SOT-23, 44V, Over-The-Top, Micropower, Precision Rail-to-Rail Comparator ### **FEATURES** - Operates from 2.7V to 44V - Over-The-Top®: Input Common Mode Range Extends 44V Above V⁻, Independent of V⁺ - Micropower: 35µA I₀ - Offset Voltage: 1.5mV Max - 5-Pin SOT-23 Package - Valid Output with Either Input 5V Below V⁻ - Rail-to-Rail Output Swing - Output Can Drive Loads Above V+ - Internal Pull-Up Current - -40°C to 125°C Operating Temperature Range ### **APPLICATIONS** - Power Supply Monitors - Relay/Lamp Driver - Oscillators - Peak Detector - Level Shifting ### DESCRIPTION The LT®1716 comparator operates on any total power supply voltage between 2.7V and 44V drawing $35\mu\text{A}$ of quiescent current. The LT1716 has a unique input stage that can be taken 44V above V⁻, independent of V⁺ supply. (Built-in resistors protect the inputs for faults below the negative supply of up to 5V.) The inputs can withstand 44V both differential and common mode. The output stage includes a class "B" pull-up current source, eliminating the need for an external resistive pull-up and saving power. Output voltage swings to within 35mV of the negative supply and 55mV of the positive supply, which makes the comparator a good choice for low voltage single supply operation. The output stage is also designed to drive loads connected to a higher supply than the LT1716 supply, the same as an open collector output stage. The LT1716 is available in a SOT-23 5-lead package. (T), LTC and LT are registered trademarks of Linear Technology Corporation. Over-The-Top is a registered trademark of Linear Technology Corporation. ## TYPICAL APPLICATION #### **Lamp Monitor** #### **Input Bias Current vs Input Bias Voltage** 1716f ## **ABSOLUTE MAXIMUM RATINGS** #### (Note 1) | Supply Voltage (V+ to V-) | | |--|----------------| | Differential Input Voltage | | | Input Voltage | 44V, -5V | | Output Short-Circuit Duration (Note 2) | Indefinite | | Operating Temperature Range (Note 3) | | | LT1716C/LT1716I | -40°C to 85°C | | LT1716H | -40°C to 125°C | | Specified Temperature Range (Note 4) | | | LT1716C/LT1716I | -40°C to 85°C | | LT1716H | -40°C to 125°C | | Maximum Junction Temperature | 150°C | | Storage Temperature Range | -65°C to 150°C | | Lead Temperature (Soldering, 10 sec) | 300°C | ## PACKAGE/ORDER INFORMATION ^{*}The temperature grades are identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges. **ELECTRICAL CHARACTERISTICS** The \bullet denotes the specifications which apply over the full operating temperature range of $-40^{\circ}C \le T_A \le 85^{\circ}C$, otherwise specifications are at $T_A = 25^{\circ}C$. Single supply operation $V^+ = 5V$, $V^- = 0V$; $V_{CM} = V^+/2$ unless otherwise noted. (Note 4) | SYMBOL | PARAMETER | CONDITIONS | | LT1
MIN | 1716C/LT1
TYP | 716I
Max | UNITS | |------------------|--|---|---|------------|------------------|----------------------|----------------------| | V _{0S} | Input Offset Voltage | 0.5V < V _{CM} < (V _{CC} - 1V)
0°C < T _A < 70°C
-40°C < T _A < 85°C | • | | 300 | 1600
2100
2500 | μV
μV
μV | | | Input Offset Voltage Drift
(Note 5) | $\begin{array}{l} 0^{\circ}C < T_{A} < 70^{\circ}C \\ -40^{\circ}C < T_{A} < 85^{\circ}C \end{array}$ | • | | 2
2 | | μV/°C
μV/°C | | I _{OS} | Input Offset Current | V _{CM} = V ⁺ /2
V _{CM} = 0V
V _{CM} = 44V | • | | 3 | 15
1.3
0.9 | nA
μΑ
μΑ | | I _B | Input Bias Current | V _{CM} = V ⁺ /2 | • | | 20
35 | 50
75 | nA
nA | | | | $V^{+} = 0V, V_{CM} = 44V$
$V_{CM} = 0V$
$V_{CM} = 44V$
$V_{CM} = -5V$ | • | | 2
3
6
1 | 13
9
1.4 | nA
μA
μA
mA | | | Input Voltage Range (Note 7) | | • | 0.5 | | 44 | V | | CMRR | Common Mode Rejection Ratio | $0.5V \le V_{CM} < (V^+ - 1V)$
$0.5V \le V_{CM} < 44V$, (Note 6) | • | 89
81 | 110
110 | | dB
dB | | PSRR | Power Supply Rejection Ratio | V ⁻ = 0V, V _{CM} = 1.5V; 2.7V < V ⁺ < 36V | • | 95 | 110 | | dB | | | Minimum Operating Supply Voltage | | • | | 2.4 | 2.7 | V | | A _{VOL} | Large-Signal Voltage Gain | $R_L = 1k; 1V < V_{OUT} < 4V$ | • | 200
100 | 500 | | V/mV
V/mV | | Is | Supply Current | $V^+ = 3V$, $R_L = Open$, $V_0 = High$ | • | | 35 | 50
65 | μA
μA | | | | $V^+ = 5V$, $R_L = 0$ pen, $V_0 = High$ | • | | 35 | 55
75 | μA
μA | | | | V^+ = 12V, R_L = Open, V_0 = High | • | | 40 | 60
85 | μA
μA | **ELECTRICAL CHARACTERISTICS** The \bullet denotes the specifications which apply over the full operating temperature range of $-40^{\circ}\text{C} \leq T_A \leq 85^{\circ}\text{C}$, otherwise specifications are at $T_A = 25^{\circ}\text{C}$. Single supply operation $V^+ = 5V$, $V^- = 0V$; $V_{CM} = V^+/2$ unless otherwise noted. (Note 4) | SYMBOL | PARAMETER | CONDITIONS | | LT1
MIN | 1716C/LT11
TYP | 716I
Max | UNITS | |------------------------------|--|--|---|------------|------------------------|-------------------------|----------------| | I _{SC} ⁻ | Output Sink Current (Note 2) | V _{OVERDRIVE} > 30mV | • | 10 | 20 | | mA | | I _{SC} + | Output Source Current | V _{OVERDRIVE} = 5mV, V _{OUT} = 1V | • | 60 | 85 | | μΑ | | V _{OL} | Output Voltage Swing Low (Referred to V ⁻) | I _{SINK} = 0mA, V _{OVERDRIVE} = -10mV
I _{SINK} = 0.1mA
I _{SINK} = 1mA
I _{SINK} = 5mA | • | | 20
75
200
550 | 35
110
300
900 | mV
mV
mV | | V _{OH} | Output Voltage Swing High
(Referred to V ⁺) | $I_{SOURCE} = 0\mu A$, $V_{OVERDRIVE} = 10mV$
$I_{SOURCE} = 10\mu A$ | • | | 30
130 | 55
185 | mV
mV | | | Leakage Current | V _{OUT} = 40V, V _{OVERDRIVE} > 100mV | • | | 0.5 | 2 | μΑ | | | Propagation Delay | $V_{OVERDRIVE} > 100$ mV, $R_{LOAD} = 10$ k | | | 3 | 5.5 | μs | The ullet denotes the specifications which apply over the full operating temperature range of $-40^{\circ}C \leq T_A \leq 85^{\circ}C$, otherwise specifications are at $T_A = 25^{\circ}C$. Split supply operation $V_S = \pm 15V$, $V_{CM} = 0V$ unless otherwise noted. (Note 4) | SYMBOL | PARAMETER | CONDITIONS | | LT1
MIN | 716C/LT17
TYP | 716I
Max | UNITS | |------------------------------|---|--|---|------------|------------------------|-------------------------|----------------| | V _{0S} | Input Offset Voltage | -14.5V < V _{CM} < 14V
0°C < T _A < 70°C
-40°C < T _A < 85°C | • | | 300 | 1500
2000
2400 | μV
μV
μV | | | Input Offset Voltage Drift (Note 5) | $0^{\circ}\text{C} < \text{T}_{\text{A}} < 70^{\circ}\text{C} \\ -40^{\circ}\text{C} < \text{T}_{\text{A}} < 85^{\circ}\text{C}$ | • | | 2
2 | | μV/°C
μV/°C | | los | Input Offset Current | $V_{CM} = 0V$ $V_{CM} = 29V$ $V_{CM} = -15V$ | • | | 3 | 15
0.9
1.3 | nA
μA
μA | | I _B | Input Bias Current | V _{CM} = 0V | • | | 30
50 | 60
100 | nA
nA | | | | $V_{CM} = 29V$ $V_{CM} = -15V$ $V_{CM} = -20V$ | • | | 6
3
1 | 9
13
1.4 | μΑ
μΑ
mA | | | Input Voltage Range (Note 7) | | • | -14.5 | | 14 | V | | CMRR | Common Mode Rejection Ratio | -14.5V < V _{CM} < 14V
-14.5V < V _{CM} < 29V (Note 6) | • | 92
81 | 110
98 | | dB
dB | | PSRR | Power Supply Rejection Ratio | V _S = ±1.35V to ±22V | • | 90 | 110 | | dB | | | Minimum Operating Supply Voltage | | • | | 2.4 | 2.7 | V | | A _{VOL} | Large-Signal Voltage Gain | $R_L = 6k; -14V < V_{OUT} < 14V$ | • | 500
400 | 1000 | | V/mV
V/mV | | Is | Supply Current | $V_S = \pm 15V$, $R_L = Open$, $V_0 = High$ | • | | 40 | 95 | μΑ | | I _{SC} - | Output Sink Current (Note 2) | V _{OVERDRIVE} > 30mV | • | 10 | 20 | | mA | | I _{SC} ⁺ | Output Source Current | $V_{OVERDRIVE} = 5mV, V_{OUT} = -14V$ | • | 70 | 105 | | μΑ | | V _{OL} | Output Voltage Swing Low
(Referred to V ⁻) | I _{SINK} = 0mA, V _{OVERDRIVE} = -10mV
I _{SINK} = 0.1mA
I _{SINK} = 1mA
I _{SINK} = 5mA | • | | 20
75
200
550 | 35
110
300
900 | mV
mV
mV | **ELECTRICAL CHARACTERISTICS** The \bullet denotes the specifications which apply over the full operating temperature range of $-40^{\circ}\text{C} \leq T_A \leq 85^{\circ}\text{C}$, otherwise specifications are at $T_A = 25^{\circ}\text{C}$. Split supply operation $V_S = \pm 15V$, $V_{CM} = 0V$ unless otherwise noted. (Note 4) | | | | | | LT1716C/LT1716I | | | | |-----------------|--|--|---|-----|-----------------|-----------|----------|--| | SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS | | | V _{OH} | Output Voltage Swing High (Referred to V+) | $I_{SOURCE} = 0\mu A$, $V_{OVERDRIVE} = 10mV$
$I_{SOURCE} = 10\mu A$ | • | | 45
140 | 75
210 | mV
mV | | | | Leakage Current | V _{OUT} = 25V, V _{OVERDRIVE} > 100mV | • | | 0.6 | 2 | μА | | | | Propagation Delay | $V_{OVERDRIVE} > 100$ mV, $R_{LOAD} = 10$ k | | | 5.5 | 9 | μs | | The ullet denotes the specifications which apply over the operating temperature range of $-40^{\circ}C < T_A < 125^{\circ}C$, otherwise specifications are at $T_A = 25^{\circ}C$. Single supply operation V⁺ = 5V, V⁻ = 0V, $V_{CM} = V_{CC}/2$ unless otherwise noted. (Note 4) | SYMBOL | PARAMETER | CONDITIONS | | MIN | LT1716H
TYP | MAX | UNITS | |------------------------------|--|--|---|-----------|------------------------|--------------------------|----------------------| | V _{OS} | Input Offset Voltage | $0.5V < V_{CM} < (V_{CC} - 1V)$ | | | 300 | 1600
2900 | μV
μV | | | Input Offset Voltage Drift (Note 5) | | • | | 2 | | μV/°C | | I _{OS} | Input Offset Current | V _{CM} = V ⁺ /2
V _{CM} = 0V
V _{CM} = 44V | • | | 3 | 220
1.3
0.9 | nA
μΑ
μΑ | | I _B | Input Bias Current | V _{CM} = V ⁺ /2 | • | | 20 | 50
900 | nA
nA | | | | $V^{+} = 0V, V_{CM} = 44V$
$V_{CM} = 0V$
$V_{CM} = 44V$
$V_{CM} = -5V$ | • | | 2
3
6
1 | 25
14
1.4 | nA
μΑ
μΑ
mA | | | Input Voltage Range (Note 7) | | | 0.5 | | 44 | V | | CMRR | Common Mode Rejection Ratio | 0.5V < V _{CM} < (V ⁺ - 1V)
0.5V < V _{CM} < 44V (Note 6) | • | 75
72 | 110
110 | | dB
dB | | PSRR | Power Supply Rejection Ratio | V ⁻ = 0V, V _{CM} = 1.5V, 2.7V < V ⁺ < 36V | • | 85 | 110 | | dB | | | Minimum Operating Supply Voltage | | • | | 2.4 | 2.7 | V | | A _{VOL} | Large-Signal Voltage Gain | $R_L = 1k, 1V < V_{OUT} < 4V$
$R_L = 6k$ | • | 200
20 | 500 | | V/mV
V/mV | | I _S | Supply Current per Amplifier | $V^+ = 3V$, $R_L = 0$ pen, $V_0 = High$ | • | | 35 | 50
70 | μA
μA | | | | $V^+ = 5V$, $R_L = 0$ pen, $V_0 = High$ | • | | 35 | 55
75 | μA
μA | | | | V^+ = 12V, R_L = Open, V_0 = High | • | | 40 | 60
85 | μA
μA | | I _{SC} ⁻ | Output Sink Current (Note 2) | V _{OVERDRIVE} > 30mV | • | 5 | 10 | | mA | | I _{SC} + | Output Source Current | V _{OVERDRIVE} = 5mV, V _{OUT} = 1V | • | 60 | 110 | | μΑ | | V _{OL} | Output Voltage Swing Low (Referred to V ⁻) | I _{SINK} = 0mA, V _{OVERDRIVE} = -10mV
I _{SINK} = 0.1mA
I _{SINK} = 1mA
I _{SINK} = 5mA | • | | 20
75
200
550 | 60
170
480
1200 | mV
mV
mV | | V _{OH} | Output Voltage Swing High
(Referred to V+) | $I_{SOURCE} = 0\mu A$, $V_{OVERDRIVE} = -10mV$
$I_{SOURCE} = 10\mu A$ | • | | 50
130 | 110
220 | mV
mV | | | Leakage Current | V _{OUT} = 40V, V _{OVERDRIVE} > 100mV | • | | 1.7 | 5 | μΑ | | | Propagation Delay | V _{OVERDRIVE} > 100mV, R _{LOAD} = 10k | | | 6 | 9 | μS | **ELECTRICAL CHARACTERISTICS** The \bullet denotes the specifications which apply over the operating temperature range of $-40^{\circ}\text{C} < T_A < 125^{\circ}\text{C}$, otherwise specifications are at $T_A = 25^{\circ}\text{C}$. Split supply operation $V_S = \pm 15V$, $V_{CM} = 0V$ unless otherwise noted. (Note 4) | SYMBOL | PARAMETER | CONDITIONS | | MIN | LT1716H
TYP | MAX | UNITS | |------------------------------|--|--|---|-----------|------------------------|--------------------------|----------------| | V _{OS} | Input Offset Voltage | -14.5V < V _{CM} < 14V | • | | 300 | 1500
2900 | μV
μV | | | Input Offset Voltage Drift (Note 5) | | • | | 2 | | μV/°C | | I _{OS} | Input Offset Current | V _{CM} = 0V
V _{CM} = 29V
V _{CM} = -15V | • | | 3 | 280
0.9
1.3 | nA
μA
μA | | I _B | Input Bias Current | V _{CM} = 0V | • | | 30
50 | 60
1400 | nA
nA | | | | $V_{CM} = 29V$ $V_{CM} = -15V$ $V_{CM} = -20V$ | • | | 6
3
1 | 20
30
1.4 | μΑ
μΑ
mA | | | Input Voltage Range (Note 7) | | • | -14.5 | | 14 | V | | CMRR | Common Mode Rejection Ratio | -14.5V < V _{CM} < 14V
-14.5V < V _{CM} < 29V (Note 6) | • | 85
70 | 110
93 | | dB
dB | | PSRR | Power Supply Rejection Ratio | V _S = ±1.35V to ±22V | • | 80 | 110 | | dB | | | Minimum Operating Supply Voltage | | • | | 2.4 | 2.7 | V | | A _{VOL} | Large-Signal Voltage Gain | $R_L = 6k; -14V < V_{OUT} < 14V$
$R_L = 6k; -13V < V_{OUT} < 13V$ | • | 500
50 | 1000 | | V/mV
V/mV | | Is | Supply Current | $V_S = \pm 15V$, $R_L = Open$, $V_0 = High$ | | | 40 | 95 | μΑ | | I _{SC} ⁻ | Output Sink Current (Note 2) | V _{OVERDRIVE} > 30mV | • | 5 | 10 | | mA | | I _{SC} + | Output Source Current | $V_{OVERDRIVE} = 5mV, V_{OUT} = -14V$ | • | 70 | 155 | | μΑ | | V _{OL} | Output Voltage Swing Low (Referred to V ⁻) | I _{SINK} = 0mA, V _{OVERDRIVE} = -10mV
I _{SINK} = 0.1mA
I _{SINK} = 1mA
I _{SINK} = 5mA | • | | 20
75
200
550 | 70
170
480
1200 | mV
mV
mV | | V _{OH} | Output Voltage Swing High
(Referred to V ⁺) | $I_{SOURCE} = 0\mu A, V_{OVERDRIVE} = 10mV$
$I_{SOURCE} = 10\mu A$ | • | | 45
140 | 120
250 | mV
mV | | | Leakage Current | V _{OUT} = 25V, V _{OVERDRIVE} > 100mV | • | | 1.5 | 5 | μА | | | Propagation Delay | V _{OVERDRIVE} > 100mV, R _{LOAD} = 10k | | | 5.5 | 10 | μs | **Note 1:** Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. **Note 2:** A heat sink may be required to keep the junction temperature below absolute maximum. **Note 3:** The LT1716C/LT1716I are guaranteed functional over the operating temperature range of -40° C to 85°C. The LT1716H is guaranteed functional over the operating temperature range of -40° C to 125°C. **Note 4:** The LT1716C is guaranteed to meet specified performance from 0°C to 70°C. The LT1716C is designed, characterized and expected to meet performance from -40° C to 85° but is not tested or QA sampled at the temperatures. The LT1716I is guaranteed to meet specified performance from -40° C to 85° C. The LT1716H is guaranteed to meet specified performance from -40° C to 125° C. Note 5: This parameter is not 100% tested. **Note 6:** Typical input offset voltage of $500\mu V$ at $V_{CM} = 44V$ above V^- and a maximum input offset voltage of 4mV at $V_{CM} = 44V$ above V^- . **Note 7:** If one input is within this input range, the other input can go 5V below V^- and the output will be valid. ## TYPICAL PERFORMANCE CHARACTERISTICS # Input Bias Current vs Common Mode Voltage # Input Bias Current vs Temperature # Input Bias Current vs Differential Input Voltage Output Low Voltage vs Sink Current Output High Voltage vs Source Current Input Bias Current with Inputs Driven Above the Supply Input Bias Current with Inputs Driven Below the Supply **Supply Current vs Temperature** Positive Supply Current vs Output Sinking Current 1716f ## TYPICAL PERFORMANCE CHARACTERISTICS Total Switching Time vs Overdrive # Total Switching Time vs Total Supply Voltage # Total Switching Time vs Pull-Up Resistor #### **Response Time** ## TYPICAL PERFORMANCE CHARACTERISTICS ### APPLICATIONS INFORMATION The LT1716 comparator features low power operation with exceptional input precision with rail-to-rail input and output swing. The comparator operates flawlessly even when the inputs are pulled over the positive rail or below the negative rail. ### **Supply Voltage** The LT1716 operates from 2.7V to 44V. The comparator can be shut down by removing V⁺. In this condition, the input bias current is typically less than 3nA, even if the inputs are 44V above the negative supply. The LT1716 is protected against reverse battery voltages of up to 20V. The reverse battery current is resistive as shown in the reverse supply current graph. ### Inputs The comparator inputs can swing from 0.5V above to 44V above V^- . If one input is within this range, the other input can be forced up to 5V below V^- without phase reversal occuring at the output. The LT1716 has three stages—NPN, PNP and common base (see Simplified Schematic)—resulting in three distinct operating regions and two transition regions as shown in the Input Bias Current vs Common Mode typical performance curve. For input voltages about 0.8V or more below V^+ , the PNP input stage is active and the input bias current is typically -4nA. The PNP differential input stage will have bias current that flows out of the device. With a differential input voltage of even just 100mV or so, there will be zero bias current into the higher of the two inputs, while the current flowing out of the lower input will be twice the measured bias current. When the input voltage is about 0.5V or less from V⁺, the NPN state is operating and the input bias current is typically 10nA. Increases in temperature will cause the voltage at which operation switches from the PNP stage to the NPN stage to move towards V⁺. The input offset voltage of the NPN stage is untrimmed and is typically $500\mu V$. A Schottky diode in the collector of each NPN transistor of the NPN input stage allows the LT1716 to operate with either or both of its inputs above V⁺. At about 0.3V above V⁺, the NPN transistor is fully saturated and the input bias current is typically $4\mu A$ at room temperature. The input offset voltage is typically $500\mu V$ when operating above V⁺. The LT1716 will operate with its input 44V above V⁻, regardless of V⁺. The transition to the negative common mode input stage occurs at 0.3V above V $^-$. Above this trip point the PNP stage is active. When the inputs are 0.3V below V $^-$, the common base input stage is active in addition to the PNP stage. The input bias current out of each input becomes $V_{IN}/5k\Omega$. The LT1716 is designed to operate when either input falls below the negative supply. Internal resistors protect the inputs for faults below the negative supply of up to 5V without phase reversal. The built-in 5k resistor limits the current at each input to 1mA at 5V below the negative supply. External matched input resistors can be added for increased voltage fault operation below the negative supply but the maximum input current should be kept under 1mA. ### **Input Protection** The inverting and noninverting input pins of the LT1716 have on-chip protection. ESD protection is provided to prevent damage during handling. The input transistors have voltage clamping and limiting resistors to protect against excursions as much as 5V below V⁻. There are no clamping diodes between the inputs and the maximum differential input voltage is 44V. #### Output The output stage of the LT1716 can drive loads connected to a supply more positive than the device, the same as comparators with open collector output stages. The output of the LT1716 can be pulled up to 44V above V^- , regardless of V^+ . ## SIMPLIFIED SCHEMATIC ## PACKAGE DESCRIPTION #### **S5 Package** 5-Lead Plastic TSOT-23 (Reference LTC DWG # 05-08-1635) - NOTE: (NOTE 3) 1. DIMENSIONS ARE IN MILLIMETERS 2. DRAWING NOT TO SCALE 3. DIMENSIONS ARE INCLUSIVE OF PLATING 4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR 5. MOLD FLASH SHALL NOT EXCEED 0.254mm 6. IEDEC PACKAGE DEEEPENIC IS MO.103 - 6. JEDEC PACKAGE REFERENCE IS MO-193 # TYPICAL APPLICATIONS #### **Overcurrent Flag** #### **Charge/Discharge Indicator** ## **RELATED PARTS** | PART NUMBER | DESCRIPTION | COMMENTS | | |-------------|---|--|--| | LTC1442 | Dual Micropower Comparator and 1% Reference | 1.182V ±1% Reference, ±10mV _{MAX} Input Offset | | | LTC1540 | Nanopower Comparator and 1% Reference | 1.182V ±1% Reference, ±10mV _{MAX} Input Offset | | | LT1634 | Micropower Precision Shunt Reference | 0.05%, 10μA, 10ppm/°C Max Drift, 1.25V, 2.5V, 4.096V, 5V, MSOP, SO-8, TO-92 Packages | | | LTC1921 | Dual –48V Telecom Supply Monitor | nitor Monitors Two Supplies and Fuses | | | LTC1998 | Micropower Li-Ion Battery Monitor | 1% Trip Point Adjustable from 2.5V to 3.25V | |