case.

BURN-IN CIRCUIT

MATO1-SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ $V_{CB} = 15$ V, $I_C = 10$ μ A, $T_A = 25$ °C, unless otherwise noted.)

			N	IAT01A	H	N	IAT01G	H	
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Min	Units
Breakdown Voltage	BV_{CEO}	$I_{\rm C} = 100 \mu A$	45			45			V
Offset Voltage	Vos			0.04	0.1		0.10	0.5	mV
Offset Voltage Stability									
First Month	V _{OS} /Time	(Note 1)		2.0			2.0		μV/Mo
Long Term		(Note 2)		0.2			0.2		μV/Mo
Offset Current	I_{OS}			0.1	0.6		0.2	3.2	nA
Bias Current	IB			13	20		18	40	nA
Current Gain	h_{FE}	$I_C = 10 \text{ nA}$		590			430		
		$I_C = 10 \mu A$	500	770		250	560		
		$I_C = 10 \text{ mA}$		840			610		
Current Gain Match	Δh_{FE}	$I_C = 10 \mu A$		0.7	3.0		1.0	8.0	%
		$100 \text{ nA} \le I_C \le 10 \text{ mA}$		0.8			1.2		%
Low Frequency Noise									
Voltage	e _n p-p	$0.1 \text{ Hz to } 10 \text{ Hz}^3$		0.23	0.4		0.23	0.4	μV p-p
Broadband Noise									
Voltage	e _n rms	1 Hz to 10 kHz		0.60			0.60		μV rms
Noise Voltage									
Density	e _n	$f_O = 10 \text{ Hz}^3$		7.0	9.0		7.0	9.0	nV/\sqrt{Hz}
		$f_0 = 100 \text{ Hz}^3$		6.1	7.6		6.1	7.6	nV/\sqrt{Hz}
		$f_0 = 1000 \text{ Hz}^3$		6.0	7.5		6.0	7.5	nV/\sqrt{Hz}
Offset Voltage Change	$\Delta V_{OS}/\Delta V_{CB}$	$0 \le V_{CB} \le 30 \text{ V}$		0.5	3.0		0.8	8.0	μV/V
Offset Current Change	$\Delta I_{OS}/\Delta V_{CB}$	$0 \le V_{CB} \le 30 \text{ V}$		2	15		3	70	pA/V
Collector-Base									
Leakage Current	I_{CBO}	$V_{CB} = 30 \text{ V}, I_E = 0^4$		15	50		25	200	pA
Collector-Emitter									
Leakage Current	I_{CES}	$V_{CE} = 30 \text{ V}, V_{BE} = 0^{4, 5}$		50	200		90	400	pA
Collector-Collector		_							
Leakage Current	I_{CC}	$V_{CC} = 30 \text{ V}^5$		20	200		30	400	pA
Collector Saturation	V _{CE(SAT)}	$I_B = 0.1 \text{ mA}, I_C = 1 \text{ mA}$		0.12	0.20		0.12	0.25	V
Voltage		$I_B = 1 \text{ mA}, I_C = 10 \text{ mA}$		0.8			0.8		V
Gain-Bandwidth Product	f_{T}	$V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}$		450			450		MHz
Output Capacitance	C _{OB}	$V_{CB} = 15 \text{ V}, I_{E} = 0$		2.8			2.8		pF
Collector-Collector									
Capacitance	C_{CC}	$V_{CC} = 0$		8.5			8.5		pF

ELECTRICAL CHARACTERISTICS (@ $V_{CB} = 15$ V, $I_C = 10$ μ A, -55° C $\leq T_A \leq +125^{\circ}$ C, unless otherwise noted.)

			N	MAT01AH		MAT01GH				
Parameter	Symbol	Conditions	Min	Typ	Max	Min	Typ	Min	Units	
Offset Voltage	Vos			0.06	0.15		0.14	0.70	mV	
Average Offset										
Voltage Drift	TCVos	(Note 6)		0.15	0.50		0.35	1.8	μV/°C	
Offset Current	I _{OS}			0.9	8.0		1.5	15.0	nA	
Average Offset										
Current Drift	TCIos	(Note 7)		10	90		15	150	pA/°C	
Bias Current	I_B			28	60		36	130	nA	
Current Gain	h_{FE}		167	400		77	300			
Collector-Base	I_{CBO}	$T_A = 125^{\circ}C, V_{CB} = 30 V,$								
Leakage Current		$I_{\rm E} = 0^4$		15	80		25	200	nA	
Collector-Emitter	I_{CES}	$T_A = 125^{\circ}C, V_{CE} = 30 V,$								
Leakage Current		$V_{BE} = 0^{4, 6}$		50	300		90	400	nA	
Collector-Collector	I_{CC}	$T_A = 125^{\circ}C, V_{CC} = 30 \text{ V},$								
Leakage Current		(Note 6)		30	200		50	400	nA	

-2- REV. A

TYPICAL ELECTRICAL CHARACTERISTICS (@ $V_{CB}=15$ V and $I_{C}=10$ μ A, $T_{A}=+25$ °C, unless otherwise noted.)

Parameter	Symbol	Conditions	MAT01N Typical	Units
Average Offset Voltage Drift	TCVos		0.35	μV/°C
Average Offset Current Drift	TCIos		15	pA/°C
Collector-Emitter-Leakage				
Current	I _{CES}	$V_{CE} = 30 \text{ V}, V_{BE} = 0$	90	pA
Collector-Base-Leakage				
Current	I_{CBO}	$V_{CB} = 30 \text{ V}, I_{E} = 0$	25	pA
Gain Bandwidth Product	f_{T}	$V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}$	450	MHz
Offset Voltage Stability	$\Delta V_{OS}/T$	First Month (Note 1)	2.0	μV/Mo
		Long-Term (Note 2)	0.2	μV/Mo

NOTES

Specifications subject to change without notice.

WAFER TEST LIMITS (@ $V_{CB} = 15 \text{ V}$, $I_C = 10 \mu\text{A}$, $T_A = +25 ^{\circ}\text{C}$, unless otherwise noted.)

Parameter	Symbol	Conditions	MAT01N Limits	Units
Breakdown Voltage	BV _{CEO}	$I_{\rm C} = 100 \mu A$	45	V min
Offset Voltage	Vos		0.5	mV max
Offset Current	I _{OS}		3.2	nA max
Bias Current	$I_{\rm B}$		40	nA max
Current Gain	h_{FE}		250	min
Current Gain Match	$\Delta h_{ m FE}$		8.0	% max
Offset Voltage Change	$\Delta V_{OS}/\Delta V_{CB}$	$0 \le V_{CB} \le 30 \text{ V}$	8.0	μV/V max
Offset Current Change	$\Delta V_{OS}/\Delta V_{CB}$	$0 \le V_{CB} \le 30 \text{ V}$	70	pA/V max
Collector Saturation Voltage	V _{CE (SAT)}	$I_{\rm B} = 0.1 \text{ mA}, I_{\rm C} = 1 \text{ mA}$	0.25	V max

NOTE

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

REV. A -3-

¹Exclude first hour of operation to allow for stabilization.

²Parameter describes long-term average drift after first month of operation.

 $^{^4}$ The collector-base (I_{CBO}) and collector-emitter (I_{CES}) leakage currents may be

reduced by a factor of two to ten times by connecting the substrate (package) to

a potential which is lower than either collector voltage. $^{5}I_{CC}$ and I_{CES} are guaranteed by measurement of I_{CBO} . ^{6}G uaranteed by V_{OS} test $(TCV_{OS} \cong \frac{V_{OS}}{T}$ for $V_{OS} \ll V_{BE})$ T = 298 °K for $T_A = 25$ °C. ^{7}G uaranteed by I_{OS} test limits over temperature.

ABSOLUTE MAXIMUM RATINGS¹ Collector-Base Voltage (BV_{CBO}) Collector-Emitter Voltage (BV_{CEO}) MAT01AH, GH, N 45 V Collector-Collector Voltage (BV_{CC}) Emitter-Emitter Voltage (BV_{EE}) Emitter-Base Voltage $(BV_{EBO})^2$ 5 V Total Power Dissipation Case Temperature $\leq 40^{\circ}\text{C}^3$ 1.8 W Ambient Temperature $\leq 70^{\circ}\text{C}^4$ 500 mW Operating Ambient Temperature -55°C to +125°C Operating Junction Temperature –55°C to +150°C

Storage Temperature65°C to +15	0°C
Lead Temperature (Soldering, 60 sec)+30	0°C
DICE Junction Temperature65°C to +15	0°C

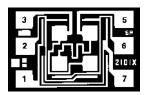
NOTES

¹Absolute maximum ratings apply to both DICE and packaged devices.

²Application of reverse bias voltages in excess of rating shown can result in degradation of h_{FE} and h_{FE} matching characteristics. Do not attempt to measure BV_{EBO} greater than the 5 V rating shown.

 3 Rating applies to applications using heat sinking to control case temperature. Derate linearity at 16.4 mW/ $^\circ$ C for case temperatures above 40 $^\circ$ C.

 4 Rating applies to applications not using heat sinking; device in free air only. Derate linearity at 6.3 mW/ $^\circ$ C for ambient temperatures above 70 $^\circ$ C.


ORDERING GUIDE¹

Model	V_{OS} max $(T_A = +25^{\circ}C)$	Temperature Range	Package Option
MAT01AH ²	0.1 mV	-55°C to +125°C	TO-78
MAT01GH	0.5 mV	-55°C to +125°C	TO-78

NOTES

¹Burn-in is available on commercial and industrial temperature range parts in TO-can packages.

DICE CHARACTERISTICS

DIE SIZE 0.035×0.025 inch, 875 sq. mils $(0.89 \times 0.64 \text{ mm}, 0.58 \text{ sq. mm})$

- 1. COLLECTOR (1)
- 2. BASE (1)
- 3. EMITTER (1)
- 5. EMITTER (2)
- 6. BASE (2)
- 7. COLLECTOR (2)

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the MAT01 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. A

²For devices processed in total compliance to MIL-STD-883, add/883 after part number. Consult factory for 883 data sheet.

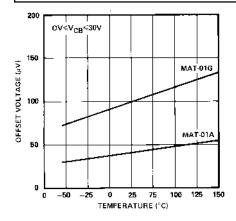


Figure 1. Offset Voltage vs. Temperature

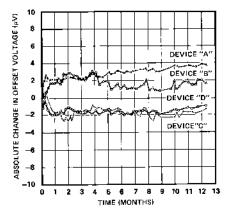


Figure 4. Offset Voltage vs. Time

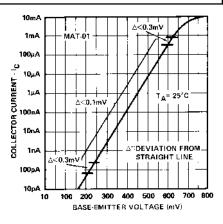


Figure 7. Base-Emitter Voltage vs. Collector Current

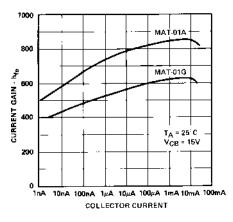


Figure 2. Current Gain vs. Collector Current

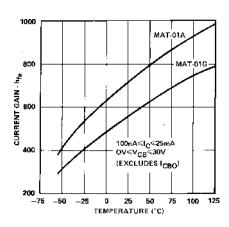


Figure 5. Current Gain vs. Temperature

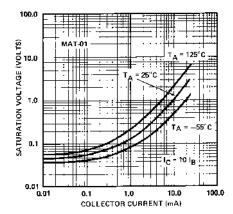


Figure 8. Saturation Voltage vs. Collector Current

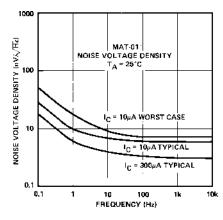


Figure 3. Noise Voltage

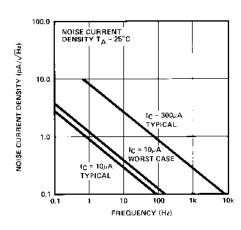


Figure 6. Noise Current Density

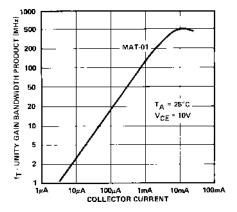
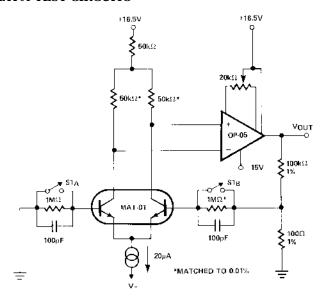
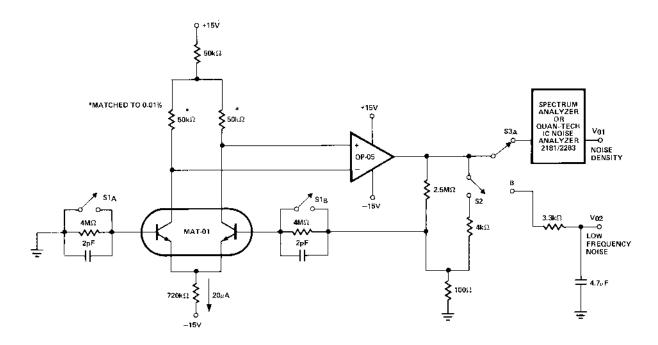



Figure 9. Gain-Bandwidth vs. Collector Current

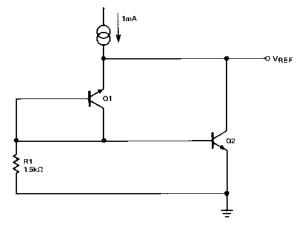

REV. A _5_

MAT01 TEST CIRCUITS

TEST	SIA	SIB	UNITS	
Vos	Х	Х	V _{OUT1}	1 volt per mV
los	0	0	V _{OUT2} - V _{OUT1}	1 volt per nA

Figure 10. MAT01 Matching Measurement Circuit

TEST	SIA	SIB	S ₂	S ₃	READING
Noise Voltage Density (Per Transistor)	х	х	х	A	$V_{01}/\sqrt{2}$
Noise Current Density (Per Transistor)	0	0	х	A	$V_{01}/(\sqrt{2}\times 4M\Omega)$
Low Frequency Noise (Referred to Input)	х	х	0	В	V ₀₂ PEAK-TO-PEAK 25,000


Figure 11. MAT01 Noise Measurement Circuit

APPLICATION NOTES

Application of reverse bias voltages to the emitter-base junctions in excess of ratings (5 V) may result in degradation of h_{FE} and h_{FE} matching characteristics. Circuit designs should be checked to ensure that reverse bias voltages above 5 V cannot be applied during such transient conditions as at circuit turn-on and turn-off.

Stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can prevent realization of the predicted drift performance. Both input terminals should be maintained at the same temperature, preferably close to the temperature of the device's package.

TYPICAL APPLICATIONS

 $V_{REF} \sim 7.0V$ TCV_{REF} ~ 10 ppm/°C $R_{\rm O} \sim 40\Omega$ $R_{\rm 1}$ MAY BE ADJUSTED TO MINIMIZE TCV_{REF}. INCREASING R₁ WILL CAUSE A POSITIVE CHANGE IN TCV_{REF}.
NOTE: h_{FE} OF 01 WILL BEREDUCED BY OPERATION OF BREAKDOWN MODE

Figure 12. Precision Reference

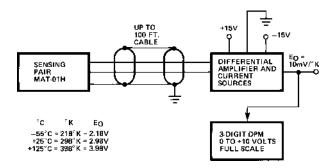
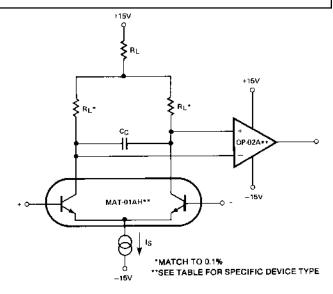



Figure 13. Basic Digital Thermometer Readout in Degrees Kelvin (°K)

THIS CONFIGURATION CAN ALSO BE USED WITH THE LOW POWER OP-21 OR MICROPOWER OP-22 TO ACHIEVE A LOW NOISE AND LOW POWER PRECISION OP-AMP.

	MAT-01AH OP-02A	MAT-01AH OP-02A	MAT-01GH OP-02	MAT-01GH OP-02
V _{OS} Maximum	0.15mV	0.27mV	0.65mV	1.2mV
TCV _{OS} Maximum	0.6µV/°C	1μV/°C	2μV/°C	4μV/°C
los Maximum	0.8nA	0.1nA	3.2nA	0.32nA
l _e Maximum	20nA	2nA	40nA	4nA
Gain Minimum	2,000,000	2,000,000	800,000	800,000
I _S	20μΑ	2μΑ	20μ A	2μΑ
RL	100kΩ	tMΩ	100kΩ	1ΜΩ

Figure 14. Precision Operational Amplifiers

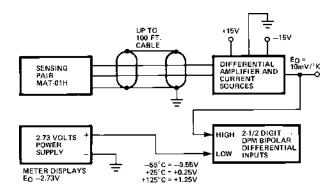
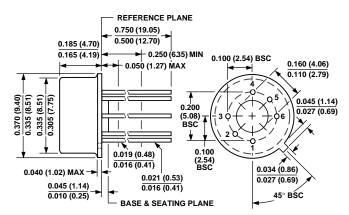



Figure 15. Digital Thermometer with Readout in °C

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

H-06A 6-Lead Metal Can (TO-78)

