

LM158W-LM258W-LM358W

Low power dual operational amplifiers

Features

- Internally frequency compensated
- Large DC voltage gain: 100 dB
- Wide bandwidth (unity gain): 1.1 MHz (temperature compensated)
- Very low supply current per operator essentially independent of supply voltage
- Low input bias current: 20 nA (temperature compensated)
- Low input offset voltage: 2 mV
- Low input offset current: 2 nA
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Large output voltage swing 0 V to V_{CC}⁺- 1.5 V
- ESD internal protection: 1.5 kV

Description

These circuits consist of two independent, highgain, internally frequency-compensated which were designed specifically to operate from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage.

Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5 V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply.

In the linear mode the input common-mode voltage range includes ground and the output

voltage can also swing to ground, even though operated from only a single power supply voltage.

1 Schematic diagram

Figure 1. Schematic diagram (1/2 LM158W)

2 Absolute maximum ratings and operating conditions

Symbol	Parameter	LM158W/AW	LM258W/AW	LM358W/AW	Unit	
V_{CC}^+	Supply voltage		+32	1	V	
V _{in}	Input voltage	-	V			
V _{id}	Differential input voltage	-	0.3 to V_{CC}^{+} +0.	3	V	
	Output short-circuit duration (1)					
l _{in}	Input current ⁽²⁾		50			
T _{oper}	Operating free-air temperature range	-55 to +125	-40 to +105	0 to +70	°C	
T _{stg}	Storage temperature range	-65 to +150		°C		
Тj	Maximum junction temperature	150		°C		
R _{thja}	Thermal resistance junction to ambient ⁽³⁾ SO-8 MiniSO-8 TSSOP8 DIP-8			°C/W		
R _{thjc}	Thermal resistance junction to case ⁽³⁾ SO-8 MiniSO-8 TSSOP8 DIP-8	40 39 37 41			°C/W	
	HBM: human body model ⁽⁴⁾		1.5			
ESD	MM: machine model ⁽⁵⁾		200		V	
	CDM: charged device model ⁽⁶⁾		1.5		kV	

Table 1. Absolute maximum ratings

 Short-circuits from the output to V_{CC} can cause excessive heating if V_{CC} > 15V. The maximum output current is approximately 40 mA independent of the magnitude of V_{CC}. Destructive dissipation can result from simultaneous shortcircuits on all amplifiers.

2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the V_{CC} voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output will be restored for input voltage higher than -0.3 V.

3. Short-circuits can cause excessive heating and destructive dissipation. R_{th} are typical values.

4. Human body model: 100 pF discharged through a 1.5 k Ω resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

5. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

6. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Symbol	Parameter	Value	Unit
V _{CC} ⁺	Supply voltage	3 to 30	V
V _{icm}	Common mode input voltage range	V_{DD} -0.3 to V_{CC} -1.5	V
T _{oper}	Operating free air temperature range LM158W LM258W LM358W	-55 to +125 -40 to +105 0 to +70	°C

Table 2.Operating conditions

Electrical characteristics 3

Table 3.	V_{CC}^{+} = +5 V, V_{CC}^{-} = Ground, V_{o} = 1.4 V, T_{amb} = +	25°C (unle	ess otherw	vise speci [.]	fied)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage ⁽¹⁾ LM158AW LM258AW, LM358AW LM158W, LM258W LM358W $T_{min} \leq T_{amb} \leq T_{max}$ LM158AW, LM258AW, LM358AW LM158W, LM258W LM358W		1 1 2 2	2 3 5 7 4 7 9	mV
DV _{io}	Input offset voltage drift LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W		7 7	15 30	µV/°C
I _{io}	Input offset current LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W T _{min} \leq T _{amb} \leq T _{max} LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W		2 2	10 30 30 40	nA
DI _{io}	Input offset current drift LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W		10 10	200 300	pA/°C
I _{ib}	Input bias current ⁽²⁾ LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W $T_{min} \leq T_{amb} \leq T_{max}$ LM158AW, LM258AW, LM358AW LM158W, LM258W, LM358W		20 20	50 150 100 200	nA
A _{vd}	Large signal voltage gain V_{CC}^+ = +15 V, R _L = 2 kΩ, V _o = 1.4 V to 11.4 V $T_{min} \le T_{amb} \le T_{max}$	50 25	100		V/mV
SVR	Supply voltage rejection ratio $R_s \leq 10 \text{ k}\Omega, V_{CC}^+ = 5 \text{ V to } 30 \text{ V}$ $T_{min} \leq T_{amb} \leq T_{max}$	65 65	100		dB
I _{CC}	$ \begin{array}{l} \text{Supply current, all amp, no load} \\ \text{T}_{min} \leq \text{T}_{amb} \ \leq \text{T}_{max}, \ \text{V}_{CC}^{+} = +5 \ \text{V} \\ \text{T}_{min} \leq \text{T}_{amb} \ \leq \text{T}_{max}, \ \text{V}_{CC}^{+} = +30 \ \text{V} \end{array} $		0.7	1.2 2	mA
V _{icm}	Input common mode voltage range V_{CC}^+ = +30 V ⁽³⁾ T_{amb} = +25° C $T_{min} \leq T_{amb} \leq T_{max}$	0 0		V _{CC} ⁺ -1.5 V _{CC} ⁺ -2	V

51

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Common mode rejection ratio				
CMR	R _s ≤10kΩ	70	85		dB
	$T_{min} \le T_{amb} \le T_{max}$	60			
1	Output current source				
Isource	V_{CC}^{+} = +15 V, V_{o} = +2 V, V_{id} = +1 V	20	40	60	mA
	Output sink current				
I _{sink}	V_{CC}^{+} = +15V, V_{o} = +2V, V_{id} = -1 V	10	20		mA
	V_{CC}^{+} = +15V, V_{o} = +0.2V, V_{id} = -1 V	12	50		μA
	High level output voltage				
	$R_{L} = 2 k\Omega, V_{CC}^{+} = 30 V$	26	27		
V _{OH}	$T_{min} \le T_{amb} \le T_{max}$	26			V
	$R_{L} = 10 \text{ k}\Omega, V_{CC}^{+} = 30 \text{ V}$	27	28		
	$T_{min} \le T_{amb} \le T_{max}$	27			
	Low level output voltage				
V _{OL}	$R_{L} = 10 \text{ k}\Omega$		5	20	mV
	$T_{min} \le T_{amb} \le T_{max}$			20	
	Slew rate				
SR	$V_{CC}^{+} = 15 \text{ V}, \text{ V}_{i} = 0.5 \text{ to } 3 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega$	0.3	0.6		V/µs
	C _L = 100 pF, unity gain				
000	Gain bandwidth product	0.7			
GBP	V_{CC}^{+} = 30 V, f =100 kHz, V_{in} =10 mV, R _L =2 kΩ C _L = 100 pF	0.7	1.1		MHz
THD	Total harmonic distortion		0.02		%
	f = 1 kHz, A_v = 20 dB, R_L = 2 kΩ, V_o = 2 V_{pp} , C _L = 100 pF, V_O = 2 V_{pp}		0.02		70
	Equivalent input noise voltage				nV
e _n	$f = 1 \text{ kHz}, R_s = 100 \Omega, V_{CC}^+ = 30 \text{ V}$		55		<u>nV</u> √Hz
	Channel separation ⁽⁴⁾				
V _{o1} /V _{o2}	1 kHz \leq f \leq 20 kHz		120		dB

Table 3.	V_{CC}^+ = +5 V, V_{CC}^- = Ground, V_0 = 1.4 V, T_{amb} = +25°C (unless otherwise specified)
	f_{1} = f_{1} f_{1} = f_{1} f_{2} = f_{1} f_{3} f_{3} = f_{1} f_{3} f_{3} = f_{1} f_{3} f_{3} f_{3} = f_{1} f_{3}

1. $V_0 = 1.4 \text{ V}, \text{ R}_s = 0 \Omega, 5 \text{ V} < \text{V}_{\text{CC}}^+ < 30 \text{ V}, 0 < \text{V}_{\text{ic}} < \text{V}_{\text{CC}}^+ - 1.5 \text{ V}$

2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so there is no change in the load on the input lines.

 The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V_{CC}⁺ - 1.5 V, but either or both inputs can go to +32 V without damage.

4. Due to the proximity of external components ensure that there is no coupling originating via stray capacitance between these external parts. Typically, this can be detected at higher frequencies because then this type of capacitance increases.

Figure 2. Open loop frequency response

LARGE SIGNAL FREQUENCY RESPONSE

<u>100k Ω</u>

+15V

vr

Figure 7. **Output characteristics**

Figure 3. Large signal frequency response

20

Figure 14. Input current

Figure 15. Gain bandwidth product

Figure 18. Phase margin vs. capacitive load

57

57

4 Typical applications

Single supply voltage V_{CC} = +5 V_{DC}

Figure 23. High input Z, DC differential amplifier Figure 24. High input Z adjustable gain DC instrumentation amplifier

+e

Input current

compensation

 $\mathbf{\bar{z}}_{\mathrm{o}}$

1/2 LM158

0.001μF

 I_B

3R 3MΩ

 I_{B}

Figure 25. Using symmetrical amplifiers to reduce input current

C

 $2I_B$

R

 $1M\Omega$

1µ

1/2

IB LM158

21_B

2N 929

 I_{B}

1/2

Z

LM158

Figure 27. Active band-pass filter

5 Package information

In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: <u>www.st.com</u>.

5.1 DIP8 package information

Table 4. DIP8 package mechanical data

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А		3.3			0.130		
a1	0.7			0.028			
В	1.39		1.65	0.055		0.065	
B1	0.91		1.04	0.036		0.041	
b		0.5			0.020		
b1	0.38		0.5	0.015		0.020	
D			9.8			0.386	
Е		8.8			0.346		
е		2.54			0.100		
e3		7.62			0.300		
e4		7.62			0.300		
F			7.1			0.280	
l			4.8			0.189	
L		3.3			0.130		
Z	0.44		1.6	0.017		0.063	

5.2 SO-8 package information

Table 5.Package mechanical data

	Dimensions							
Ref.		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А			1.75			0.069		
A1	0.10		0.25	0.004		0.010		
A2	1.25			0.049				
b	0.28		0.48	0.011		0.019		
С	0.17		0.23	0.007		0.010		
D	4.80	4.90	5.00	0.189	0.193	0.197		
Н	5.80	6.00	6.20	0.228	0.236	0.244		
E1	3.80	3.90	4.00	0.150	0.154	0.157		
е		1.27			0.050			
h	0.25		0.50	0.010		0.020		
L	0.40		1.27	0.016		0.050		
k	1°		8°	1°		8°		
ссс			0.10			0.004		

5.3 MiniSO-8 package information

Figure 30. MiniSO-8 package mechanical drawing

	Dimensions							
Ref.	Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А			1.1			0.043		
A1	0		0.15	0		0.006		
A2	0.75	0.85	0.95	0.030	0.033	0.037		
b	0.22		0.40	0.009		0.016		
С	0.08		0.23	0.003		0.009		
D	2.80	3.00	3.20	0.11	0.118	0.126		
Е	4.65	4.90	5.15	0.183	0.193	0.203		
E1	2.80	3.00	3.10	0.11	0.118	0.122		
е		0.65			0.026			
L	0.40	0.60	0.80	0.016	0.024	0.031		
L1		0.95			0.037			
L2		0.25			0.010			
k	0°		8°	0°		8°		
CCC			0.10			0.004		

5.4 TSSOP8 package information

	Dimensions							
Ref.	Millimeters			Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А			1.2			0.047		
A1	0.05		0.15	0.002		0.006		
A2	0.80	1.00	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.012		
С	0.09		0.20	0.004		0.008		
D	2.90	3.00	3.10	0.114	0.118	0.122		
Е	6.20	6.40	6.60	0.244	0.252	0.260		
E1	4.30	4.40	4.50	0.169	0.173	0.177		
е		0.65			0.0256			
k	0°		8°	0°		8°		
L	0.45	0.60	0.75	0.018	0.024	0.030		
L1		1			0.039			
aaa		0.1			0.004			

6 Ordering information

Table	7.	Order	codes
TUDIC		oraci	00000

Order code	Temperature range	Package	Packaging	Marking
LM158WN		DIP-8	Tube	LM158WN
LM158WD LM158WDT	-55°C, +125°C	SO-8	Tube or tape & reel	158W
LM258WAN		DIP-8	Tube	LM258WA
LM258WAD LM258WADT	-40°C, +105°C	SO-8	Tube or tape & reel	258WA
LM258WN	-40 C, +105 C	DIP-8	Tube	LM258WN
LM258WD LM258WDT		SO-8	Tube or tape & reel	258W
LM258WYPT ⁽¹⁾		TSSOP8	Tape & reel	258WY
LM258AWYPT ⁽¹⁾		(Automotive grade)		K410
LM258WYD ⁽²⁾ LM258WYDT ⁽²⁾	40°C, +105°C	SO-8 (Automotive grade)	Tube or tape & reel	258WY
LM258AWYD ⁽²⁾ LM258AWYDT ⁽²⁾				258AWY
LM358WN		DIP-8	Tube	LM358WN
LM358WD LM358WDT	0°C, +70°C	SO-8	Tube or	358W
LM358AWD LM358AWDT		30-8	tape & reel	358AW
LM358WYD ⁽²⁾ LM358WYDT ⁽²⁾		SO-8 (Automotive grade)	Tube or tape & reel	358WY
LM358AWYD ⁽²⁾ LM358AWYDT ⁽²⁾	0°C, +70°C			358AWY
LM358WYPT ⁽¹⁾		TSSOP8		358WY
LM358AWYPT ⁽¹⁾		(Automotive grade)	Tape & reel	K411

1. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going.

2. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent.

7 Revision history

ory	
(ory

Date	Revision	Changes
01-Nov-2002	1	First release.
01-Jul-2005	2	ESD protection inserted in <i>Table 1: Absolute maximum ratings on page 3.</i>
06-Oct-2006	3	ESD tolerance for model HBM improved to 2kV (<i>Table 1: Absolute maximum ratings on page 3</i>).
		R _{thja} and R _{thjc} typical values added in <i>Table 1: Absolute maximum ratings on page 3.</i>
		Added Figure 18: Phase margin vs. capacitive load on page 9.
02-Jan-2007	4	Order codes added (automotive grade level) to Section 6: Ordering information.
15-Mar-2007	5	Previously called revision 4.
		Footnote for automotive grade order codes added to Section 6: Ordering information.
25-Apr-2007	6	Added missing Revision 4 of January 2007 in revision history. Corrected revision number of March 2007 to Revision 5.
11-Feb-2008	7	Reformatted electrical characteristics table.
		Reformatted package information.
		Corrected MiniSO-8 package information. Corrected operating temperature range for automotive grade parts.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

