

f 5V Low Power RS232 5-Driver/3-Receiver Transceiver

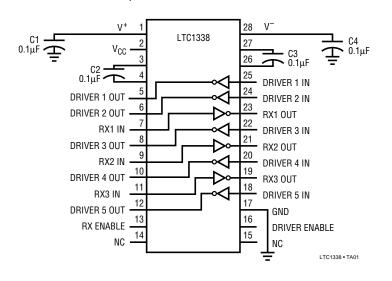
FEATURES

- Low Supply Current: 500µA
- 0.2µA Supply Current in SHUTDOWN
- 50µA Supply Current in RECEIVER ALIVE Mode
- ESD Protection Over ±10kV
- Operates from a Single 5V Supply
- Uses Small Capacitors: 0.1µF
- Operates to 120k Baud
- Three-State Outputs Are High Impedance When Off
- Output Overvoltage Does Not Force Current Back into Supplies
- RS232 I/O Lines Can Be Forced to ±25V Without Damage
- Flowthrough Architecture

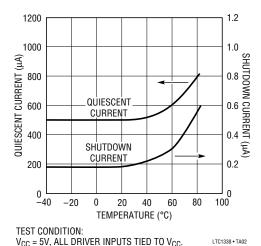
APPLICATIONS

- Battery-Powered Modems
- Battery-Powered DCE
- Notebook Computers
- Palmtop Computers

DESCRIPTION

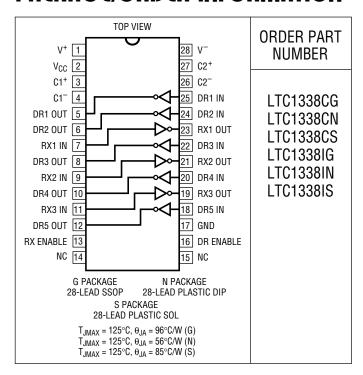

The LTC1338 is a 5-driver/3-receiver RS232 transceiver with very low supply current. In the no load condition, the supply current is only $500\mu A$. The charge pump only requires four $0.1\mu F$ capacitors.

In SHUTDOWN mode, the supply current is further reduced to 0.2 μ A. In RECEIVER ALIVE mode, all three receivers are kept alive and the supply current is 50 μ A. All RS232 outputs assume a high impedance state in SHUTDOWN and with the power off.


The LTC1338 is fully compliant with all data rate and overvoltage RS232 specifications. The transceiver can operate up to 120k baud with a 2500pF, $3k\Omega$ load. Both driver outputs and receiver inputs can be forced to $\pm 25V$ without damage, and can survive multiple $\pm 10kV$ ESD strikes.

TYPICAL APPLICATION

5-Drivers/3-Receivers with SHUTDOWN


Supply Current

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Supply Voltage (V _{CC}) 6\
Input Voltage
Driver $-0.3V$ to $V_{CC} + 0.3V$
Receiver –25V to 25\
Driver/Receiver Enable Pin $-0.3V$ to $V_{CC} + 0.3V$
Output Voltage
Driver – 25V to 25\
Receiver0.3V to V _{CC} + 0.3V
Short Circuit Duration
V ⁺
V ⁻
Driver Output Indefinite
Receiver Output Indefinite
Operating Temperature Range
Commercial (LTC1338C) 0°C to 70°C
Industrial (LTC1338I) –40°C to 85°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 sec) 300°C

PACKAGE/ORDER INFORMATION

DC ELECTRICAL CHARACTERISTICS $v_{cc} = 5V$, $c1 = c2 = c3 = c4 = 0.1 \mu F$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Any Driver	,					
Output Voltage Swing	3k to GND Positive Negative	•	5.0 -5.0	7.0 -6.5		V
Logic Input Voltage Level	Input Low Level (V _{OUT} = High) Input High Level (V _{OUT} = Low)	•	2.0	1.4 1.4	0.8	V
Logic Input Current	$0 \le V_{IN} \le V_{CC}$	•			±5	μА
Output Short-Circuit Current	$V_{OUT} = 0V$			±12		mA
Output Leakage Current	SHUTDOWN, V _{OUT} = ±20V (Note 3)	•		±10	±500	μΑ
Any Receiver	·					
Input Voltage Thresholds	Input Low Threshold Input High Threshold	•	0.8	1.3 1.7	2.4	V
Hysteresis		•	0.1	0.4	1	V
Input Resistance	$-10V \le V_{IN} \le 10V$		3	5	7	kΩ
Output Voltage	Output Low, $I_{OUT} = -1.6$ mA ($V_{CC} = 5V$) Output High, $I_{OUT} = 160$ µA ($V_{CC} = 5V$)	•	3.5	0.2 4.8	0.4	V
Output Short-Circuit Current	Sinking Current, $V_{OUT} = V_{CC}$		-15	-40		mA
Output Leakage Current	SHUTDOWN, $0 \le V_{OUT} \le V_{CC}$ (Note 3)	•		1	10	μА
Power Supply Generator						
V+ Output Voltage	I _{OUT} = 0mA I _{OUT} = 12mA			8.0 7.5		V
V ⁻ Output Voltage	I _{OUT} = 0mA I _{OUT} = -12mA			-8.0 -7.0		V
Supply Rise Time	SHUTDOWN to Turn-On			0.2	·	ms

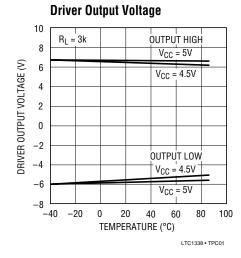
DC ELECTRICAL CHARACTERISTICS $v_{cc} = 5V$, $c1 = c2 = c3 = c4 = 0.1 \mu F$, unless otherwise noted.

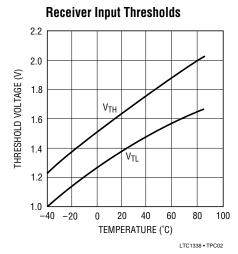
PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Power Supply			•			
V _{CC} Supply Current	No Load (All Driver $V_{IN} = V_{CC}$) (Note 2) $0^{\circ}C \le T_A \le 70^{\circ}C$			0.5	1.0	mA
	No Load (All Driver $V_{IN} = 0V$)(Note 2) $0^{\circ}C \le T_A \le 70^{\circ}C$			1.0	1.5	mA
	No Load (All Driver $V_{IN} = V_{CC}$)(Note 2) $-40^{\circ}C \le T_A \le 85^{\circ}C$			0.5	1.5	mA
	No Load (All Driver $V_{IN} = 0V$)(Note 2) $-40^{\circ}C \le T_A \le 85^{\circ}C$			1.0	2.0	mA
	RECEIVER ALIVE Mode (Note 4)	•		50	80	μΑ
Supply Leakage Current (V _{CC})	SHUTDOWN (Note 3)	•		0.2	10	μА
Driver/Receiver Enable Threshold Low		•		1.4	8.0	V
Driver/Receiver Enable Threshold High		•	2.0	1.4		V

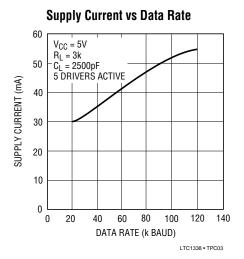
AC CHARACTERISTICS $V_{CC}=5V$, $C1=C2=C3=C4=0.1\mu F$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Slew Rate	$R_L = 3k, C_L = 51pF$			8	30	V/µs
	$R_L = 3k, C_L = 2500pF$		3	5		V/µs
Driver Propagation Delay	t _{HLD} (Figure 1)	•		2	3.5	μS
(TTL to RS232)	t _{LHD} (Figure 1)	•		2	3.5	μs
Receiver Propagation Delay	t _{HLR} (Figure 2)	•		0.3	0.8	μS
(RS232 to TTL)	t _{LHR} (Figure 2)	•		0.2	8.0	μS

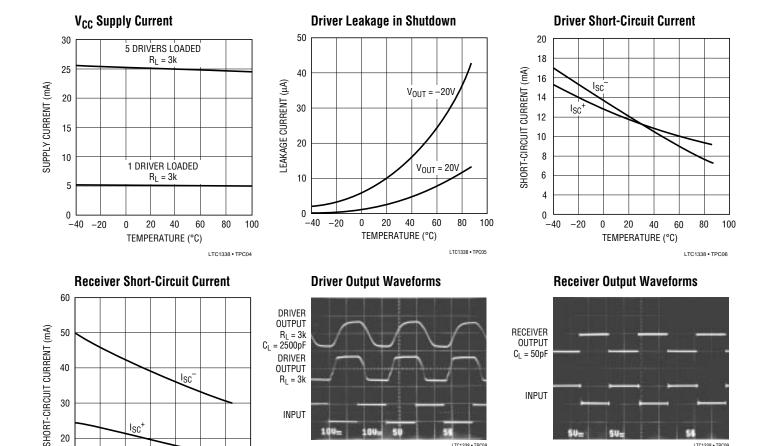
The \bullet denotes specifications which apply over the operating temperature range of 0°C to 70°C or -40°C to 85°C.


Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.


Note 2: Supply current is measured with driver and receiver outputs unloaded. The $V_{DRIVER\ ENABLE}$ and $V_{RECEIVER\ ENABLE} = V_{CC}$.


Note 3: Supply current and leakage current measurements in SHUTDOWN are performed with $V_{DRIVER\ ENABLE}$ and $V_{RECEIVER\ ENABLE} = 0V$.

Note 4: Supply current measurement in RECEIVER ALIVE mode is performed with $V_{DRIVER\ ENABLE} = 0V$ and $V_{RECEIVER\ ENABLE} = V_{CC}$.


TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS

-20

V_{CC}: 5V Input Supply Pin. Supply current less than 0.2μA in the SHUTDOWN mode. This pin should be decoupled with a 0.1µF ceramic capacitor.

100

LTC1338 • TPC07

40

TEMPERATURE (°C)

60 80

GND: Ground Pin.

20

10

-40

RECEIVER ENABLE: TTL/CMOS Compatible Enable Pin. Refer to Table 1 for its functional description. This pin can not float.

DRIVER ENABLE: TTL/CMOS Compatible Enable Pin. Refer to Table 1 for its functional description. This pin can not float.

V⁺: Positive Supply Output (RS232 Drivers). $V^{+} \cong 2V_{CC}$ – 1V. This pin requires an external capacitor $C = 0.1 \mu F$ for

charge storage. The capacitor may be tied to ground or 5V. With multiple devices, the V + and V - pins may be paralleled into common capacitors. For large numbers of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple.

V⁻: Negative Supply Output (RS232 Drivers). $V^- \cong 2V_{CC}$ -1.5V. This pin requires an external capacitor $C = 0.1 \mu F$ for charge storage.

C1+, C1-, C2+, C2-: Commutating Capacitor Inputs. These pins require two external capacitors $C = 0.1 \mu F$: one from C1+ to C1-, and another from C2+ to C2-. To maintain charge pump efficiency, the capacitor's effective series resistance should be less than 20Ω .

LTC1338 • TPC09

PIN FUNCTIONS

DRIVER IN: RS232 Driver Input Pins. Inputs are TTL/CMOS compatible. Inputs should not be allowed to float. Tie unused inputs to V_{CC} .

DRIVER OUT: Driver Outputs at RS232 Voltage Levels. Outputs are in a high impedance state when in SHUT-DOWN, RECEIVER ALIVE mode or $V_{CC} = 0V$. The driver outputs are protected against ESD to $\pm 10 kV$ for human body model discharges.

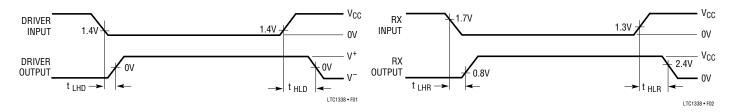
RX IN: Receiver Inputs. These pins can be forced to ± 25 V without damage. The receiver inputs are protected against ESD to ± 10 kV for human body model discharges. Each receiver provides 0.4V of hysteresis for noise immunity.

RX OUT: Receiver Outputs with TTL/CMOS Voltage Levels. Outputs are in a high impedance state when in SHUT-DOWN or RECEIVER DISABLE mode to allow data line sharing.

Table 1. Functional Description

MODE	RX ENABLE	DR ENABLE	DRIVERS	RECEIVERS	I _{CC} (μ A)(TYP)
SHUTDOWN	0	0	All driver outputs are high impedance.	All receiver outputs are high impedance.	0.2
Receiver Disable	0	1	All drivers alive.	All receiver outputs are high impedance.	500
RECEIVER ALIVE	1	0	All driver outputs are high impedance.	All receivers alive.	
Normal	1	1	All drivers alive.	All receivers alive.	500

SWITCHING TIME WAVEFORMS



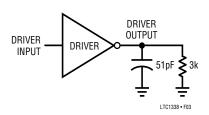
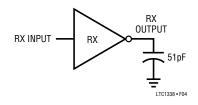
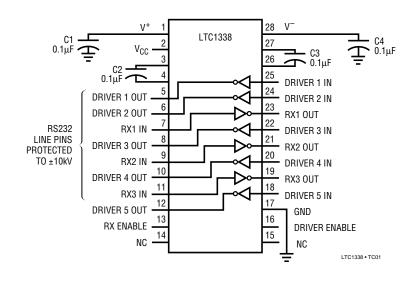

Figure 1. Driver Propagation Delay Timing

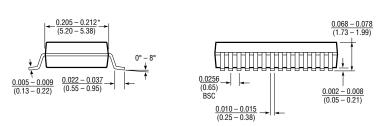
Figure 2. Receiver Propagation Delay Timing



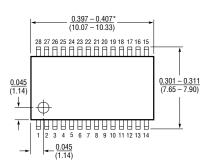
TEST CIRCUITS


Driver Timing Test Load

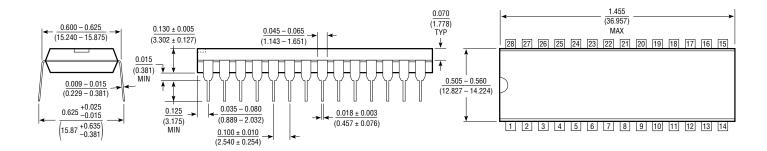
Receiver Timing Test Load

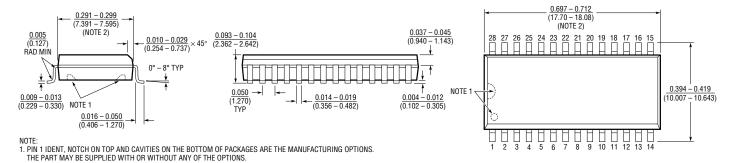


ESD Test Circuit



PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.


G Package 28-Lead SSOP


^{*}THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm)

N Package 28-Lead Plastic DIP

S Package 28-Lead SOL

2. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 INCH (0.15mm).

NORTHEAST REGION Linear Technology Corporation

One Oxford Valley 2300 E. Lincoln Hwy.,Suite 306 Langhorne, PA 19047 Phone: (215) 757-8578 FAX: (215) 757-5631

Linear Technology Corporation

266 Lowell St., Suite B-8 Wilmington, MA 01887 Phone: (508) 658-3881 FAX: (508) 658-2701

FRANCE

Linear Technology S.A.R.L.

Immeuble "Le Quartz" 58 Chemin de la Justice 92290 Chatenay Malabry France

Phone: 33-1-41079555 FAX: 33-1-46314613

GERMANY

Linear Techonolgy GMBH

Untere Hauptstr. 9 D-85386 Eching Germany

Phone: 49-89-3197410 FAX: 49-89-3194821

JAPAN

Linear Technology KK

5F YZ Bldg.

4-4-12 lidabashi, Chiyoda-Ku

Tokyo, 102 Japan Phone: 81-3-3237-7891 FAX: 81-3-3237-8010

U.S. Area Sales Offices

SOUTHEAST REGION

Linear Technology Corporation 17060 Dallas Parkway

Suite 208

Dallas, TX 75248 Phone: (214) 733-3071 FAX: (214) 380-5138

CENTRAL REGION Linear Technology Corporation

Chesapeake Square 229 Mitchell Court, Suite A-25

Addison, IL 60101 Phone: (708) 620-6910 FAX: (708) 620-6977

SOUTHWEST REGION

Linear Technology Corporation

22141 Ventura Blvd.

Suite 206

Woodland Hills, CA 91364 Phone: (818) 703-0835 FAX: (818) 703-0517

NORTHWEST REGION

Linear Technology Corporation

782 Sycamore Dr. Milpitas, CA 95035 Phone: (408) 428-2050 FAX: (408) 432-6331

International Sales Offices

KOREA

Linear Technology Korea Branch

Namsong Building, #505 Itaewon-Dong 260-199 Yongsan-Ku, Seoul Korea

Phone: 82-2-792-1617

FAX: 82-2-792-1619

SINGAPORE

Linear Technology Pte. Ltd.

101 Boon Keng Road #02-15 Kallang Ind. Estates

Singapore 1233 Phone: 65-293-5322 FAX: 65-292-0398

TAIWAN

Linear Technology Corporation

Rm. 801, No. 46, Sec. 2 Chung Shan N. Rd. Taipei, Taiwan, R.O.C. Phone: 886-2-521-7575 FAX: 886-2-562-2285

UNITED KINGDOM

Linear Technology (UK) Ltd.

The Coliseum, Riverside Way Camberley, Surrey GU15 3YL

United Kingdom Phone: 44-276-677676 FAX: 44-276-64851

World Headquarters

Linear Technology Corporation

1630 McCarthy Blvd. Milpitas, CA 95035-7487 Phone: (408) 432-1900 FAX: (408) 434-0507

08/16/93

