

LTC 1454/LTC 1454L

Dual 12-Bit Rail-to-Rail Micropower DACs

FEATURES

- 12-Bit Resolution
- Buffered True Rail-to-Rail Voltage Output
- 5V Operation, I_{CC}: 700µA Typ (LTC1454)
- 3V Operation, I_{CC}: 450µA Typ (LTC1454L)
- Built-In Reference: 2.048V (LTC1454)

1.220V (LTC1454L)

- CLR Pin
- Power-On Reset
- 16-Lead SO Package
- 3-Wire Cascadable Serial Interface
- Maximum DNL Error: 0.5LSB
- Low Cost

APPLICATIONS

- Digital Calibration
- Industrial Process Control
- Automatic Test Equipment
- Cellular Telephones

DESCRIPTION

The LTC[®]1454/LTC1454L are complete single supply, dual rail-to-rail voltage output, 12-bit digital-to-analog converters (DACs) in a 16-lead SO package. They include an output buffer amplifier with variable gain (\times 1 or \times 2) and an easy-to-use 3-wire cascadable serial interface.

The LTC1454 has an onboard reference of 2.048V and a full-scale output of 4.095V in a \times 2 gain configuration. It operates from a single 4.5V to 5.5V supply.

The LTC1454L has an onboard 1.22V reference and a full-scale output of 2.5V in a \times 2 gain configuration. It operates from a single 2.7V to 5.5V supply.

Low power supply current, excellent DNL and small size allow these parts to be used in a host of applications where size, DNL and single supply operation are important.

C, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

ABSOLUTE MAXIMUM RATINGS

V_{CC} to GND $-0.5V$ to $7.5V$
Logic Inputs to GND0.5V to 7.5V
V _{OUT A} , V _{OUT B} , X1/X2 A,
X1/X2 B – 0.5V to V _{CC} + 0.5V
REFHI A, REFHI B, REFLO $-0.5V$ to V _{CC} + 0.5V
Maximum Junction Temperature 125°C
Operating Temperature Range
LTC1454C/LTC1454LC0°C to 70°C
LTC1454I/LTC1454LI – 40°C to 85°C
Storage Temperature Range –65°C to 150°C
Lead Temperature (Soldering, 10 sec) 300°C

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS

 V_{CC} = 4.5V to 5.5V (LTC1454), 2.7V to 5.5V (LTC1454L), X1/X2 = REFLO = GND, REFHI = REFOUT, V_{OUT} and REFOUT unloaded, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	ΤΥΡ	MAX	UNITS
DAC	1	1	1				L
	Resolution		•	12			Bits
DNL	Differential Nonlinearity	Guaranteed Monotonic (Note 1)	•			± 0.5	LSB
INL	Integral Nonlinearity	T _A = 25°C (Note 1)	•		±2.0 ±2.5	±4.0 ±4.5	LSB LSB
V _{OS}	Offset Error	$T_A = 25^{\circ}C$	•		±2.0 ±4.0	±12 ±18	mV mV
V _{OS} TC	Offset Error Temperature Coefficient				±15		μV/°C
V _{FS}	Full-Scale Voltage	When Using Internal Reference, LTC1454, $T_A = 25^{\circ}C$ LTC1454		1.065 1.045	4.095 4.095	4.125 4.145	V V
		When Using Internal Reference, LTC1454L, $T_A = 25^{\circ}C$ LTC1454L		2.470 2.460	2.500 2.500	2.530 2.540	V V
V _{FS} TC	Full-Scale Voltage Temperature Coefficient	When Using Internal Reference			±24		ppm/°C
Reference	6	I I I I I I I I I I I I I I I I I I I	I				·
	Reference Output Voltage	LTC1454 LTC1454L		2.008 1.195	2.048 1.220	2.088 1.245	V V
	Reference Output Temperature Coefficient				±20		ppm/°C
	Reference Line Regulation		•		0.7	±2.0	LSB/V
	Reference Load Regulation	$0 \le I_{OUT} \le 100 \mu A$, LTC1454 LTC1454L	•		0.2 0.6	1.5 3.0	LSB LSB
	Reference Input Range	$V_{\text{REFHI}} \le V_{\text{CC}} - 1.5V$			V _{CC} /2		V
	Reference Input Resistance		•	15	24	40	kΩ
	Reference Input Capacitance				15		pF
	Short-Circuit Current	REFOUT Shorted to GND	•		40	120	mA

ELECTRICAL CHARACTERISTICS

 V_{CC} = 4.5V to 5.5V (LTC1454), 2.7V to 5.5V (LTC1454L), X1/X2 = REFLO = GND, REFHI = REFOUT, V_{OUT} and REFOUT unloaded, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Power Su	pply			I			
V _{CC}	Positive Supply Voltage	For Specified Performance, LTC1454 LTC1454L	•	4.5 2.7		5.5 5.5	V V
I _{CC}	Supply Current	$4.5V \le V_{CC} \le 5.5V$ (Note 4), LTC1454 $2.7V \le V_{CC} \le 5.5V$ (Note 4), LTC1454L	•		700 450	1250 1100	μΑ μΑ
Op Amp D	C Performance		•				
	Short-Circuit Current Low	V _{OUT} Shorted to GND	•		70	120	mA
	Short-Circuit Current High	V _{OUT} Shorted to V _{CC}	•		80	120	mA
	Output Impedance to GND	Input Code = 0	•		40		Ω
AC Perfor	mance						
	Voltage Output Slew Rate	(Note 2)	•	0.5	1.0		V/µs
	Voltage Output Settling Time	(Notes 2, 3) to ±0.5LSB			14		μs
	Digital Feedthrough				0.3		nV∙s
	AC Feedthrough	REFHI = 1kHz, 2V _{P-P} , (Code: All 0s)			-95		dB
SINAD	Signal-to-Noise + Distortion	REFHI = 1kHz, 2V _{P-P} , (Code: All 1s)			85		dB

V_{CC} = 5V (LTC1454), 3V (LTC1454L), T_A = T_{MIN} to $T_{MAX},$ unless otherwise noted.

			LTC1454			LTC1454L			
PARAMETER	CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Digital Input High Voltage		•	2.4			2.0			V
Digital Input Low Voltage		•			0.8			0.6	V
Digital Output High Voltage	I _{OUT} = –1mA	•	V _{CC} - 1.0			V _{CC} - 0.7			V
Digital Output Low Voltage	I _{OUT} = 1mA	•			0.4			0.4	V
Digital Input Leakage	V_{IN} = GND to V_{CC}	•			±10			±10	μA
Digital Input Capacitance	Guaranteed by Design	•			10			10	pF
D _{IN} Valid to CLK Setup		•	40			60			ns
D _{IN} Valid to CLK Hold		•	0			0			ns
CLK High Time		•	40			60			ns
CLK Low Time		•	40			60			ns
CS/LD Pulse Width		•	50			80			ns
LSB CLK to CS/LD		•	40			60			ns
CS/LD Low to CLK		•	20			30			ns
D _{OUT} Output Delay	C _{LOAD} = 15pF	•			150			220	ns
CLK Low to CS/LD Low		•	20			30			ns
	Digital Input High Voltage Digital Input Low Voltage Digital Output High Voltage Digital Output Low Voltage Digital Input Leakage Digital Input Capacitance Digital Input Capacitance Digital Input Capacitance DIN Valid to CLK Setup DIN Valid to CLK Hold CLK High Time CLK Low Time CS/LD Pulse Width LSB CLK to CS/LD CS/LD Low to CLK DOUT Output Delay	Digital Input High VoltageDigital Input Low VoltageDigital Output Low VoltageDigital Output High VoltageIoutput Low VoltageIoutput Low VoltageIoutput Low VoltageVIN = GND to V _{CC} Digital Input LeakageVIN = GND to V _{CC} Digital Input CapacitanceGuaranteed by DesignDIN Valid to CLK SetupDIN Valid to CLK HoldCLK High TimeCLK Low Time \overline{CS}/LD Pulse WidthLSB CLK to \overline{CS}/LD \overline{CS}/LD Low to CLKDOUT Output Delay $C_{LOAD} = 15pF$	Digital Input High Voltage ● Digital Input Low Voltage ● Digital Output High Voltage I _{OUT} = -1mA Digital Output Low Voltage I _{OUT} = 1mA Digital Input Leakage V _{IN} = GND to V _{CC} Digital Input Capacitance Guaranteed by Design DIN Valid to CLK Setup ● DIN Valid to CLK Hold ● CLK High Time ● CLK Low Time ● CS/LD Pulse Width ● LSB CLK to CS/LD ● OUT Output Delay C _{LOAD} = 15pF	PARAMETERCONDITIONSMINDigital Input High Voltage•2.4Digital Input Low Voltage \bullet •Digital Output High Voltage $I_{OUT} = -1mA$ •Digital Output Low Voltage $I_{OUT} = 1mA$ •Digital Input Leakage $V_{IN} = GND$ to V_{CC} •Digital Input Leakage $V_{IN} = GND$ to V_{CC} •Digital Input CapacitanceGuaranteed by Design•OCLK HoldOCLK Hold•OCLK High Time•CLK Low Time•40 \overline{CS}/LD Pulse Width•50LSB CLK to \overline{CS}/LD •40 \overline{CS}/LD Low to CLK•20D _{OUT} Output Delay $C_{LOAD} = 15pF$ •	PARAMETERCONDITIONSMINTYPDigital Input High Voltage•2.4Digital Input Low Voltage••Digital Output High Voltage $I_{OUT} = -1mA$ •Digital Output Low Voltage $I_{OUT} = 1mA$ •Digital Input Leakage $V_{IN} = GND$ to V_{CC} •Digital Input Leakage $V_{IN} = GND$ to V_{CC} •Digital Input CapacitanceGuaranteed by Design•DIN Valid to CLK Setup•40DLIN Valid to CLK Hold•0CLK Low Time•40CŠ/LD Pulse Width•50LSB CLK to CŠ/LD•40CŠ/LD Low to CLK•20Dout Output Delay $C_{LOAD} = 15pF$ •	PARAMETERCONDITIONSMINTYPMAXDigital Input High Voltage•2.4•0.8Digital Input Low VoltageI $_{OUT} = -1mA$ • $V_{CC} - 1.0$ Digital Output High VoltageI $_{OUT} = -1mA$ •0.4Digital Output Low VoltageI $_{OUT} = 1mA$ •0.4Digital Input Leakage $V_{IN} = GND$ to V_{CC} • ± 10 Digital Input CapacitanceGuaranteed by Design•10O Inv Valid to CLK SetupDIN Valid to CLK Hold•0CLK High Time•40•CS/LD Pulse Width•50150LSB CLK to \overline{CS}/LD •40150	PARAMETERCONDITIONSMINTYPMAXMINDigital Input High Voltage•2.42.0Digital Input Low Voltage•0.80.8Digital Output High Voltage $I_{OUT} = -1mA$ • $V_{CC} - 1.0$ $V_{CC} - 0.7$ Digital Output Low Voltage $I_{OUT} = 1mA$ •0.40.4Digital Input Leakage $V_{IN} = GND$ to V_{CC} • ± 10 0Digital Input CapacitanceGuaranteed by Design•1060DIN Valid to CLK Setup•40600CLK High Time•406060CS/LD Pulse Width•5080LSB CLK to \overline{CS}/LD •4060 $\overline{CS}/LD Low to CLK$ •2030 D_{OUT} Output Delay $C_{LOAD} = 15pF$ •150	PARAMETERCONDITIONSMINTYPMAXMINTYPDigital Input High Voltage•2.42.0Digital Input Low Voltage•0.8•Digital Output High Voltage $I_{OUT} = -1mA$ • $V_{CC} - 1.0$ $V_{CC} - 0.7$ Digital Output Low Voltage $I_{OUT} = 1mA$ •0.4•Digital Input Leakage $V_{IN} = GND$ to V_{CC} • ± 10 •Digital Input CapacitanceGuaranteed by Design•10•O00CLK Hold•0DIN Valid to CLK Setup•4060CLK Low Time•40600CLK Low Time•40600CS/LD Pulse Width•50801LSB CLK to \overline{CS}/LD •40600CLOAD = 15pF•1501501	PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX Digital Input High Voltage • 2.4 2.0 0.6 Digital Input Low Voltage IOUT = -1mA • VCC - 1.0 VCC - 0.7 Digital Output Low Voltage IOUT = 1mA • 0.4 0.4 Digital Input Leakage VIN = GND to VCC • ±10 ±10 Digital Input Capacitance Guaranteed by Design • 40 60 DIN Valid to CLK Setup • 40 60 0 DIN Valid to CLK Hold • 40 60 0 CLK Low Time • 40 60 0 0 CLK Low Time • 40 60 0

The \bullet denotes specifications which apply over the full operating temperature range.

Note 1: Nonlinearity is defined from the first code that is greater than or equal to the maximum offset specification to code 4095 (full scale).

Note 2: Load is $5k\Omega$ in parallel with 100pF.

Note 3: DAC switched between all 1s and the code corresponding to $\rm V_{OS}$ for the part.

Note 4: Digital inputs at 0V or V_{CC} .

TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS

X1/X2 B, X1/X2 A (Pins 1, 7): The Input Pin that Sets the Gain for DAC A/B. When grounded the gain will be 2, i.e., output full scale will be $\times 2$ REFHI. When connected to V_{OUT} the gain will be 1, i.e., output full scale will be equal to REFHI.

CLR (Pin 2): The Clear Pin for the DAC. Clears both DACs to zero scale when pulled low. This pin should be tied to V_{CC} for normal operation.

CLK (Pin 3): The Serial Interface Clock Input.

 D_{IN} (Pin 4): The Serial Data Input. Data on the D_{IN} pin is latched into the shift register on the rising edge of the serial clock. Data is loaded as one 24-bit word. The first 12 bits are for DAC A, MSB-first and the second 12 bits are for DAC B, MSB-first.

 $\overline{\text{CS}}/\text{LD}$ (Pin 5): The Serial Interface Enable and Load Control Input. When $\overline{\text{CS}}/\text{LD}$ is low the CLK signal is enabled so the data can be clocked in. When $\overline{\text{CS}}/\text{LD}$ is

pulled high, data is loaded from the shift register into the DAC register, updating the DAC output.

D_{OUT} (**Pin 6**): The Output of the Shift Register which Becomes Valid on the Rising Edge of the Serial Clock.

VOUT A, VOUT B (Pins 8, 16): The Buffered DAC Outputs.

V_{CC} (Pins 9, 15): The Positive Supply Input. $4.5 \le V_{CC} \le 5.5V$ (LTC1454), $2.7V \le V_{CC} \le 5.5V$ (LTC1454L). Requires a bypass capacitor to ground.

REFOUT (Pin 10): The Output of the Internal Reference.

REFHI A, **REFHI B** (**Pins 11,14**): The Inputs to the DAC Resistor Ladder for DAC A/B.

REFLO (Pin 12): The Bottom of the DAC Resistor Ladder for Both DACs. This can be used to offset zero-scale above ground. REFLO should be connected to ground when no offset is required.

GND (Pin 13): Ground.

BLOCK DIAGRAM

TIMING DIAGRAM

DEFINITIONS

Resolution (n): Resolution is defined as the number of digital input bits, n. It defines the number of DAC output states (2^n) that divide the full-scale range. The resolution does not imply linearity.

Full-Scale Voltage (V_{FS}): This is the output of the DAC when all bits are set to 1.

Voltage Offset Error (V_{OS}): The theoretical voltage at the output when the DAC is loaded with all zeros. The output amplifier can have a true negative offset, but because the part is operated from a single supply, the output cannot go below zero. If the offset is negative, the output will remain near OV resulting in the transfer curve shown in Figure 1.

Figure 1. Effect of Negative Offset

The offset of the part is measured at the code that corresponds to the maximum offset specification:

 $V_{OS} = V_{OUT} - (Code)(V_{FS})/(2^n - 1)$

Least Significant Bit (LSB): One LSB is the ideal voltage difference between two successive codes.

$$LSB = (V_{FS} - V_{OS})/(2^{n} - 1) = (V_{FS} - V_{OS})/4095$$

Nominal LSBs:

LTC1454 LSB = 4.095V/4095 = 1mV LTC1454L LSB = 2.5V/4095 = 0.610mV

Integral Nonlinearity (INL): End-point INL is the maximum deviation from a straight line passing through the end-points of the DAC transfer curve. Because the part operates from a single supply and the output cannot go below zero, the linearity is measured between full scale and the code corresponding to the maximum offset specification. The INL error at a given input code is calculated as follows:

$$INL = [V_{OUT} - V_{OS} - (V_{FS} - V_{OS})(Code/4095)]/LSB$$

V_{OUT} = The output voltage of the DAC measured at the given input code

Differential Nonlinearity (DNL): DNL is the difference between the measured change and the ideal 1LSB change between any two adjacent codes. The DNL error between any two codes is calculated as follows:

$$DNL = (\Delta V_{OUT} - LSB)/LSB$$

 ΔV_{OUT} = The measured voltage difference between two adjacent codes

Digital Feedthrough: The glitch that appears at the analog output caused by AC coupling from the digital inputs when they change state. The area of the glitch is specified in (nV)(sec).

OPERATION

Serial Interface

The data on the D_{IN} input is loaded into the shift register on the rising edge of the clock. Data is loaded as one 24-bit word, DAC A first, then DAC B. The MSB is loaded first for each DAC. The DAC registers load the data from the shift register when \overline{CS}/LD is pulled high. The CLK is disabled internally when \overline{CS}/LD is high. Note: CLK must be low before \overline{CS}/LD is pulled low to avoid an extra internal clock pulse.

The buffered output of the 24-bit shift register is available on the D_{OUT} pin which swings from ground to V_{CC} .

Multiple LTC1454/LTC1454Ls may be daisy-chained together by connecting the D_{OUT} pin to the D_{IN} pin of the next chip, while the CLK and \overline{CS} /LD signals remain common to all chips in the daisy-chain. The serial data is clocked to all of the chips, then the \overline{CS} /LD signal is pulled high to update all of them simultaneously.

Reference

The LTC1454L has an internal reference of 1.22V with a full scale of 2.5V (gain of 2 configuration). The LTC1454 includes an internal 2.048V reference, making 1LSB equal to 1mV (gain of 2 configuration). When the buffer gain is 2, the external reference must be less than $V_{CC}/2$ and be capable of driving the 15k minimum DAC resistor ladder. With a gain of 1 configuration the external reference must be less than $V_{CC} - 1.5V$.

Voltage Output

The rail-to-rail buffered output of the LTC1454 family can source or sink 5mA when operating with a 5V supply while pulling to within 300mV of the positive supply voltage or ground. The output swings to within a few millivolts of either supply rail when unloaded and has an equivalent output resistance of 40Ω when driving a load to the rails. The output can drive 1000pF without going into oscillation.

APPLICATIONS INFORMATION

A Single Supply, 4-Quadrant Multiplying DAC

The LTC1454 can also be used for 4-quadrant multiplying with an offset signal ground of 1.22V. This application is shown in Figure 2. The inputs are connected to REFHI B or REFHI A and have a 1.22V amplitude around a signal

ground of 1.22V. The outputs will swing from 0V to 2.44V, as shown by the equation with the figure. Since the signal ground is around 1.22V, REFLO is offset above ground by using an LT1034CS8-1.2 as shown.

Figure 2

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

N Package 16-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

TYPICAL APPLICATION

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1257	Single 12-Bit V _{OUT} DAC, Full Scale: 2.048V, V _{CC} : 4.75V to 15.75V, Reference Can Be Overdriven up to 12V, i.e., FS _{MAX} = 12V	5V to 15V Single Supply, Complete V _{OUT} DAC in SO-8 Package
LTC1446/LTC1446L	Dual 12-Bit Rail-to-Rail Output DACs in an SO-8 Package	LTC1446: $V_{CC} = 4.5V$ to 5.5V, $V_{OUT} = 0V$ to 4.095V LTC1446L: $V_{CC} = 2.7V$ to 5.5V, $V_{OUT} = 0V$ to 2.5V
LTC1450/LTC1450L	Single 12-Bit Rail-to-Rail Output DACs with Parallel Interface	LTC1450: $V_{CC} = 4.5V$ to 5.5V, $V_{OUT} = 0V$ to 4.095V LTC1450L: $V_{CC} = 2.7V$ to 5.5V, $V_{OUT} = 0V$ to 2.5V
LTC1451	Single 12-Bit DAC, Full Scale: 4.095V, V _{CC} : 4.5V to 5.5V	Low Power, Complete V _{OUT} DAC in SO-8 Package
LTC1452	Single 12-Bit Rail-to-Rail Output V _{OUT} Multiplying DAC, V _{CC} : 2.7V to 5.5V	Low Power, Multiplying V _{OUT} DAC with Rail-to-Rail Buffer Amplifier in SO-8 Package
LTC1453	Single 12-Bit V _{OUT} DAC, Full Scale: 2.5V, V _{CC} : 2.7V to 5.5V	3V, Low Power, Complete V _{OUT} DAC in SO-8 Package
LTC1456	Single Rail-to-Rail Output 12-Bit DAC with Clear Pin, Full Scale: 4.095V, V_{CC} : 4.5V to 5.5V	Low Power, Complete V _{OUT} DAC in SO-8 Package, with Clear Pin
LTC1458/LTC1458L	Quad 12-Bit Rail-to-Rail Output DACs	LTC1458: $V_{CC} = 4.5V$ to 5.5V, $V_{OUT} = 0V$ to 4.095V LTC1458L: $V_{CC} = 2.7V$ to 5.5V, $V_{OUT} = 0V$ to 2.5V