National Semiconductor

LM9044 Lambda Sensor Interface Amplifier

General Description

The LM9044 is a precision differential amplifier specifically designed for operation in the automotive environment. Gain accuracy is guaranteed over the entire automotive temperature range (-40°C to +125°C) and is factory trimmed prior to package assembly. The input circuitry has been specifically designed to reject common-mode signals as much as 3V below ground on a single positive power supply. This facilitates the use of sensors which are grounded at the engine block while the LM9044 itself is grounded at chassis potential. An external capacitor sets the maximum operating frequency of the amplifier, thereby filtering high frequency transients. Both inputs are protected against accidental shorting to the battery and against load dump transients. The input impedance is typically 1 M Ω .

The output op amp is capable of driving capacitive loads and is fully protected. Also, internal circuitry has been pro-

vided to detect open circuit conditions on either or both inputs and force the output to a "home" position (a ratio of the external reference voltage).

Features

- Normal circuit operation guaranteed with inputs up to 3V below ground on a single supply
- Gain factory trimmed and guaranteed over temperature (±3% of full-scale from -40°C to +125°C)
- Low power consumption (typically 1 mA)
- Fully protected inputs
- Input open circuit detection
- Operation guaranteed over the entire automotive temperature range (-40°C to +125°C)
- Single supply operation

©1995 National Semiconductor Corporation TL/H/6744

RRD-B30M115/Printed in U. S. A.

February 1995

Absolute Maximum Ra	tings				
If Military/Aerospace specified de	evices are required,	Operating Temperature Range	-40°C to +125°C		
please contact the National Semiconductor Sales		Storage Temperature Range	-65°C to +150°C		
Office/Distributors for availability a	and specifications.	Soldering Information			
V_{CC} Supply Voltage (RV _{CC} = 15 k Ω)	$\pm 60V$	Plastic Chip Carrier Package			
V _{REF} Supply Voltage	-0.3V to +6V	Vapor Phase (60 seconds)	215°C		
DC Input Voltage (Either Input)	-3V to + 16V	Infrared (15 seconds)	220°C		
Input Transients (Note 1)	$\pm 60 V$	See AN-450 "Surface Mounting M			
Power Dissipation (see Note 6)	1350 mW	on Product Reliability" for other me face mount devices.	ethods of soldering sur-		
Output Short Circuit Duration	Indefinite	lace mount devices.			

Electrical Characteristics $V_{CC} = 12V$, $V_{REF} = 5V$, $-40^{\circ}C \le T_A \le 125^{\circ}C$ unless otherwise noted

Parameter	Conditions	(Note 2)			(Note 3)			Units
		Min	Тур	Max	Min	Тур	Max	Units
Differential Voltage Gain	$V_{DIF} = 0.5V$ $-1V \le V_{CM} \le +1V$	4.41	4.50	4.59				V/V
	$V_{DIF} = 0.5V, -3V \le V_{CM} \le +1V$				4.36	4.50	4.64	V/V
Gain Error (Note 5)	$\begin{array}{c} 0 \leq V_{DIF} \leq 1V \\ -1V \leq V_{CM} \leq +1V \end{array}$	-2	0	2				%/FS
	$\begin{array}{c} 0 \leq V_{DIF} \leq 1V \\ -3V \leq V_{CM} \leq +1V \end{array}$				-3	0	3	%/FS
Differential Input Resistance	$\begin{array}{c} o \leq V_{DIF} \leq 1V \\ -1V \leq V_{CM} \leq +1V \end{array}$	0.95	1.20	3.00				MΩ
	$\begin{array}{c} 0 \leq V_{DIF} \leq 1V \\ -3V \leq V_{CM} \leq +1V \end{array}$				0.70	1.20	4.00	MΩ
Non-Inverting Input Bias Current	$\begin{array}{c} 0 \leq V_{DIF} \leq 1V \\ -1V \leq V_{CM} \leq +1V \end{array}$		±0.38	±0.65				μΑ
	$\begin{array}{c} 0 \leq V_{DIF} \leq 1V \\ -3V \leq V_{CM} \leq +1V \end{array}$					±0.38	±1.5	μΑ
Inverting Input Bias Current	$\begin{array}{c} 0 \leq V_{DIF} \leq 1V \\ -1V \leq V_{CM} \leq +1V \end{array}$	-25	-65	-100				μΑ
	$\begin{array}{c} 0V \leq V_{DIF} \leq 1V \\ -3V \leq V_{CM} \leq +1V \end{array}$					-45	-150	μΑ
V _{CC} Supply Current	V _{CC} =12V, RV _{CC} =15k		300	500				μΑ
V _{REF} Supply Current	$4.75V \le V_{REF} \le 5.5V$		0.5	1.0				mA
Common-Mode Voltage Range (Note 4)		-1		1	-3		1	V
DC Common-Mode Rejection Ratio	Input Referred $-1V \leq V_{CM} \leq +1V$ $V_{DIF} = 0.5V$	50	60					dB
Open Circuit Output Voltage	One or Both Inputs Open, $-1V \le V_{CM} \le +1V$	0.371	0.397	0.423				XV _{REF}
	$-3V \le V_{CM} \le +1V$				0.365	0.397	0.429	XV _{REF}
Short Circuit Output Current	Output Grounded	1.0	2.7	5.0				mA
V_{CC} Power Supply Rejection Ratio	$V_{CC} = 12V, RV_{CC} = 15K$ $V_{DIF} = 0.5V$	50	65					dB
V _{REF} Power Supply Rejection Ratio	V _{REF} =5 V _{DC} V _{DIF} =0.5V	60	74					dB

Note 1: This test is performed with a 1000Ω source impedance.

Note 2: These parameters are guaranteed and 100% production tested.

Note 3: These parameters will be guaranteed but not 100% production tested.

Note 4: The LM9044 has been designed to common-mode to -3V, but production testing is only performed at $\pm 1V$.

Note 5: Gain error is given as a percent of full-scale. Full-scale is defined as 1V at the input and 4.5V at the output.

Note 6: For operation in ambient temperatures above 25°C the device must be derated based on a maximum junction temperature of 150°C and a thermal resistance of 93°C/W junction to ambient.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications