LTM4630EY-1

Dual 18A or Single 36A µModule Regulator with ±0.8% DC and ±3% Transient Accuracy

DESCRIPTION

Demonstration circuit 2081A-B features the LTM®4630EY-1, the high efficiency, high density, dual 18A, switch mode step-down μ Module® regulator with ±0.8% total DC output accuracy. The input voltage is from 4.5V to 15V. The output voltage is programmable from 0.6V to 1.8V. DC2081A-B is configured as dual-phase, single-output, which can deliver up to 36A maximum. With the help of external compensation, ±3% transient accuracy can be achieved with 25% load step. The board designs with minimum components to demonstrate this high efficiency, high density μ Module. As explained in the data sheet, output current de-rating is necessary for certain V_{IN}, V_{OUT}, and thermal conditions. These features and the availability of the LTM4630EY-1 in a compact 16mm × 16mm × 5.01mm BGA package make it ideal for use in many high-density point-of-load applications. The LTM4630-1 data sheet must be read in conjunction with this demo manual for working on or modifying the demo circuit DC2081A-B.

Design files for this circuit board are available at http://www.linear.com/demo/DC2081A-B

 σ , LT, LTC, LTM, Linear Technology, the Linear logo and μ Module are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY Specification

Specifications are at $T_A = 25^{\circ}C$

PARAMETER	CONDITIONS	VALUE
Input Voltage Range		4.5V ~ 15V
Output Voltage V _{OUT}	V _{IN} = 4.5 ~ 15V, I _{OUT} = 0 ~ 36A (for LTM4630-1A)	1.0V ± 0.8% (0.992V ~ 1.008V)
Maximum Continuous Output Current	De-rating is Necessary for Certain V _{IN} , V _{OUT} and Thermal Conditions, See Data Sheet for Detail	36A
Default Operating Frequency		400kHz
Efficiency	$V_{IN} = 5V, V_{OUT} = 1.0V, I_{OUT} = 36A, f_{SW} = 400 \text{kHz}$	85.7%, See Figure 2
Load Transient	V _{IN} = 12V, V _{OUT} = 1.0V, I _{STEP} = 0 ~ 9A	< 56.3mV _{P-P} , See Figure 3

DC2081A-B BOARD PHOTO

QUICK START PROCEDURE

Demonstration circuit DC2081A-B is easy to set up to evaluate the performance of the LTM4630-1. Please refer to Figure 1 for proper measurement setup and follow the procedure below:

- 1. With power off, connect the input power supply, load and meters as shown in Figure 1. Preset the load to 0A and V_{IN} supply to 12V.
- 2. Turn on the power supply at the input. The output voltage should be $1.0V \pm 0.8\%$ (0.992V ~ 1.008V).
- 3. Once the proper output voltage is established, adjust the load within the operating range and observe the output voltage regulation, output voltage ripple, efficiency and other parameters. Output ripple can be measured at J6 with BNC cables.
- 4. (Optional) For optional load transient test, apply an adjustable pulse signal between "IOSTEP CLK" and "GND" test point. Pulse amplitude (3V ~ 3.5V) sets the load step current amplitude. The output transient current can be monitored at the BNC connector J5 (15mV/A). The pulse signal should have very small duty cycle (< 10%) to limit the thermal stress on the transient load circuit.</p>

QUICK START PROCEDURE

Figure 1. Test Setup of DC2081A-B

QUICK START PROCEDURE

Figure 2. Measured LTM4630-1 Efficiency (V_{OUT} = 1.0V, f_{sw} = 400kHz)

Figure 3. Measured LTM4630-1 0A – 9A Load Transient (V_{IN} =12V, V_{OUT} = 1.0V, f_{sw} = 400kHz)

dc2081a-bfa

QUICK START PROCEDURE

Figure 4. LTM4630-1 Thermal Capture (V_{IN} =12V, V_{OUT} = 1.0V/36A, f_{sw} =400kHz, T_A = 25°C, No Airflow and No Heat Sink)

DC2081A-B PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required (ircuit Con	nponents		
1	1	CIN1	CAP., ALUM., 150µF, 25V, 20%	SUN ELECT., 25CE150AX
2	4	CIN2, CIN3, CIN4, CIN5	CAP., CER., 22µF, X5R, 25V, 10%, 1210	MURATA, GRM32ER61E226KE15L
3	5	COUT3, COUT5, COUT7, COUT12, COUT14	CAP., CER., 220µF, X5R, 4V, 20%, 1206	MURATA, GRM31CR60G227ME11L
4	1	C1	CAP., CER., X7R, 47pF, 25V, 10%, 0603	AVX, 06033C470KAT2A
5	1	C4	CAP., CER., 2.2µF, X5R, 10V, 10% 0603	MURATA, GRM188R61A225KE34D
6	1	C5	CAP., COG, 3300pF, 50V, 5%, 0603	MURATA, GRM1885C1H332JA01D
7	1	С7	CAP., CER., 0.1µF, X5R, 25V, 10% 0603	AVX, 06033D104KAT2A
8	3	C8, C9, C10	CAP., CER., 1µF, X7R, 10V, 10%, 0603	AVX, 0603ZC105KAT2A
9	1	Q1	XSTR., SUD50N04-8M8P-4GE3 MOSFET	VISHAY, SUD50N04-8M8P-4GE3
10	2	R1, R3	RES., 10Ω, 1/10W, 1%, 0603	VISHAY, CRCW060310R0FKEA
11	1	R2	RES., 121k, 1/10W, 1%, 0603	VISHAY, CRCW0603121KFKEA
12	2	R4, R18	RES., 10k, 1/10W, 1%, 0603	VISHAY, CRCW060310K0FKEA
13	1	R9	RES., 100k, 1/10W, 1%, 0603	VISHAY, CRCW0603100KFKEA
14	1	R11	RES., 1k, 1/10W, 1%, 0603	VISHAY, CRCW06031K00FKEA
15	1	R13	RES., CHIP, 4.02k, 1%, 0603	VISHAY, CRCW06034K02FKEA
16	1	R16	RES., SENSE, 0.015Ω, 1W, 2512	VISHAY, WSL2512R0150FEA
17	1	R19	RES., 90.9k, 1/10W, 1%, 0603	VISHAY, CRCW060390K9FKEA
18	1	U1	LTM4630EY-1#PBF, 16X16X4.41-LGA	LINEAR TECH., LTM4630EY-1A#PBF
dditional	Demo Boa	ard Circuit Components		1
1	0	COUT2, COUT4, COUT6, COUT8	OPT., SANYO-D4D	OPT.
2	0	COUT9, COUT10	OPT., SANYO-D4D	OPT.
3	0	COUT1, COUT11, COUT13	OPT. 1210	OPT.
4	0	СЗ	OPT.	OPT.
5	0	R8, R10	OPT 0603	ОРТ
6	2	R12, R14	RES., 0Ω, 1/10W, 0603	VISHAY, CRCW06030000Z0EA
lardware		·		
1	9	E1-E7, E17, E18	TEST POINT, TURRET, .094" MTG. HOLE	MILL-MAX, 2501-2-00-80-00-00-07-0
2	0	E8-E14 (OPT)	TESTPAD SMD	TESTPAD SMD
3	2	J1, J3	JACK, BANANA	KEYSTONE, 575-4
4	2	J2, J4	STUD, TESTPIN	PEM KFH-032-10
5	4	J2, J4 (X2)	NUT, BRASS 10-32	ANY #10-32
6	2	J2, J4	RING, LUG #10	KEYSTONE #10
7	2	J2, J4	WASHER, TIN PLATED BRASS	ANY #10
8	2	J5, J6	CONN., BNC, 5 PINS	CONNEX, 112404
9	4	(STAND-OFF)	STANDOFF, NYLON, SNAP-ON, .500" TALL	KEYSTONE, 8833

DC2081A-B SCHEMATIC DIAGRAM

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. dc2081a-bfa

DEMO MANUAL DC2081A-B

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

dc2081a-bfa