Dual UV/OV Voltage Monitor ### **FEATURES** - Monitors Two Voltages Simultaneously - Adjustable UV and OV Trip Values - Guaranteed Threshold Accuracy: ±1.5% - Input Glitch Rejection - Adjustable Reset Timeout with Disable - 55µA Quiescent Current - Open-Drain OV and UV Outputs - Guaranteed OV and UV for V_{CC} ≥ 1V - Available in 10-Lead MSOP and (3mm × 3mm) DFN Packages # **APPLICATIONS** - Desktop and Notebook Computers - Network Servers - Core, I/O Voltage Monitors ### DESCRIPTION The LTC®2913 is a dual input voltage monitor intended for multiple voltages in a variety of applications. Dual inputs for each voltage allow monitoring two separate undervoltage (UV) conditions and two separate overvoltage (OV) conditions. All monitors share a common undervoltage output and a common overvoltage output. The LTC2913-1 has latching capability for the overvoltage output. The LTC2913-2 has functionality to disable both the overvoltage and undervoltage outputs. Glitch filtering ensures reliable reset operation without false or noisy triggering. The LTC2913 provides a precise, versatile, space-conscious, micropower solution for voltage monitoring. 7, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. # TYPICAL APPLICATION #### **Dual OV/UV Supply Monitor** # Typical Transient Duration vs Comparator Overdrive # **ABSOLUTE MAXIMUM RATINGS** (Notes 1, 2) | Terminal Voltages | | |--------------------------|---------------------------| | V _{CC} (Note 3) | 0.3V to 6V | | 0V, ÚV | 0.3V to 16V | | TMR | 0.3V to $(V_{CC} + 0.3V)$ | | VHn, VLn, LATCH, DIS | –0.3V to 7.5V | | Terminal Currents | | | I _{VCC} | +10mA | | | 10mΔ | | Operating Temperature Range | | |-------------------------------------|---------------| | LTC2913C | 0°C to 70°C | | LTC2913I | 40°C to 85°C | | Storage Temperature Range | 65°C to 150°C | | Lead Temperature (Soldering, 10 sec | () | | MSOP | 300°C | | | | # PACKAGE/ORDER INFORMATION ^{*}The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges. LINEAR Lead Free Part Marking: http://www.linear.com/leadfree/ **ELECTRICAL CHARACTERISTICS** The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_{CC} = 3.3V$, $V_{LR} = 0.45V$, $V_{LR} = 0.55V$ V_{LR} | SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS | |--------------------------|--|--|---|------|-------------|--------------------|-------| | V _{SHUNT} | V _{CC} Shunt Regulator Voltage | I _{CC} = 5mA | • | 6.2 | 6.6 | 6.9 | V | | ΔV_{SHUNT} | V _{CC} Shunt Regulator Load Regulation | I _{CC} = 2mA to 10mA | • | | 200 | 300 | mV | | $\overline{V_{CC}}$ | Supply Voltage (Note 3) | | • | 2.3 | | V _{SHUNT} | V | | V _{CCR(MIN)} | Minimum V _{CC} Output Valid | DIS = 0V | • | | | 1 | V | | V _{CC(UVLO)} | Supply Undervoltage Lockout | DIS = 0V, V _{CC} Rising | • | 1.9 | 2 | 2.1 | V | | $\Delta V_{CC(UVHYST)}$ | Supply Undervoltage Lockout Hysteresis | DIS = 0V | • | 5 | 25 | 50 | mV | | I _{CC} | Supply Current | V _{CC} = 2.3V to 6V | • | | 55 | 80 | μА | | V_{UOT} | Undervoltage/Overvoltage Threshold | | • | 492 | 500 | 508 | mV | | t _{UOD} | Undervoltage/Overvoltage Threshold to Output Delay | $VHn = V_{UOT} - 5mV \text{ or } VLn = V_{UOT} + 5mV$ | • | 50 | 125 | 500 | μs | | I _{VHL} | VHn, VLn Input Current | | • | | | ±15 | nA | | t _{UOTO} | UV/OV Time-Out Period | C _{TMR} = 1nF | • | 6 | 8.5 | 12.5 | ms | | V _{LATCH} (VIH) | OV Latch Clear Input High | | • | 1.2 | | | V | | V _{LATCH} (VIL) | OV Latch Clear Input Low | | • | | | 0.8 | V | | I _{LATCH} | LATCH Input Current | V _{LATCH} > 0.5V | • | | | ±1 | μA | | V _{DIS(VIH)} | DIS Input High | | • | 1.2 | | | V | | V _{DIS(VIL)} | DIS Input Low | | • | | | 0.8 | V | | I _{DIS} | DIS Input Current | V _{DIS} > 0.5V | • | 1 | 2 | 3 | μА | | I _{TMR(UP)} | TMR Pull-Up Current | V _{TMR} = 0V | • | -1.3 | -2.1 | -2.8 | μА | | I _{TMR(DOWN)} | TMR Pull-Down Current | V _{TMR} = 1.6V | • | 1.3 | 2.1 | 2.8 | μA | | V _{TMR(DIS)} | Timer Disable Voltage | Referenced to V _{CC} | • | -180 | -270 | | mV | | V _{OH} | Output Voltage High UV/OV | $V_{CC} = 2.3V$, $I_{\overline{UV}/\overline{OV}} = -1\mu A$ | • | 1 | | | V | | V _{0L} | Output Voltage Low UV/OV | V_{CC} = 2.3V, $I_{\overline{UV}/\overline{OV}}$ = 2.5mA
V_{CC} = 1V, $I_{\overline{UV}}$ = 100 μ A | • | | 0.1
0.01 | 0.3
0.15 | V | **Note 1:** Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. **Note 2:** All currents into pins are positive; all voltages are referenced to GND unless otherwise noted. **Note 3:** V_{CC} maximum pin voltage is limited by input current. Since the V_{CC} pin has an internal 6.5V shunt regulator, a low impedance supply that exceeds 6V may exceed the rated terminal current. Operation from higher voltage supplies requires a series dropping resistor. See Applications Information. # TIMING DIAGRAMS #### V_{Hn} Monitor Timing (TMR Pin Strapped to V_{CC}) #### V_{Ln} Monitor Timing (TMR Pin Strapped to V_{CC}) # TYPICAL PERFORMANCE CHARACTERISTICS Specifications are at $T_A = 25$ °C, $V_{CC} = 3.3$ V unless otherwise noted. **V_{CC} Shunt Voltage** vs Temperature 2913 G04 **Typical Transient Duration** vs Comparator Overdrive UV Output Voltage vs V_{CC} # TYPICAL PERFORMANCE CHARACTERISTICS Specifications are at $T_A = 25^{\circ}C$, $V_{CC} = 3.3V$ unless otherwise noted. #### Reset Timeout Period vs Temperature #### Reset Timeout Period vs Capacitance # PIN FUNCTIONS DIS (Pin 8, LTC2913-2): Output Disable Input. Disables the \overline{OV} and \overline{UV} output pins. When DIS is pulled high, the \overline{OV} and \overline{UV} pins are not asserted except during a UVLO condition. DIS has a weak (2µA) internal pull-down to GND. Leave DIS open if unused. **Exposed Pad (Pin 11, DFN Package):** Exposed Pad may be left open or connected to device ground. GND (Pin 5): Device Ground. **LATCH** (Pin 8, LTC2913-1): $\overline{\text{OV}}$ Latch Clear/Bypass Input. When pin is pulled low, $\overline{\text{OV}}$ is latched when asserted. When pulled high, $\overline{\text{OV}}$ latch is cleared. While held high, $\overline{\text{OV}}$ has the same delay and output characteristics as $\overline{\text{UV}}$. $\overline{ extbf{OV}}$ (Pin 6): Overvoltage Logic Output. Asserts low when either VL input voltage is above threshold. Latched low (LTC2913-1). Held low for programmed delay time after both VL inputs are valid (LTC2913-2). $\overline{ extbf{OV}}$ has a weak pull-up to V_{CC} and $\overline{ extbf{may}}$ be pulled above V_{CC} using an external pull-up. Leave $\overline{ extbf{OV}}$ open if unused. ## PIN FUNCTIONS **TMR (Pin 9):** Reset Delay Timer. Attach an external capacitor (C_{TMR}) of at least 10pF to GND to set a reset delay time of 9ms/nF. A 1nF capacitor will generate an 8.5ms reset delay time. Tie TMR to V_{CC} to bypass timer. **UV (Pin 7):** Undervoltage Logic Output. Asserts low when either VH input voltage is below threshold. Held low fo<u>r a</u> programmed delay time after both VH inputs are valid. \overline{UV} has a weak pull-up to V_{CC} and \overline{may} be pulled above V_{CC} using an external pull-up. Leave \overline{UV} open if unused. V_{CC} (**Pin 10**): Supply Voltage. Bypass this pin to GND with a 0.1µF (or greater) capacitor. Operates as a direct supply input for voltages up to 6V. Operates as a shunt regulator for supply voltages greater than 6V and must have a resistance between the pin and the supply to limit input current to no greater than 10mA. When used without a current-limiting resistance, V_{CC} voltage must not exceed 6V. **VH1/VH2 (Pin 1/Pin 3):** Voltage High Inputs 1 and 2. When the voltage on this pin is below 0.5V, an undervoltage condition is triggered. Tie pin to V_{CC} if unused. **VL1/VL2 (Pin 2/Pin 4):** Voltage Low Inputs 1 and 2. When the voltage on this pin is above 0.5V, an overvoltage condition is triggered. Tie pin to GND if unused. ## **BLOCK DIAGRAM** #### **Voltage Monitoring** The LTC2913 is a low power dual voltage monitoring circuit with two undervoltage and two overvoltage inputs. A timeout period that holds $\overline{\text{OV}}$ and $\overline{\text{UV}}$ asserted after all faults have cleared is adjustable using an external capacitor and is externally disabled. Each voltage monitor has two inputs (VHn and VLn) for detecting undervoltage and overvoltage conditions. When configured to monitor a positive voltage V_n using the 3-resistor circuit configuration shown in Figure 1, VHn is connected to the high side tap of the resistive divider and VLn is connected to the low side tap of the resistive divider. #### 3-Step Design Procedure The following 3-step design procedure determines appropriate resistances to obtain the desired UV and OV trip points for the voltage monitor circuit in Figure 1. For supply monitoring, V_n is the desired nominal operating voltage, I_n is the desired nominal current through the resistive divider, V_{OV} is the desired overvoltage trip point and V_{UV} is the desired undervoltage trip point. ### 1. Choose RA to obtain the desired OV trip point $R_{\mbox{\scriptsize A}}$ is chosen to set the desired trip point for the overvoltage monitor. $$R_{A} = \left| \frac{0.5V}{I_{n}} \bullet \frac{V_{n}}{V_{OV}} \right| \tag{1}$$ Figure 1. 3-Resistor Positive UV/OV Monitoring Configuration #### 2. Choose R_B to obtain the desired UV trip point Once R_A is known, R_B is chosen to set the desired trip point for the undervoltage monitor. $$R_{B} = \left| \frac{0.5V}{I_{n}} \bullet \frac{V_{n}}{V_{UV}} \right| - R_{A}$$ (2) #### 3. Choose R_C to complete the design Once, R_A and R_B are known, R_C is determined by: $$R_{C} = \left| \frac{V_{n}}{I_{n}} \right| - R_{A} - R_{B} \tag{3}$$ If any of the variables V_n , I_n , V_{UV} or V_{OV} change, then each step must be recalculated. #### **Voltage Monitor Example** A typical voltage monitor application is shown in Figure 2. The monitored voltage is a 5V $\pm 10\%$ supply. Nominal current in the resistive divider is $10\mu A$. 1. Find R_A to set the OV trip point of the monitor. $$R_A = \left| \frac{0.5V}{10\mu A} \cdot \frac{5V}{5.5V} \right| \approx 45.3k$$ 2. Find R_B to set the UV trip point of the monitor. $$R_B = \left| \frac{0.5V}{10\mu A} \cdot \frac{5V}{4.5V} \right| - 45.3k \approx 10.2k$$ 3. Determine R_C to complete the design. $$R_C = \frac{5V}{10\mu A} - 45.3k - 10.2k \approx 442k$$ Figure 2. Typical Supply Monitor #### Power-Up/Power-Down As soon as V_{CC} reaches 1V during power-up, the \overline{UV} output asserts low and the \overline{OV} output weakly pulls to V_{CC} . The LTC2913 is guaranteed to assert \overline{UV} low and \overline{OV} high under conditions of low V_{CC} , down to V_{CC} = 1V. Above V_{CC} = 2V (2.1V maximum), the VH and VL inputs take control. Once both VH inputs and V_{CC} are valid, an internal timer is started. After an adjustable delay time, \overline{UV} weakly pulls high. #### **Threshold Accuracy** Reset threshold accuracy is important in a supply-sensitive system. Ideally, such a system resets only if supply voltages fall outside the exact thresholds for a specified margin. All LTC2913 inputs have a relative threshold accuracy of $\pm 1.5\%$ over the full operating temperature range. For example, when the LTC2913 is programmed to monitor a 5V input with a 10% tolerance, the desired UV trip point is 4.5V. Because of the $\pm 1.5\%$ relative accuracy of the LTC2913, the UV trip point is between 4.433V and 4.567V which is $4.5V \pm 1.5\%$. Likewise, the accuracy of the resistances chosen for R_A , R_B and R_C can affect the UV and OV trip points as well. Using the example just given, if the resistances used to set the UV trip point have 1% accuracy, the UV trip range is between 4.354V and 4.650V. This is illustrated in the following calculations. The UV trip point is given as: $$V_{UV} = 0.5V \left(1 + \frac{R_C}{R_A + R_B}\right)$$ The two extreme conditions, with a relative accuracy of 1.5% and resistance accuracy of 1%, result in: $$V_{UV(MIN)} = 0.5V \cdot 0.985 \cdot \left(1 + \frac{R_C \cdot 0.99}{(R_A + R_B) \cdot 1.01}\right)$$ and $$V_{UV(MAX)} = 0.5V \cdot 1.015 \cdot \left(1 + \frac{R_C \cdot 1.01}{(R_A + R_B) \cdot 0.99}\right)$$ For a desired trip point of 4.5V, $\frac{R_C}{R_A + R_B} = 8$ Therefore, $$V_{UV(MIN)} = 0.5V \cdot 0.985 \cdot \left(1 + 8 \frac{0.99}{1.01}\right) = 4.354V$$ and $$V_{UV(MAX)} = 0.5V \cdot 1.015 \cdot \left(1 + 8 \frac{1.01}{0.99}\right) = 4.650V$$ #### Glitch Immunity In any supervisory application, noise riding on the monitored DC voltage causes spurious resets. To solve this problem without adding hysteresis, which causes a new error term in the trip voltage, the LTC2913 lowpass filters the output of the first stage comparator at each input. This filter integrates the output of the comparator before asserting the UV or OV logic. A transient at the input of the comparator of sufficient magnitude and duration triggers the output logic. The Typical Performance Characteristics show a graph of the Transient Duration vs. Comparator Overdrive. #### **UV/OV Timing** The LTC2913 has an adjustable timeout period (t_{UOTO}) that holds \overline{OV} or \overline{UV} asserted after all faults have cleared. This assures a minimum reset pulse width allowing a settling time delay for the monitored voltage after it has entered the valid region of operation. When any VH input drops below its designed threshold, the UV pin asserts low. When all inputs recover above their designed thresholds, the UV output timer starts. If all inputs remain above their designed thresholds when the timer finishes, the UV pin weakly pulls high. However, if any input falls below its designed threshold during this timeout period, the timer resets and restarts when all inputs are above the designed thresholds. The OV output behaves as the UV output when LATCH is high (LTC2913-1). ### Selecting the UV/OV Timing Capacitor The UV and OV timeout period (t_{UOTO}) for the LTC2913 is adjustable to accommodate a variety of applications. Connecting a capacitor, C_{TMR} , between the TMR pin and ground sets the timeout period. The value of capacitor needed for a particular timeout period is: $$C_{TMR} = t_{UOTO} \cdot 115 \cdot 10^{-9}$$ [F/s] The Reset Timeout Period vs Capacitance graph found in the Typical Performance Characteristics shows the desired delay time as a function of the value of the timer capacitor that must be used. The TMR pin must have a minimum 10pF load or be tied to V_{CC} . For long timeout periods, the only limitation is the availability of a large value capacitor with low leakage. Capacitor leakage current must not exceed the minimum TMR charging current of 1.3 μ A. Tying the TMR pin to V_{CC} will bypass the timeout period. ### **Undervoltage Lockout** When V_{CC} falls below 2V, the LTC2913 asserts an undervoltage lockout (UVLO) condition. During UVLO, UV is asserted and pulled low while \overline{OV} is cleared and blocked from asserting. When V_{CC} rises above 2V, \overline{UV} follows the same timing procedure as an undervoltage condition on any input. #### **Shunt Regulator** The LTC2913 has an internal shunt regulator. The V_{CC} pin operates as a direct supply input for voltages up to 6V. Under this condition, the quiescent current of the device remains below a maximum of $80\mu A$. For V_{CC} voltages higher than 6V, the device operates as a shunt regulator and must have a resistance R_Z between the supply and the V_{CC} pin to limit the current to no greater than 10mA. When choosing this resistance value, select an appropriate location on the I-V curve shown in the Typical Performance Characteristics to accommodate any variations in V_{CC} due to changes in current through R_Z . # **UV** and **OV** Output Characteristics The DC characteristics of the \overline{UV} and \overline{UV} pull-down strength are shown in the Typical Performance Characteristics. Each pin has a weak internal pull-up to V_{CC} and a strong pull-down to ground. This arrangement allows these pins to have open-drain behavior while possessing several other beneficial characteristics. The weak pull-up eliminates the need for an external pull-up resistor when the rise time on the pin is not critical. On the other hand, the open-drain configuration allows for wired-OR connections, and is useful when more than one signal needs to pull down on the output. V_{CC} of 1V guarantees a maximum $V_{OL} = 0.15V$ at \overline{UV} . At $V_{CC} = 1V$, the weak pull-up current on \overline{OV} is barely turned on. Therefore, an external pull-up resistor of no more than 100k is recommended on the \overline{OV} pin if the state and pull-up strength of the \overline{OV} pin is crucial at very low V_{CC} . Note however, by adding an external pull-up resistor, the pull-up strength on the OV pin is increased. Therefore, if it is connected in a wired-OR connection, the pull-down strength of any single device must accommodate this additional pull-up strength. ### **Output Rise and Fall Time Estimation** The \overline{UV} and \overline{UV} outputs have strong pull-down capability. The following formula estimates the output fall time (90% to 10%) for a particular external load capacitance (C_{LOAD}): $$t_{FALL} \approx 2.2 \bullet R_{PD} \bullet C_{LOAD}$$ where R_{PD} is the on-resistance of the internal pull-down transistor, typically 50Ω at $V_{CC}>1V$ and at room temperature (25°C). C_{LOAD} is the external load capacitance on the pin. Assuming a 150pF load capacitance, the fall time is 16.5ns. The rise time on the \overline{UV} and \overline{OV} pins is limited by a 400k pull-up resistance to V_{CC} . A similar formula estimates the output rise time (10% to 90%) at the \overline{UV} and \overline{OV} pins: $$t_{RISF} \approx 2.2 \bullet R_{PIJ} \bullet C_{I,OAD}$$ where R_{PII} is the pull-up resistance. # **OV** Latch (LTC2913-1) With the LATCH pin held low, the $\overline{\text{OV}}$ pin latches low when an $\overline{\text{OV}}$ condition is detected. The latch is cleared by raising the LATCH pin high. If an OV condition clears while LATCH is held high, the <u>latch</u> is bypassed and the \overline{OV} pin behaves the same <u>as the UV</u> pin with a similar timeout period at the output. If <u>LATCH</u> is pulled low while the timeout period is active, the \overline{OV} pin latches as before. #### **Disable (LTC2913-2)** The LTC2913-2 allows disabling the \overline{UV} and \overline{OV} outputs via the DIS pin. Pulling DIS high will force both outputs to remain weakly pulled high, regardless of any faults that occur on the inputs. However, if a UVLO condition occurs, \overline{UV} asserts and pulls low, but the timeout function is bypassed. \overline{UV} pulls high as soon as the UVLO condition is cleared. DIS has a weak 2µA (typical) internal pull-down current guaranteeing normal operation with the pin left open. ### TYPICAL APPLICATIONS Dual UV/OV Supply Monitor, 10% Tolerance, 5V, 3.3V Supply Monitor Powered from 12V, 10% Tolerance, 12V, 5V LINEAR TECHNOLOGY # PACKAGE DESCRIPTION #### DD Package 10-Lead Plastic DFN (3mm × 3mm) (Reference LTC DWG # 05-08-1699) #### **RECOMMENDED** SOLDER PAD PITCH AND DIMENSIONS #### NOTE DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2). CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX - 2. DRAWING NOT TO SCALE - 3. ALL DIMENSIONS ARE IN MILLIMETERS - DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE - 5. EXPOSED PAD SHALL BE SOLDER PLATED - SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE #### MS Package 10-Lead Plastic MSOP (Reference LTC DWG # 05-08-1661) 2913fa # TYPICAL APPLICATION Dual UV/OV Supply Monitor with LED Undervoltage and Overvoltage Indicator and Manual Undervoltage Reset Button, 10% Tolerance, 12V, 5V # **RELATED PARTS** | PART NUMBER | DESCRIPTION | COMMENTS | | |-----------------------------|--|--|--| | LTC1326/
LTC1326-2.5 | Micropower Precision Triple Supply Monitor for 5V/2.5V, 3.3V and ADJ | 4.725V, 3.118V, 1V Threshold (±0.75%) | | | LTC1726-2.5/
LTC1726-5 | Micropower Triple Supply Monitor for 2.5V/5V, 3.3V and ADJ | Adjustable RESET and Watchdog Time-Outs | | | LTC1727-2.5/
LTC1727-5 | Micropower Triple Supply Monitor with Open-Drain Reset | Individual Monitor Outputs in MSOP | | | LTC1728-1.8/
LTC1728-3.3 | Micropower Triple Supply Monitor with Open-Drain Reset | 5-Lead SOT-23 Package | | | LTC1728-2.5/
LTC1728-5 | Micropower Triple Supply Monitor with Open-Drain Reset | 5-Lead SOT-23 Package | | | LTC1985-1.8 | Micropower Triple Supply Monitor with Open-Drain Reset | 5-Lead SOT-23 Package | | | LTC2900 | Programmable Quad Supply Monitor | Adjustable RESET, 10-Lead MSOP and 3mm × 3mm
10-Lead DFN Package | | | LTC2901 | Programmable Quad Supply Monitor | Adjustable RESET and Watchdog Timer, 16-Lead SSOP Package | | | LTC2902 | Programmable Quad Supply Monitor | Adjustable RESET and Tolerance, 16-Lead SSOP Package, Margining Functions | | | LTC2903 | Precision Quad Supply Monitor | 6-Lead SOT-23 Package, Ultralow Voltage Reset | | | LTC2904 | 3-State Programmable Precision Dual Supply Monitor | Adjustable Tolerance, 8-Lead SOT-23 Package | | | LTC2905 | 3-State Programmable Precision Dual Supply Monitor | onitor Adjustable RESET and Tolerance, 8-Lead SOT-23 Package | | | LTC2906 | Precision Dual Supply Monitor 1-Selectable and 1 Adjustable | Separate V _{CC} Pin, RST/RST Outputs | | | LTC2907 | Precision Dual Supply Monitor 1-Selectable and 1 Adjustable | Separate V _{CC} , Adjustable Reset Timer | | | LTC2908 | Precision Six Supply Monitor (Four Fixed & 2 Adjustable) | 8-Lead SOT-23 and DFN Packages | | | LTC2909 | Prevision Dual Input UV, OV and Negative Voltage Monitor | Separate V _{CC} Pin, Adjustable Reset Timer, 8-Lead TSOT-23 and DFN Packages | | | LTC2910 | Octal Positive/Negative Voltage Monitor | Separate V _{CC} Pin, Eight Inputs, Up to Two Negative Monitors
Adjustable Reset Timer, 16-Lead SSOP and DFN Packages | | | LTC2914 | Quad UV/OV Positive/Negative Voltage Monitor | Separate V_{CC} Pin, Four inputs, Up To Two Negative Monitors, Adjustable Reset Timer, 16-Lead SSOP and DFN Packages | |