

LME49726

High Current, Low Distortion, Rail-to-Rail Output Audio Operational Amplifier

General Description

The LME49726 is a low distortion, low noise rail-to-rail output audio operational amplifier optimized and fully specified for high performance, high fidelity applications. The LME49726 delivers superior audio signal amplification for outstanding audio performance. The LME49726 has a very low THD+N to easily satisfy demanding audio applications. To ensure that the most challenging loads are driven without compromise, the LME49726 provides output current greater than 300mA at 5V. Further, dynamic range is maximized by an output stage that drives $2k\Omega$ loads to within 4mV of either power supply voltage.

The LME49726 has a supply range of 2.5V to 5.5V. Over this supply range the LME49726's input circuitry maintains excellent common-mode and power supply rejection, as well as maintaining its low input bias current. The LME49726 is unity gain stable.

Key Specifications

■ Power Supply Voltage Range	2.5V to 5.5V
- rower Supply voltage harige	2.57 10 5.57

Quiescent Current per Amplifier	
at 5V	0.7mA (typ)

\blacksquare IND+N, $A_V = 1$,	
$f_{IN} = 1kHz, R_L = 10k\Omega$	
$(V_{OUT} = 3.5V_{P-P}, V_{DD} = 5.0V)$	0.00008% (typ)

11. 55	()1/
$(V_{OUT} = 1.5V_{P-P}, V_{DD} = 2.5V)$	0.00002% (typ)
Equivalent Input Naice	

Equivalent Input Noise	
(f = 10k, A-weighted)	6.9nV/√Hz (typ)

■ Slew Rate	±3.7V/μs (typ)
■ Gain Bandwidth Product	6.25MHz (typ)
■ Open Loop Gain (R _L = 10kΩ)	120dB (typ)
■ Input Bias Current	0.2pA (typ)
■ Input Offset Voltage	0.5mV (typ)
■ PSRR (DC)	104dB (typ)

Features

- Rail-to-rail output
- Easily drives 2kΩ loads to within 4mV of each power supply voltage rail
- Optimized for superior audio signal fidelity
- Output short circuit protection
- High output drive (>300mA)
- Available in mini-SOIC exposed-DAP package

Applications

- Portable audio amplification
- Preamplifiers and multimedia
- Equalization and crossover networks
- Line drivers and receivers
- Active filters
- DAC I–V converter gain stage
- ADC front-end signal conditioning



FIGURE 1. Inverting Configuration Split Supplies

Typical Connection, Pinout, and Package Marking

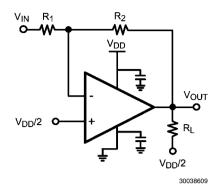
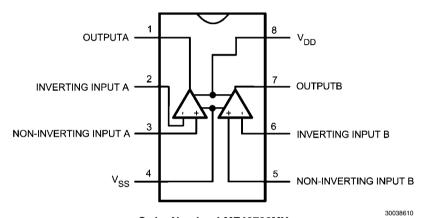
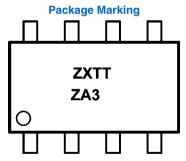




FIGURE 2. Inverting Configuration Single Supply

Order Number LME49726MY See NS Package Number MUY08A

Z = Assembly plant code X = 1 Digit date code TT = Lot traceability ZA3 = LME49726

Ordering Information

Order Number	Package	Package Drawing Number	Transport Media	MSL Level	Green Status
LME49726MY	MSOP EXPOSE PAD	MUY08A	1000 units on tape on reel	1	RoHS & no Sb/Br
LME49726MYX	MSOP EXPOSE PAD	MUY08A	3500 units on tape on reel	1	RoHS & no Sb/Br

Absolute Maximum Ratings (Note 1, Note

2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

ESD Rating (Note 4) 2000V ESD Rating (Note 5) 200V Junction Temperature 150°C Thermal Resistance θ_{JA} (MUY-08) 72°C/W

Operating Ratings (Note 1)

Temperature Range

 $T_{MIN} \le T_{A} \le T_{MAX}$ $-40^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}$ Supply Voltage Range $2.5\text{V} \le \text{V}_{S} \le 5.5\text{V}$

Electrical Characteristics (V_DD = 5.0V and V_DD = 2.5V) The following specifications apply for the circuit shown in Figure 1. V_{DD} = 5.0V and V_{DD} = 2.5V, V_{SS} = 0.0V, V_{CM} = $V_{DD/2}$, P_{L} = 10k Ω , P_{LOAD} = 20pF, P_{LD} = 1kHz, P_{LD} = 20–20kHz, and P_{LD} = 25°C, unless otherwise specified.

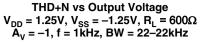
			LME		
Symbol	Parameter	Conditions	Typical	Limit	Units (Limits)
			(Note 6)	(Note 7)	(Lillins)
		$A_V = -1$, $V_{OUT} = 3.5V_{p-p}$, $V_{DD} = 5V$			
		$R_L = 600\Omega$	0.0008		%
		$R_L = 2k\Omega$	0.0002		%
TUD. N	Tatal Hammania Diatantian . Naisa	$R_L = 10k\Omega$	0.00008		%
THD+N	Total Harmonic Distortion + Noise	$A_V = -1$, $V_{OUT} = 1.5V_{p-p}$, $V_{DD} = 2.5V$			
		$R_L = 600\Omega$	0.001		%
		$R_L = 2k\Omega$	0.0008		%
		$R_L = 10k\Omega$	0.0002		%
GBWP	Gain Bandwidth Product		6.25	5.0	MHz (min)
SR	Slew Rate	$A_V = +1$, $R_L = 10k\Omega$	3.7	2.5	V/µs (min)
		A _V = 1V step			
t_s	Settling time	0.1% error range	800		ns
		0.001% error range	1.2		μs
e _N	Equivalent Input Noise Voltage	f _{BW} = 20Hz to 20kHz (A-weighted)	0.7	1.25	μV _{RMS} (max)
	Equivalent Input Noise Density	f = 10kHz (A-weighted)	6.9		nV / √Hz
e _N		f = 1kHz (A-weighted)	15		nV/√ Hz
		f = 100Hz (A-weighted)	35		nV/√ Hz
I _N	Current Noise Density	f = 1kHz	0.75		p A /√ H z
V _{os}	Input Offset Voltage	$V_{IN} = V_{DD/2}, V_O = V_{DD/2}, A_V = 1$	0.5	2.25	mV (max)
ΔV _{OS} /ΔTemp	Average Input Offset Voltage Drift vs Temperature	40°C ≤ T _A ≤ 85°C	1.2		μV/°C
PSRR	Power Supply Rejection Ratio	2.5 to 5.5V, V _{CM} = 0, V _{DD} /2	104	85	dB (min)
ISO _{CH-CH}	Channel-to-Channel Isolation	f _{IN} = 1kHz	94		dB
I _B	Input Bias Current	$V_{CM} = V_{DD}/2$	±0.2		pA
ΔI _{OS} /ΔTemp	Input Bias Current Drift vs Temperature	-40°C ≤ T _A ≤ 85°C	35		nA/°C
I _{os}	Input Offset Current	$V_{CM} = V_{DD}/2$	±0.2		pA
V _{IN-CM}	Common-Mode Input Voltage Range			V _{DD} -1.6 V _{SS} +0.1	V (min)
CMRR	Common Mode Rejection Ratio	0.1V < V _{DD} - 1.6V	95	80	dB (min)
1/f	1/f Corner Frequency		2		kHz
A _{VOL}	Open-Loop Voltage Gain	$V_{OUT} = V_{DD}/2$	120	100	dB (min)

			LME49726		I
Symbol	Parameter	Conditions	Typical	Limit	Units (Limits)
			(Note 6)	(Note 7)	(Lillins)
		B = 2kO to V /2	V _{DD} -0.004		V (min)
V	Maximum Output Voltage Swing	$R_L = 2k\Omega$ to $V_{DD}/2$	V _{SS} +0.004		V (max)
V _{OUTSWING}		$R_L = 16\Omega$ to $V_{DD}/2$	V _{DD} -0.33		V (min)
			V _{SS} +0.33		V (max)
	I _{OUT} Output Current	$V_{OUT} = 5V, V_{DD} = 5V$	350		mA
'OUT		$V_{OUT} = 2.5V, V_{DD} = 2.5V$	160		mA
I _S	I I III ACCANT (TITTANT NAT AMNIITIAT F	$I_{OUT} = 0mA, V_{DD} = 5V$	0.7	1.1	mA (max)
		$I_{OUT} = 0$ mA, $V_{DD} = 2.5$ V	0.64	1.0	mA (max)

Note 1: Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions at which the device is functional and the device should not be operated beyond such conditions. All voltages are measured with respect to the ground pin, unless otherwise specified.

Note 2: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

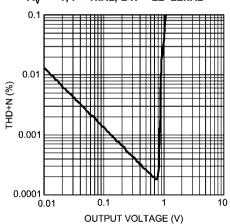
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A) / \theta_{JA}$ or the number given in *Absolute Maximum Ratings*, whichever is lower. For the LME49726, see Power Derating curve for additional information.

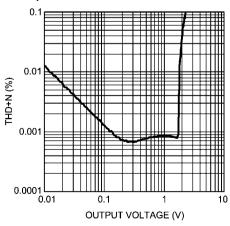

Note 4: Human body model, applicable std. JESD22-A114C.


Note 5: Machine model, applicable std. JESD22-A115-A.

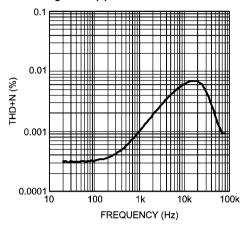
Note 6: Typical values represent most likely parametric norms at $T_A = +25^{\circ}C$, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed.

Note 7: Datasheet min/max specification limits are guaranteed by test or statistical analysis.

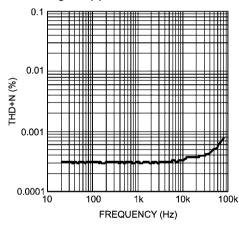

Typical Performance Characteristics


30038618

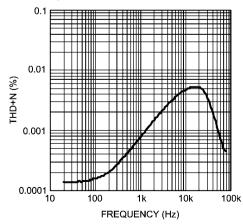
THD+N vs Output Voltage V_{DD} = 1.25V, V_{SS} = -1.25V, V_{L} = 10k Ω A $_{V}$ = -1, f = 1kHz, BW = 22-22kHz


30038615

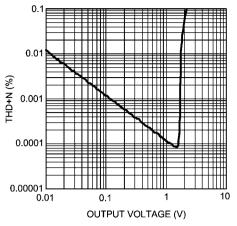
THD+N vs Output Voltage V_{DD} = 2.50V, V_{SS} = -2.50V, R_{L} = 600 Ω A_{V} = -1, f = 1kHz, BW = 22-22kHz


30038619

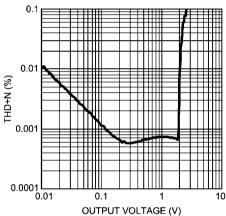
THD+N vs Frequency V_{DD} = 1.25V, V_{SS} = -1.25V, R_{L} = 600 Ω V_{O} = 1.5V_{p.p}, BW = 22-80kHz


30038612

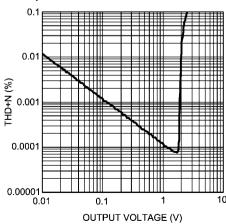
THD+N vs Frequency $\begin{aligned} &V_{DD}=1.25\text{V, V}_{\text{SS}}=-1.25\text{V, R}_{\text{L}}=10\text{k}\Omega\\ &V_{O}=1\text{V}_{\text{p.p.}},\text{BW}=22\text{--}80\text{kHz} \end{aligned}$


30038634

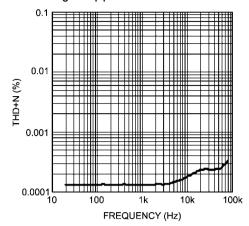
THD+N vs Frequency $\begin{aligned} & \text{V}_{\text{DD}} = 2.50\text{V}, \text{V}_{\text{SS}} = -2.50\text{V}, \text{R}_{\text{L}} = 600\Omega \\ & \text{V}_{\text{O}} = 3.5\text{V}_{\text{P-P}}, \text{BW} = 22-80\text{kHz} \end{aligned}$


30038613

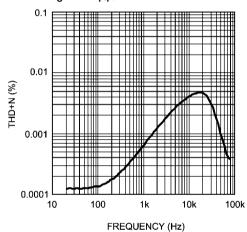
THD+N vs Output Voltage V_{DD} = 2.50V, V_{SS} = -2.50V, R_{L} = 10k Ω A_{V} = -1, f = 1kHz, BW = 22-22kHz


30038616

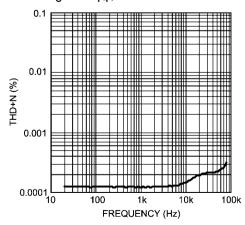
THD+N vs Output Voltage V_{DD} = 2.75V, V_{SS} = -2.75V, R_L = 600 Ω A $_V$ = -1, f = 1kHz, BW = 22-22kHz


30038620

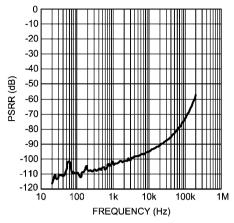
THD+N vs Output Voltage $\begin{aligned} &V_{DD}=2.75\text{V, }V_{SS}=-2.75\text{V, }R_{L}=10\text{k}\Omega\\ &A_{V}=-1\text{, }f=1\text{kHz, BW}=22-22\text{kHz} \end{aligned}$


30038617

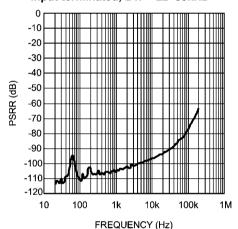
THD+N vs Frequency $\begin{aligned} & \text{V}_{\text{DD}} = 2.50\text{V}, \text{V}_{\text{SS}} = -2.50\text{V}, \text{R}_{\text{L}} = 10\text{k}\Omega \\ & \text{V}_{\text{O}} = 1\text{V}_{\text{p.p}}, \text{BW} = 22\text{-80kHz} \end{aligned}$


30038635

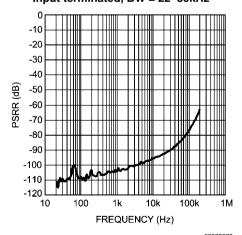
THD+N vs Frequency $\begin{aligned} &\text{V}_{\text{DD}} = 2.75\text{V, V}_{\text{SS}} = -2.75\text{V, R}_{\text{L}} = 600\Omega \\ &\text{V}_{\text{O}} = 3.5\text{V}_{\text{P,P}}, \text{BW} = 22-80\text{kHz} \end{aligned}$


30038636

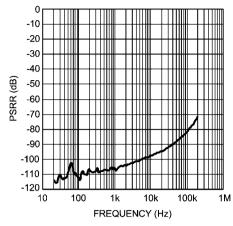
THD+N vs Frequency $V_{DD} = 2.75V, V_{SS} = -2.75V, R_{L} = 10k\Omega$ $V_{O} = 3.5V_{P,P}, BW = 22-80kHz$


30038611

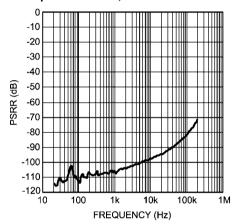
 $\begin{aligned} & PSRR+ \ vs \ Frequency \\ V_{DD} = 1.25V, \ V_{SS} = -1.25V, \ V_{RIPPLE} = 200mV_{P-P} \\ & Input \ terminated, \ BW = 22-80kHz \end{aligned}$


30038621

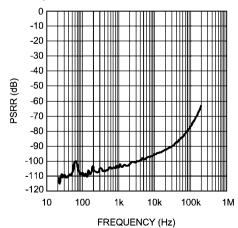
 $\begin{aligned} & \text{PSRR+ vs Frequency} \\ \text{V}_{\text{DD}} = & 2.50\text{V}, \text{V}_{\text{EE}} = -2.50\text{V}, \text{V}_{\text{RIPPLE}} = 200\text{mV}_{\text{P-P}} \\ & \text{Input terminated, BW} = 22-80\text{kHz} \end{aligned}$


30038637

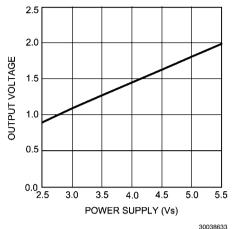
 $\begin{aligned} & \text{PSRR+ vs Frequency} \\ \text{V}_{\text{DD}} = 2.75\text{V, V}_{\text{SS}} = -2.75\text{V, V}_{\text{RIPPLE}} = 200\text{mV}_{\text{P-P}} \\ & \text{Input terminated, BW} = 22-80\text{kHz} \end{aligned}$


30038623

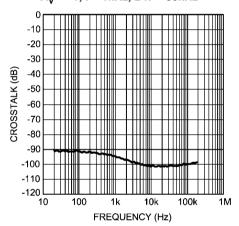
 $\begin{aligned} & \text{PSRR- vs Frequency} \\ \text{V}_{\text{DD}} = & 1.25\text{V}, \text{V}_{\text{SS}} = -1.25\text{V}, \text{V}_{\text{RIPPLE}} = 200\text{mV}_{\text{P-P}} \\ & \text{Input terminated, BW} = 22-80\text{kHz} \end{aligned}$


30038624

 $\begin{aligned} & \text{PSRR- vs Frequency} \\ \text{V}_{\text{DD}} = 2.50\text{V}, \, \text{V}_{\text{SS}} = -2.50\text{V}, \, \text{V}_{\text{RIPPLE}} = 200\text{mV}_{\text{P-P}} \\ & \text{Input terminated, BW} = 22-80\text{kHz} \end{aligned}$

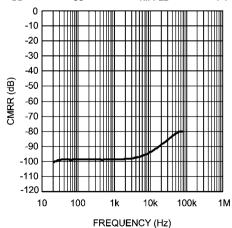

30038625

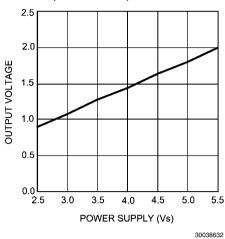
 $\begin{aligned} & \text{PSRR- vs Frequency} \\ \text{V}_{\text{DD}} = 2.75\text{V, V}_{\text{SS}} = -2.75\text{V, V}_{\text{RIPPLE}} = 200\text{mV}_{\text{P-P}} \\ & \text{Input terminated, BW} = 22-80\text{kHz} \end{aligned}$



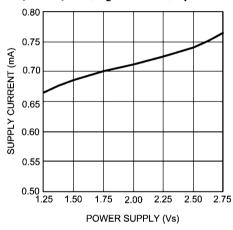
30038638

Output Voltage vs Supply Voltage $R_L = 600\Omega,\, A_V = -1$ f = 1kHz, THD+N = 1%, BW = 22–80kHz


Crosstalk vs Frequency V_{DD} = 2.50V, V_{SS} = -2.50V, R_L = 10k Ω A_V = -1, f = 1kHz, BW = 80kHz


30038630

30038639


CMRR vs Frequency $V_{DD} = 2.5V$, $V_{SS} = -2.5V$, $V_{RIPPLE} = 200 \text{mV}_{P-P}$

Output Voltage vs Supply Voltage $R_{L}=10k\Omega,\,A_{V}=-1$ f = 1kHz, THD+N = 1%, BW = 22–80kHz

Supply Current vs Supply Voltage per Amplifier, $R_L = No Load$, $A_V = -1$

30038628

Application Information

DISTORTION MEASUREMENTS

The vanishingly low residual distortion produced by LME49726 is below the capabilities of all commercially available equipment. This makes distortion measurements just slightly more difficult than simply connecting a distortion meter to the amplifier's inputs and outputs. The solution. however, is quite simple: an additional resistor. Adding this resistor extends the resolution of the distortion measurement equipment.

The LME49726's low residual is an input referred internal error. As shown in Figure 3, adding the 10Ω resistor connected between athe amplifier's inverting and non-inverting inputs

changes the amplifier's noise gain. The result is that the error signal (distortion) is amplified by a factor of 101. Although the amplifier's closed-loop gain is unaltered, the feedback available to correct distortion errors is reduced by 101. To ensure minimum effects on distortion measurements, keep the value of R1 low as shown in Figure 3.

This technique is verified by duplicating the measurements with high closed loop gain and/or making the measurements at high frequencies. Doing so, produces distortion components that are within measurement equipment capabilities. This datasheet's THD+N and IMD values were generated using the above described circuit connected to an Audio Precision System Two Cascade.

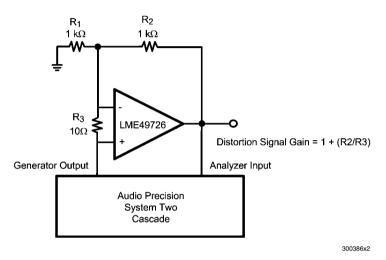


FIGURE 3. THD+N and IMD Distortion Test Circuit

OPERATING RATINGS AND BASIC DESIGN GUIDELINES

The LME49726 has a supply voltage range from +2.5V to +5.5V single supply or ±1.25 to $\pm2.75V$ dual supply.

Bypassed capacitors for the supplies should be placed as close to the amplifier as possible. This will help minimize any inductance between the power supply and the supply pins. In addition to a $10\mu F$ capacitor, a $0.1\mu F$ capacitor is also recommended in CMOS amplifiers.

The amplifier's inputs lead lengths should also be as short as possible. If the op amp does not have a bypass capacitor, it may oscillate.

BASIC AMPLIFIER CONFIGURATIONS

The LME49726 may be operated with either a single supply or dual supplies. Figure 2 shows the typical connection for a single supply inverting amplifier. The output voltage for a single supply amplifier will be centered around the common-mode voltage, $V_{\rm CM}$. Note, the voltage applied to the $V_{\rm CM}$ insures the output stays above ground. Typically, the $V_{\rm CM}$ should be equal to $V_{\rm DD}/2$. This is done by putting a resistor divider circuit at this node, see *Figure 4*.

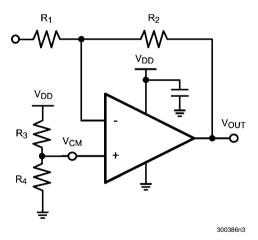


FIGURE 4. Single Supply Inverting Op Amp

Figure 5 shows the typical connection for a dual supply inverting amplifier. The output voltage is centered on zero.

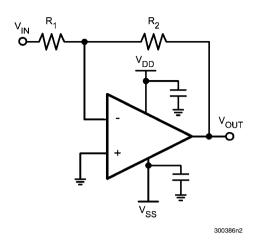


FIGURE 5. Dual Supply Inverting Configuration

Figure 6 shows the typical connection for the Buffer Amplifier or also called a Voltage Follower. The Buffer is a unity gain stable amplifier.

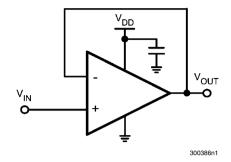
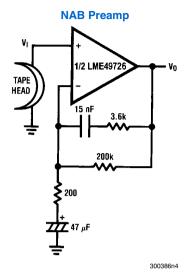
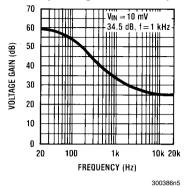
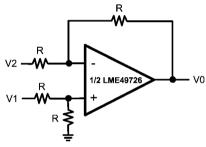
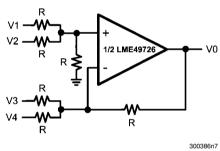




FIGURE 6. Unity-Gain Buffer Configuration

Typical Applications

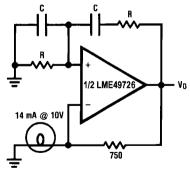

NAB Preamp Voltage Gain vs Frequency

 $A_V = 34.5$ F = 1 kHz $E_n = 0.38 \mu\text{V}$ A Weighted


 $A_V = 34.5$ F = 1 kHz $E_n = 0.38 \mu\text{V}$ A Weighted

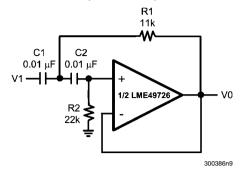
Balanced to Single Ended Converter

300386n6



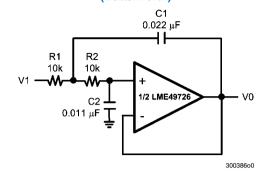
 $V_0 = V1 + V2 - V3 - V4$

V_O = V1-V2


Sine Wave Oscillator

300386n8

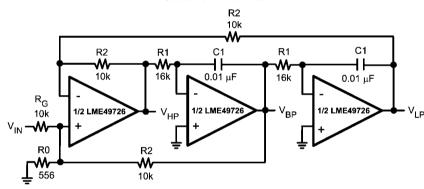
$$f_0 = \frac{1}{2\pi RC}$$


Second Order High Pass Filter (Butterworth)

if
$$C1 = C2 = C$$

$$R1 = \frac{\sqrt{2}}{2\omega_0 C}$$

Second Order Low Pass Filter (Butterworth)

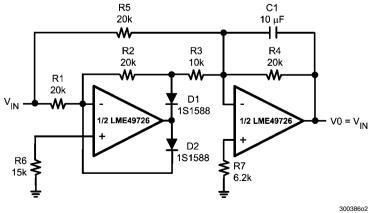

$$C1 = \frac{\sqrt{2}}{\omega_0 R}$$

$$C2 = \frac{C1}{2}$$

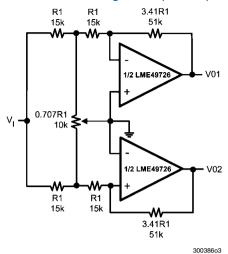
Illustration is $f_0 = 1 \text{ kHz}$

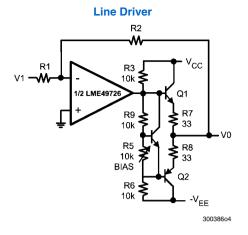
Illustration is $f_0 = 1 \text{ kHz}$

State Variable Filter

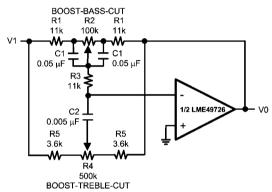


30038601


$$f_0 = \frac{1}{2\pi C 1 H 1}, Q = \frac{1}{2} \left(1 + \frac{R2}{R0} + \frac{R2}{RG} \right), A_{BP} = QA_{LP} = QA_{LH} = \frac{R2}{RG}$$

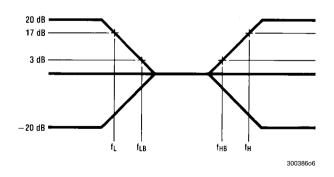

Illustration is $f_0 = 1 \text{ kHz}$, Q = 10, $A_{BP} = 1$

AC/DC Converter



2 Channel Panning Circuit (Pan Pot)

Tone Control



30038605

$$\begin{split} f_L &= \frac{1}{2\pi R2C1}, f_{LB} = \frac{1}{2\pi R1C1} \\ f_H &= \frac{1}{2\pi R5C2}, f_{HB} = \frac{1}{2\pi (R1 + R5 + 2R3)C2} \end{split}$$

Illustration is:

$$f_L = 32 \text{ Hz}, f_{LB} = 320 \text{ Hz}$$

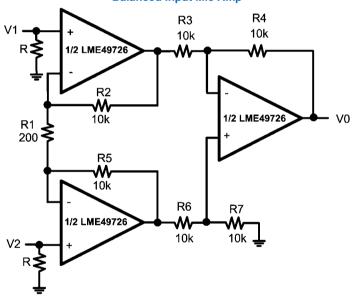
 $f_H = 11 \text{ kHz}, f_{HB} = 1.1 \text{ kHz}$

PHONO CARTRIDGE 100 pF 47k 1/2 LME49726 100 k = 100 μF

 $A_v = 35 \text{ dB}$

 $E_n = 0.33 \, \mu V$

S/N = 90 dB


f = 1 kHz

A Weighted

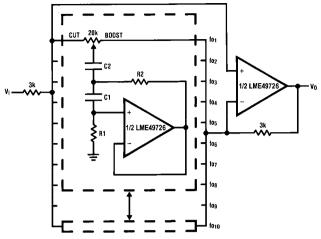
A Weighted, V_{IN} = 10 mV

@f = 1 kHz

Balanced Input Mic Amp

30038607

30038608


If R2 = R5, R3 = R6, R4 = R7

$$V0 = \left(1 + \frac{2R2}{R1}\right) \frac{R4}{R3} (V2 - V1)$$

Illustration is:

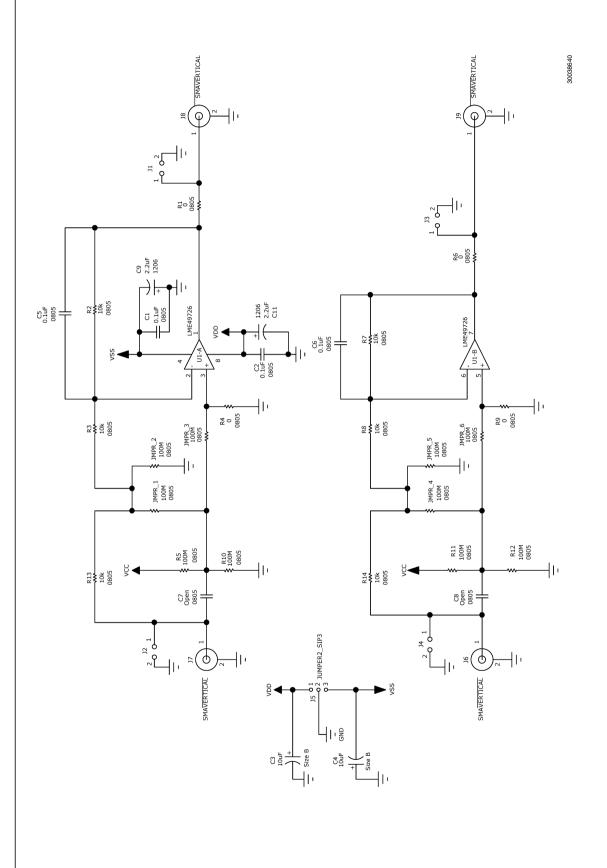
V0 = 101(V2 - V1)

10 Band Graphic Equalizer

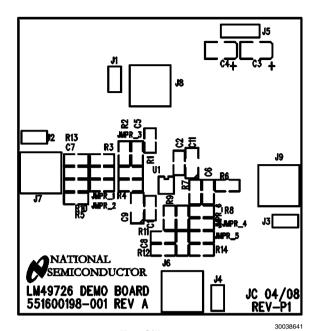
300386p0

fo (Hz)	C ₁	C ₂	R ₁	R ₂
32	0.12µF	4.7µF	75kΩ	500Ω
64	0.056µF	3.3µF	68kΩ	510Ω
125	0.033µF	1.5µF	62kΩ	510Ω
250	0.015µF	0.82µF	68kΩ	470Ω
500	8200pF	0.39µF	62kΩ	470Ω
1k	3900pF	0.22µF	68kΩ	470Ω
2k	2000pF	0.1µF	68kΩ	470Ω
4k	1100pF	0.056µF	62kΩ	470Ω
8k	510pF	0.022µF	68kΩ	510Ω
16k	330pF	0.012µF	51kΩ	510Ω

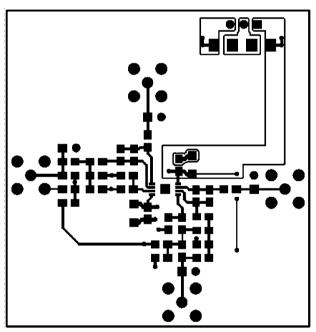
Note 8: At volume of change = $\pm 12 \text{ dB}$


Q = 1.7

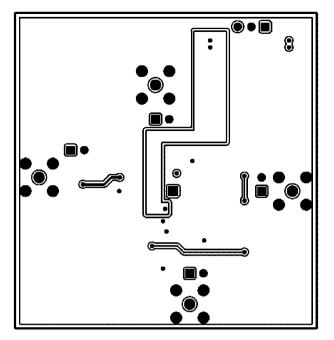
Reference: "AUDIO/RADIO HANDBOOK", National Semiconductor, 1980, Page 2–61


LME49726 Bill of Materials

Description	Designator	Part Number	Manufacturer	Quantity/Brd
Ceramic Capacitor 0.1uF, 10%, 50V 0805 SMD	C1, C2, C5–C8	08055C104KAT2A	AVX	2
Tantalum Capacitor 2.2uF,10%, 20V, A-size	C9, C11	T491A225K020AT	Kemet	Not Stuff
Tantalum Capacitor 10uF,10%, 20V, B-size	C3, C4	T491B106K020AT	Kemet	2
Resistor 0Ω, 1/8W 1% 0805 SMD	R1, R4, R6, R9, R13, R14	CRCW08050000Z0EA	Vishay	6
Header, 2-Pin	JP1, JP2, JP3, JP4	HDR1X2	Header 2	4
Header, 3-Pin	JP5	HDR1X3	Header 3	1
Resistor 10kΩ, 1/8W 1% 0805 SMD	R2, R3, R7, R8	CRCW080510K0FKEA	Vishay	4
Dual Rail-to-Rail Op Amp	U1	LME49726	National Semiconductor	1
Resistor 100meg/open 1/8W 0805 SMD	R5, R10, R11, R12	OPEN N/A	N/A	0


LME49726 Board Circuit

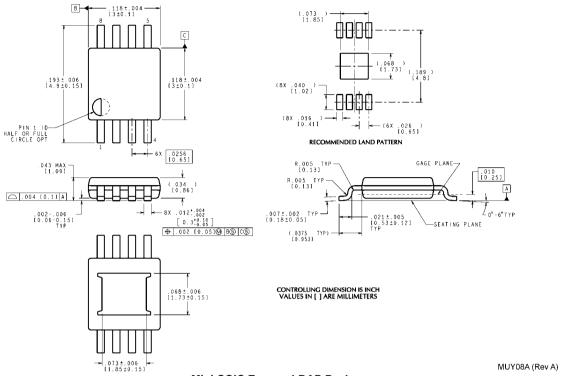
LME49726 Demo Board Views



Top Silkscreen

Top Layer

300386x9


Bottom Layer

300386x8

Revision History

Rev	Date	Description
1.0	11/05/08	Initial release.
1.01	05/25/10	Increased Operating Temperature Range.

Physical Dimensions inches (millimeters) unless otherwise noted

Mini-SOIC Exposed-DAP Package Order Number LME49726MY NS Package Number MUY08A

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Products		Design Support	
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench
Audio	www.national.com/audio	App Notes	www.national.com/appnotes
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns
Data Converters	www.national.com/adc	Samples	www.national.com/samples
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com