

May 1998

LM136-2.5/LM236-2.5/LM336-2.5V Reference Diode

General Description

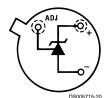
The LM136-2.5/LM236-2.5 and LM336-2.5 integrated circuits are precision 2.5V shunt regulator diodes. These monolithic IC voltage references operate as a low-temperature-coefficient 2.5V zener with 0.2 Ω dynamic impedance. A third terminal on the LM136-2.5 allows the reference voltage and temperature coefficient to be trimmed easily.

The LM136-2.5 series is useful as a precision 2.5V low voltage reference for digital voltmeters, power supplies or op amp circuitry. The 2.5V make it convenient to obtain a stable reference from 5V logic supplies. Further, since the LM136-2.5 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.

The LM136-2.5 is rated for operation over -55° C to $+125^{\circ}$ C while the LM236-2.5 is rated over a -25° C to $+85^{\circ}$ C temperature range.

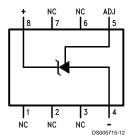
The LM336-2.5 is rated for operation over a 0°C to +70°C temperature range. See the connection diagrams for available packages.

Features


- Low temperature coefficient
- Wide operating current of 400 µA to 10 mA
- 0.2Ω dynamic impedance
- ±1% initial tolerance available
- Guaranteed temperature stability
- Easily trimmed for minimum temperature drift
- Fast turn-on
- Three lead transistor package

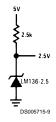
Connection Diagrams

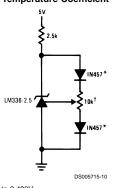
TO-92 Plastic Package


Bottom View Order Number LM236Z-2.5, LM236AZ-2.5, LM336Z-2.5 or LM336BZ-2.5 See NS Package Number Z03A TO-46 Metal Can Package

Bottom View Order Number LM136H-2.5, LM136H-2.5/883, LM236H-2.5, LM136AH-2.5, LM136AH-2.5/883 or LM236AH-2.5 See NS Package Number H03H

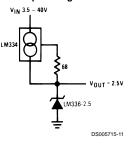
Connection Diagrams (Continued)


SO Package


Top View Order Number LM236M-2.5, LM236AM-2.5, LM336M-2.5 or LM336BM-2.5 See NS Package Number M08A

Typical Applications

2.5V Reference



2.5V Reference with Minimum Temperature Coefficient

[†]Adjust to 2.490V *Any silicon signal diode

Wide Input Range Reference

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

 Reverse Current
 15 mA

 Forward Current
 10 mA

 Storage Temperature
 -60°C to +150°C

LM336 mA Soldering Information

TO-92 Package (10 sec.) TO-46 Package (10 sec.)

Operating Temperature Range (Note 2)

260°C 300°C

0°C to +70°C

-55°C to +150°C

-25°C to +85°C

SO Package

LM136

LM236

Vapor Phase (60 sec.) 215°C Infrared (15 sec.) 220°C

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (Appendix D) for other methods of soldering surface mount devices.

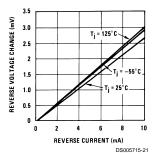
Electrical Characteristics (Note 3)

Parameter	Conditions	LM136A-2.5/LM236A-2.5 LM136-2.5/LM236-2.5			LM336B-2.5 LM336-2.5			Units
		Min	Тур	Max	Min	Тур	Max	
Reverse Breakdown Voltage	T _A =25°C, I _R =1 mA							
	LM136, LM236, LM336	2.440	2.490	2.540	2.390	2.490	2.590	V
	LM136A, LM236A, LM336B	2.465	2.490	2.515	2.440	2.490	2.540	V
Reverse Breakdown Change	T _A =25°C,		2.6	6		2.6	10	mV
With Current	400 μA≤I _R ≤10 mA							
Reverse Dynamic Impedance	$T_A = 25^{\circ}C$, $I_R = 1$ mA, $f = 100$ Hz		0.2	0.6		0.2	1	Ω
Temperature Stability	V _R Adjusted to 2.490V							
(Note 4)	I _R =1 mA, Figure 2							
	0°C≤T _A ≤70°C (LM336)					1.8	6	m∨
	–25°C≤T _A ≤+85°C		3.5	9				m∨
	(LM236H, LM236Z)							
	-25°C ≤ T _A ≤ +85°C (LM236M)		7.5	18				mV
	–55°C≤T _A ≤+125°C (LM136)		12	18				m∨
Reverse Breakdown Change	400 μA≤I _R ≤10 mA		3	10		3	12	mV
With Current								
Reverse Dynamic Impedance	I _R =1 mA		0.4	1		0.4	1.4	Ω
Long Term Stability	T _A =25°C ±0.1°C, I _R =1 mA,		20			20		ppm
	t = 1000 hrs							

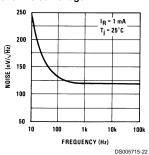
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its specified operating conditions.

Note 2: For elevated temperature operation, \mathbf{T}_{j} max is:

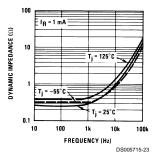
LM136 150°C LM236 125°C LM336 100°C

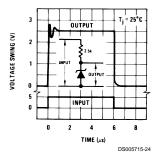

Thermal Resistance	TO-92	TO-46	SO-8
θ _{ja} (Junction to Ambient)	180°C/W (0.4" leads)	440°C/W	165°C/W
	170°C/W (0.125" lead)		
θ _{ja} (Junction to Case)	n/a	80°C/W	n/a

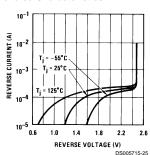
Note 3: Unless otherwise specified, the LM136-2.5 is specified from $-55^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$, the LM236-2.5 from $-25^{\circ}\text{C} \le \text{T}_{A} \le +85^{\circ}\text{C}$ and the LM336-2.5 from $0^{\circ}\text{C} \le \text{T}_{A} \le +70^{\circ}\text{C}$.

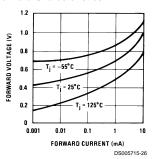

Note 4: Temperature stability for the LM336 and LM236 family is guaranteed by design. Design limits are guaranteed (but not 100% production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels. Stability is defined as the maximum change in V_{ref} from 25°C to T_A (min) or T_A (max).

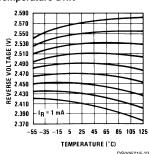
Typical Performance Characteristics


Reverse Voltage Change


Zener Noise Voltage


Dynamic Impedance


Response Time


Reverse Characteristics

Forward Characteristics

Temperature Drift

Application Hints

The LM136 series voltage references are much easier to use than ordinary zener diodes. Their low impedance and wide operating current range simplify biasing in almost any circuit. Further, either the breakdown voltage or the temperature coefficient can be adjusted to optimize circuit performance.

Figure 1 shows an LM136 with a 10k potentiometer for adjusting the reverse breakdown voltage. With the addition of R1 the breakdown voltage can be adjusted without affecting the temperature coefficient of the device. The adjustment range is usually sufficient to adjust for both the initial device tolerance and inaccuracies in buffer circuitry.

If minimum temperature coefficient is desired, two diodes can be added in series with the adjustment potentiometer as shown in *Figure 2*. When the device is adjusted to 2.490V the temperature coefficient is minimized. Almost any silicon signal diode can be used for this purpose such as a 1N914, 1N4148 or a 1N457. For proper temperature compensation the diodes should be in the same thermal environment as the LM136. It is usually sufficient to mount the diodes near the LM136 on the printed circuit board. The absolute resistance of R1 is not critical and any value from 2k to 20k will work.

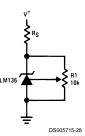


FIGURE 1. LM136 With Pot for Adjustment of Breakdown Voltage (Trim Range = ±120 mV typical)

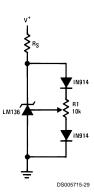
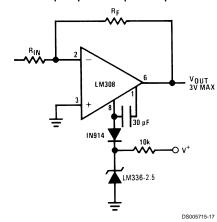
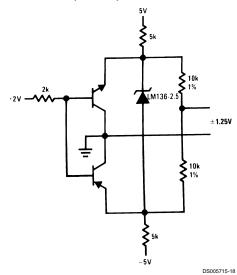



FIGURE 2. Temperature Coefficient Adjustment (Trim Range = ±70 mV typical)

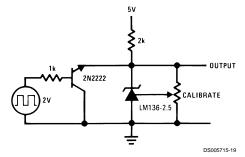
Low Cost 2 Amp Switching Regulator[†] VIN 6V TO 20V A7 PN2905 PN2222 PN2222 PN2222 PN2222 DS005715-5 DS005715-5

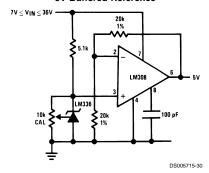
*L1 60 turns #16 wire on Arnold Core A-254168-2 $^\dagger Efficiency \approx 80\%$

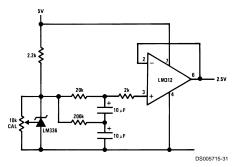

www.national.com

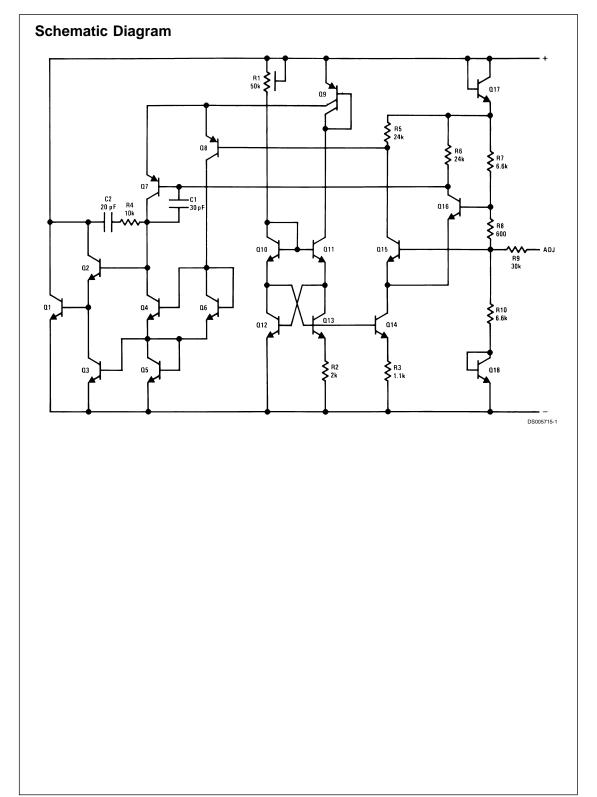

Linear Ohmmeter 2.5k 25k 25k 2.5M 1% 1% 1% 1% 1% 1% 1% 100k/V LM336-2.5 CALIBRATE LM312 DS005715-16

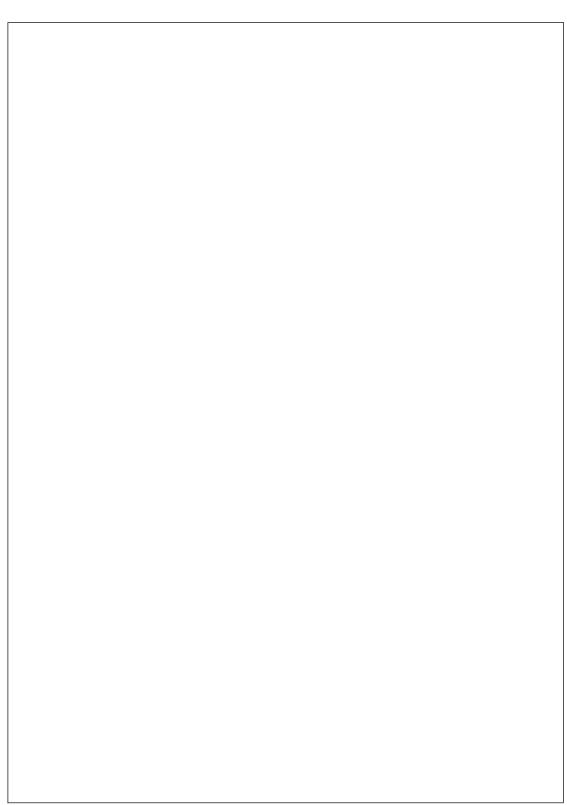
Application Hints (Continued)

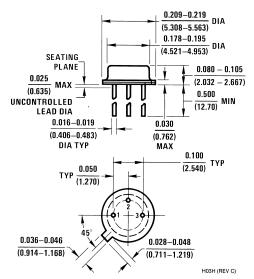

Op Amp with Output Clamped

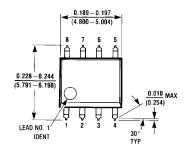

Bipolar Output Reference

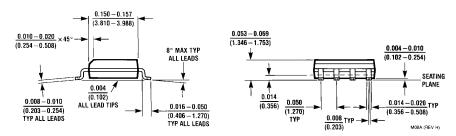

2.5V Square Wave Calibrator



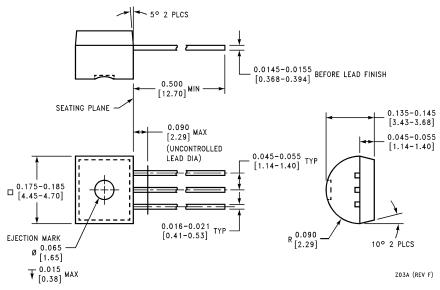

5V Buffered Reference


Low Noise Buffered Reference





Physical Dimensions inches (millimeters) unless otherwise noted


Order Number LM136H-2.5, LM136H-2.5/883, LM236H-2.5, LM136AH-2.5, LM136AH-2.5/883 or LM236AH-2.5 NS Package Number H03H

Small Outline (SO) Package (M)
Order Number LM236M-2.5, LM236AM-2.5, LM336M-2.5 or LM336BM-2.5
NS Package Number M08A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

TO-92 Plastic Package (Z)
Order Number LM236Z-2.5, LM236AZ-2.5, LM336Z-2.5 or LM336BZ-2.5
NS Package Number Z03A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas Tel: 1-800-272-9959

Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507