

12-Bit Rail-to-Rail Micropower DAC in **MSOP** Package

DESCRIPTION

The LTC[®]1659 is a single supply, rail-to-rail voltage output, 12-bit digital-to-analog converter (DAC) in an MSOP package. It includes a rail-to-rail output buffer amplifier and an easy-to-use 3-wire cascadable serial interface.

The LTC1659 output swings from OV to REF. The REF input can be tied to V_{CC} which can range from 2.7V to 5.5V. This allows a rail-to-rail output swing from OV to V_{CC}. The LTC1659 draws only 250µA from a 5V supply.

Its guaranteed ±0.5LSB maximum DNL makes the LTC1659 excel in calibration, control and trim/adjust applications. The low power supply current and the small MSOP package make the LTC1659 ideal for battery-powered applications.

T, LTC and LT are registered trademarks of Linear Technology Corporation.

FEATURES

8-Lead MSOP Package

- 12-Bit Resolution
- Supply Operation: 3V to 5V
- Buffered True Rail-to-Rail Voltage Output
- Output Swings from 0V to V_{RFF}
- V_{RFF} Can Tie to V_{CC}
- Schmitt Trigger On Clock Input Allows Direct **Optocoupler Interface**
- Power-On Reset Clears DAC to OV
- 3-Wire Cascadable Serial Interface
- Maximum DNL Error: 0.5LSB
- Low Cost

APPLICATIONS

- **Digital Calibration**
- Industrial Process Control
- Automatic Test Equipment
- Cellular Telephones

TYPICAL APPLICATION

8

V_{CC}

12-BIT

SHIFT

REG

AND DAC LATCH

POWER-ON

RESET

2.7V TO 5.5V

D_{IN} 2

CLK 1

CS/LD

DOUT

3

μΡ

TO OTHER

DACS

REF

GND

_5

12-BIT

DAC

VOUT

VOLTAGE

OUTPUT

1659 TA01

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.5V to 7.5V
Logic Inputs to GND	0.5V to 7.5V
V _{OUT}	. – 0.5V to V _{CC} + 0.5V
Maximum Junction Temperature	125°C
Storage Temperature Range	

Operating Temperature Range

LTC1659CS8	0°C to 70°C
LTC1659IS8	– 40°C to 85°C
LTC1659CMS8 (Note 1)	0°C to 70°C
Lead Temperature (Soldering,	10 sec) 300°C

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS

 V_{CC} = 2.7V to 5.5V, V_{OUT} unloaded, REF $\leq V_{CC},$ T_A = T_{MIN} to $T_{MAX},$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
DAC							
	Resolution		•	12			Bits
	Monotonicity		•	12			Bits
DNL	Differential Nonlinearity	$V_{\text{REF}} \le V_{\text{CC}} - 0.1V \text{ (Note 2)}$	•			±0.5	LSB
INL	Integral Nonlinearity	$V_{REF} \le V_{CC} - 0.1V$ (Note2), $T_A = 25^{\circ}C$ $V_{REF} \le V_{CC} - 0.1V$ (Note 2)	•			±5.0 ±5.5	LSB LSB
V _{OS}	Offset Error	Measured at Code 20, T _A = 25°C Measured at Code 20	•			±12 ±18	mV mV
V _{OS} TC	Offset Error Temperature Coefficient				±15		μV/°C
V _{FS}	Full-Scale Voltage	T _A = 25°C, REF = 4.096V (Note 6) REF = 4.096V (Note 6)	•	4.070 4.060	4.095 4.095	4.120 4.130	V V
V _{FS} TC	Full-Scale Voltage Temperature Coefficient				10		ppm/°C

ELECTRICAL CHARACTERISTICS

 V_{CC} = 2.7V to 5.5V, V_{OUT} unloaded, REF \leq $V_{CC},$ T_A = T_{MIN} to $T_{MAX},$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Power Su	oply						
V _{CC}	Positive Supply Voltage	For Specified Performance		2.7		5.5	V
I _{CC}	Supply Current	(Note 5)	•		240	450	μA
Op Amp D	C Performance						
	Short-Circuit Current Low	V _{OUT} Shorted to GND			70	120	mA
	Short-Circuit Current High	V_{OUT} Shorted to V_{CC}	•		65	120	mA
	Output Impedance to GND	Input Code = 0			40	150	Ω
	Output Line Regulation	Input Code = 4095, V _{CC} = 4.5V to 5.5V			0.1	1.5	LSB/V
AC Perfor	mance						
	Voltage Output Slew Rate	(Note 3)		0.5	1.0		V/µs
	Voltage Output Settling Time	(Notes 3, 4) to ±0.5LSB			14		μs
	Digital Feedthrough				0.3		nV∙s
Reference	Input						
R _{IN}	REF Input Resistance			17	28	40	kΩ
REF	REF Input Range	(Notes 6, 7)	•	0		V _{CC}	V
Digital I/O							
V _{IH}	Digital Input High Voltage	V _{CC} = 5V	•	2.4			V
V _{IL}	Digital Input Low Voltage	V _{CC} = 5V	•			0.8	V
V _{OH}	Digital Output High Voltage	$V_{CC} = 5V$, $I_{OUT} = -1mA$, D_{OUT} Only	•	V _{CC} – 1.0			V
V _{OL}	Digital Output Low Voltage	V _{CC} = 5V, I _{OUT} = 1mA, D _{OUT} Only	•			0.4	V
V _{IH}	Digital Input High Voltage	$V_{CC} = 3V$	•	2.0			V
V _{IL}	Digital Input Low Voltage	$V_{CC} = 3V$	•			0.6	V
V _{OH}	Digital Output High Voltage	$V_{CC} = 3V$, $I_{OUT} = -1mA$, D_{OUT} Only		V _{CC} – 0.7			V
V _{OL}	Digital Output Low Voltage	V _{CC} = 3V, I _{OUT} = 1mA, D _{OUT} Only				0.4	V
I _{LEAK}	Digital Input Leakage	$V_{IN} = GND$ to V_{CC}				±10	μA
C _{IN}	Digital Input Capacitance	(Note 7)				10	pF

ELECTRICAL CHARACTERISTICS

 V_{CC} = 2.7V to 5.5V, V_{OUT} unloaded, REF $\leq V_{CC},$ T_A = T_{MIN} to $T_{MAX},$ unless otherwise noted.

SYMBOL	PARAMETER CONDITIONS		MIN	TYP	MAX	UNITS	
Switching	(V _{CC} = 4.5 to 5.5V)						
t ₁	D _{IN} Valid to CLK Setup		•	40			ns
t ₂	D _{IN} Valid to CLK Hold			0			ns
t ₃	CLK High Time	(Note 7)	•	40			ns
t4	CLK Low Time	(Note 7)		40			ns
t ₅	CS/LD Pulse Width	(Note 7)		50			ns
t ₆	LSB CLK to \overline{CS}/LD	(Note 7)		40			ns
t ₇	CS/LD Low to CLK	(Note 7)		20			ns
t ₈	D _{OUT} Output Delay	C _{LOAD} = 15pF	•	5		150	ns
t9	CLK Low to CS/LD Low	(Note 7)	•	20			ns
Switching	(V _{CC} = 2.7 to 5.5V)		·				<u> </u>
t ₁	D _{IN} Valid to CLK Setup			60			ns
t ₂	D _{IN} Valid to CLK Hold			0			ns
t ₃	CLK High Time	(Note 7)		60			ns
t ₄	CLK Low Time	(Note 7)		60			ns
t ₅	CS/LD Pulse Width	(Note 7)		80			ns
t ₆	LSB CLK to CS/LD	(Note 7)	•	60			ns
t ₇	CS/LD Low to CLK	(Note 7)	•	30			ns
t ₈	D _{OUT} Output Delay	C _{LOAD} = 15pF	•	10		220	ns
t9	CLK Low to CS/LD Low	(Note 7)		30			ns

The \bullet denotes specifications which apply over the full operating temperature range.

Note 1: The LTC1659CMS8 is designed, characterized and expected to meet industrial temperature limits, but is not tested at – 40°C and 85°C. Consult factory for guaranteed I-grade MSOP parts. However, these parts are guaranteed for commercial temperature limits of 0°C to 70°C.

Note 2: Nonlinearity is defined from code 20 to code 4095 (full scale). See Applications Information.

Note 3: Load is $5k\Omega$ in parallel with 100pF.

Note 4: DAC switched between all 1s and the code corresponding to $\ensuremath{V_{\text{OS}}}$ for the part.

Note 5: Digital inputs at 0V or V_{CC} .

Note 6: V_{OUT} can only swing from (GND + $|V_{OS}|$) to ($V_{CC} - |V_{OS}|$) when output is unloaded.

Note 7: Guaranteed by design. Not subject to test.

TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS

CLK (Pin 1): Serial Interface Clock. Internal Schmitt trigger on this input allows direct optocoupler interface.

 D_{IN} (Pin 2): Serial Interface Data. Data on the D_{IN} pin is latched into the shift register on the rising edge of the serial clock.

CS/LD (Pin 3): Serial Interface Enable and Load Control. When CS/LD is low the CLK signal is enabled, so the data can be clocked in. When CS/LD is pulled high, data is loaded from the shift register into the DAC register, updating the DAC output and the CLK is disabled internally. **D**_{OUT} (Pin 4): Output of the Shift Register which Becomes Valid on the Rising Edge of the Serial Clock.

GND (Pin 5): Ground.

REF (Pin 6): Reference Input. This pin can be tied to V_{CC} . The output will swing from 0V to REF. The typical input resistance is 28k.

Vout (Pin 7): Buffered DAC Output.

V_{CC} (Pin 8): Positive Supply Input. $2.7V \le V_{CC} \le 5.5V$. Requires a bypass capacitor to ground.

BLOCK DIAGRAM

TIMING DIAGRAM

DEFINITIONS

Differential Nonlinearity (DNL): The difference between the measured change and the ideal 1LSB change for any two adjacent codes. The DNL error between any two codes is calculated as follows:

 $DNL = (\Delta V_{OUT} - LSB)/LSB$

Where ΔV_{OUT} is the measured voltage difference between two adjacent codes.

Digital Feedthrough: The glitch that appears at the analog output caused by AC coupling from the digital inputs when they change state. The area of the glitch is specified in (nV)(sec).

Full-Scale Error (FSE): The deviation of the actual fullscale voltage from ideal. FSE includes the effects of offset and gain errors (see Applications Information).

Integral Nonlinearity (INL): The deviation from a straight line passing through the endpoints of the DAC transfer curve (Endpoint INL). Because the output cannot go below zero, the linearity is measured between full scale and the lowest code which guarantees the output will be greater than zero. The INL error at a given input code is calculated as follows:

 $INL = [V_{OUT} - V_{OS} - (V_{FS} - V_{OS})(code/4095)]/LSB$

Where $V_{\mbox{OUT}}$ is the output voltage of the DAC measured at the given input code.

Least Significant Bit (LSB): The ideal voltage difference between two successive codes.

$$LSB = V_{REF}/4096$$

Resolution (n): Defines the number of DAC output states (2ⁿ) that divide the full-scale range. Resolution does not imply linearity.

Voltage Offset Error (V_{OS}): Nominally, the voltage at the output when the DAC is loaded with all zeros. A single supply DAC can have a true negative offset, but the output cannot go below zero (see Applications Information).

For this reason, single supply DAC offset is measured at the lowest code that guarantees the output will be greater than zero.

OPERATION

Serial Interface

The data on the D_{IN} input is loaded into the shift register on the rising edge of the clock. The MSB is loaded first. The DAC register loads the data from the shift register when \overline{CS}/LD is pulled high. The CLK is disabled internally when \overline{CS}/LD is high. Note: CLK must be low before \overline{CS}/LD is pulled low to avoid an extra internal clock pulse.

The buffered output of the 12-bit shift register is available on the D_{OUT} pin which swings from GND to V_{CC} .Multiple LTC1659s may be daisy-chained together by connecting the D_{OUT} pin to the D_{IN} pin of the next chip, while the CLK and CS/LD signals remain common to all chips in the daisy chain. The serial data is clocked to all of the chips, then the CS/LD signal is pulled high to update all of them simultaneously.

Voltage Output

The LTC1659's rail-to-rail buffered output can source or sink 5mA over the entire operating temperature range while pulling to within 300mV of the positive supply voltage or ground. The output swings to within a few millivolts of either supply rail when unloaded and has an equivalent output resistance of 40Ω when driving a load to the rails. The output can drive 1000pF without going into oscillation.

The output swings from 0V to the voltage at the REF pin, i.e., there is a gain of 1 from the REF to V_{OUT} . Please note if REF is tied to V_{CC} the output can only swing to ($V_{CC} - V_{OS}$). See Applications Information.

APPLICATIONS INFORMATION

Rail-to-Rail Output Considerations

In any rail-to-rail DAC, the output swing is limited to voltages within the supply range.

If the DAC offset is negative, the output for the lowest codes limits at OV as shown in Figure 1(b).

Similarly, limiting can occur near full scale when the REF pin is tied to V_{CC} . If $V_{REF} = V_{CC}$ and the DAC full-scale error (FSE) is positive, the output for the highest codes limits at

 V_{CC} as shown is Figure 1(c). No full-scale limiting can occur if V_{REF} is less than V_{CC} – FSE.

Offset and linearity are defined and tested over the region of the DAC transfer function where no output limiting can occur.

TYPICAL APPLICATION

12-Bit, 3V to 5V Single Supply, Rail-to-Rail Voltage Output DAC

PACKAGE DESCRIPTION

Dimensions in inches (millimeters) unless otherwise noted.

MS8 Package 8-Lead Plastic MSOP (LTC DWG # 05-08-1660)

* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

SO8 0996

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

TYPICAL APPLICATION

Digitally Programmable Current Source

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS	
LTC1257	Single 12-Bit V _{OUT} DAC, Full Scale: 2.048V, V _{CC} : 4.75V to 15.75V, Reference Can Be Overdriven Up to 12V, i.e., FS _{MAX} = 12V	5V to 15V Single Supply, Complete V _{OUT} DAC in SO-8 Package	
LTC1446/LTC1446L	Dual 12-Bit V _{OUT} DACs in SO-8 Package	LTC1446: V_{CC} = 4.5V to 5.5V, V_{OUT} = 0V to 4.095V LTC1446L: V_{CC} = 2.7V to 5.5V, V_{OUT} = 0V to 2.5V	
LTC1448	Dual 12-Bit V _{OUT} DAC, V _{CC} : 2.7V to 5.5V	Output Swings from GND to REF. REF Input Can Be Tied to $V_{\mbox{CC}}$	
LTC1450/LTC1450L	Single 12-Bit V _{OUT} DACs with Parallel Interface	LTC1450: V_{CC} = 4.5V to 5.5V, V_{OUT} = 0V to 4.095V LTC1450L: V_{CC} = 2.7V to 5.5V, V_{OUT} = 0V to 2.5V	
LTC1451	Single Rail-to-Rail 12-Bit DAC, Full Scale: 4.095V, V _{CC} : 4.5V to 5.5V, Internal 2.048V Reference Brought Out to Pin	5V, Low Power Complete V _{OUT} DAC in SO-8 Package	
LTC1452	Single Rail-to-Rail 12-Bit V_{OUT} Multiplying DAC, V_{CC} : 2.7V to 5.5V	Low Power, Multiplying V _{OUT} DAC with Rail-to-Rail Buffer Amplifier in SO-8 Package	
LTC1453	Single Rail-to-Rail 12-Bit V_{OUT} DAC, Full Scale: 2.5V, V_{CC} : 2.7V to 5.5V	3V, Low Power, Complete V _{OUT} DAC in SO-8 Package	
LTC1454/LTC1454L	Dual 12-Bit V_{OUT} DACs in SO-16 Package with Added Functionality	LTC1454: V_{CC} = 4.5V to 5.5V, V_{OUT} = 0V to 4.095V LTC1454L: V_{CC} = 2.7V to 5.5V, V_{OUT} = 0V to 2.5V	
LTC1456	Single Rail-to-Rail Output 12-Bit DAC with Clear Pin, Full Scale: 4.095V, V _{CC} : 4.5V to 5.5V	Low Power, Complete V _{OUT} DAC in SO-8 Package with Clear Pin	
LTC1458/LTC1458L	Quad 12 Bit Rail-to-Rail Output DACs with Added Functionality	LTC1458: V_{CC} = 4.5V to 5.5V, V_{OUT} = 0V to 4.095V LTC1458L: V_{CC} = 2.7V to 5.5V, V_{OUT} = 0V to 2.5V	

