Summary of Specification for **OIS & Open-AF Control LSI**

LC898128DP1XGTBG

Overview

LC898128DP1XGTBG is a system LSI integrating an on-chip 32-bit DSP, a FLASH ROM and peripherals including analog circuits for OIS (Optical Image Stabilization) / Open-AF (Auto Focus) control, constant current drivers.

Features

- On-chip 32bit DSP
 - Built-in Software for Digital Servo Filter
 - Built-in Software for Gyro Filter
- Memory
 - ◆ 40 KByte Flash Memory
 - Program ROM
 - Program SRAM
 - Data SRAM
- Peripherals
 - AD Converter
 - DA Converter
 - ♦ 2-wire Serial I/F Circuit (The Communication Protocol is Compatible with I^2C)
 - Hall Bias Circuit x2ch
 - Hall Amp x2ch
 - OSC (Oscillator)
 - LDO (Low Drop–Out Regulator)
 - Temperature Sensor
 - Digital Gyro I/F (SPI)
 - ◆ Interrupt I/F
- Driver
 - OIS
 - Constant Current Linear Driver (x2ch, I_{full} = 200 mA)
 - ♦ OP-AF (bi-direction) Constant Current Linear Driver (x1ch, I_{full} = 130 mA)
- Power Supply Voltage
 - AD/DA/VGA/LDO/OSC/Flash: AVDD30 = 2.7 V to 3.3 V
 - Driver: VM1,2 = 1.8 V to 3.3 V
 - ◆ 1.8 V I/O: IOVDD = 1.7 V to 3.3 V
 - Core Logic: generated by on-chip LDO DVDD13 = typ. 1.38 V Connect 1 µF Capacitor to LDPO pin
- Package
 - WLCSP30 (4.300 mm x 1.175 mm) Thickness Max. 0.35 mm, without Back Coat
 - Ball 3 x 10
 - Pitch 0.4 mm
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

WLCSP30, 1.175x4.3x0.33 CASE 567WW

MARKING DIAGRAM

YY = Year

А

WL

WW = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet

ORDERING INFORMATION

Part Number	Package	Shipping [†]
LC898128DP1XGTBG	WLCSP30 (Pb-Free, Halogen-Free)	4000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D

BLOCK DIAGRAM

Figure 1. Block Diagram

PIN LAYOUT

с	OUT1	OUT2	OUT5	HLXBO	HLYBO	EIRQ2	MISO	MOSI	IOVDD	SCLK
В	VM1	PGND	VM2	AVSS	PCNT	OPINPX	OPINPY	MON1	SSB	SDA
A	OUT3	OUT4	OUT6	AVDD30	LDPO	OPINMX	OPINMY	MON2	EIRQ1	SCL
	1	2	3	4	5	6	7	8	9	10

Driver
VDD/VSS
Internal VDD Output
1.8V I/O

Figure 2. Pin Layout (Bottom View)

Table 1. PIN DESCRIPTION

No.	Pin	I/O	I/O Pwr	Primary Function	Sub Functions	Init
1	MON1	В	AVDD30	Servo Monitor Analog In/Out	2-wire serial Monitor Data	Z
2	MON2	В	AVDD30	Servo Monitor Analog In/Out	2-wire serial Monitor Clock	Z
3	SCL	В	IOVDD	2-wire serial HOST I/F Clock Slave		Z
4	SDA	В	IOVDD	2-wire serial HOST I/F Data Slave		Z
5	IOVDD	Р		I/O Power (1.7 V to 3.3 V)		
6	SSB	В	IOVDD	Digital Gyro Data I/F Chip Select Out (3/4-wire Master)	Digital Gyro Data I/F Chip Select In (3/4-wire Slave)	Z
7	SCLK	В	IOVDD	Digital Gyro Data I/F Clock Out (3/4-wire Master)	Digital Gyro Data I/F Clock In (3/4-wire Slave)	Z
					2-wire serial Sensor Hub I/F Clock Slave	
8	MOSI	В	IOVDD	Digital Gyro Data I/F Data InOut	Digital Gyro Data I/F Data InOut	Z
				(3-wire Master)	(3wire Slave) Digital Gyro Data I/F Data In	
				Digital Gyro Data I/F Data Out (4-wire Master)	(4-wire Slave)	
					2-wire serial Sensor Hub I/F Data Slave	
9	MISO	В	IOVDD	Digital Gyro Data I/F Data In	Digital Gyro Data I/F Data Out	U
				(4-wire Master)	(4-wire Slave)	
				Digital Gyro Data I/F Chip Select 2 Out (3-wire Master)		
10	EIRQ1	В	IOVDD	Interrupt Input 1		Z
11	EIRQ2	В	IOVDD	Interrupt Input 2		Z
12	PCNT	0	AVDD30	No use		Z
13	HLXBO	0	AVDD30	OIS Hall X Bias Output		Z
14	HLYBO	0	AVDD30	OIS Hall Y Bias Output		Z
15	OPINMX	I	AVDD30	OIS Hall X Opamp Input Minus		-
16	OPINPX	I	AVDD30	OIS Hall X Opamp Input Plus		-
17	OPINMY	I	AVDD30	OIS Hall Y Opamp Input Minus		-
18	OPINPY	I	AVDD30	OIS Hall Y Opamp Input Plus		-
19	OUT1	0	VM1	OIS Driver Output		Z
20	OUT2	0	VM1	OIS Driver Output		Z
21	OUT3	0	VM1	OIS Driver Output		Z
22	OUT4	0	VM1	OIS Driver Output		Z
23	OUT5	0	VM2	OP-AF Driver Output		Z
24	OUT6	0	VM2	OP-AF Driver Output		Z
25	AVDD30	Р		Analog Power (2.7 V to 3.3 V)		-
26	AVSS	Р		Analog GND		-
27	VM1	Р		OIS Driver Power (1.8 V to 3.3 V)		-
28	VM2	Р		OP-AF Driver Power (1.8 V to 3.3 V)		_
29	PGND	Р		Driver GND		-
30	LDPO	Р		Internal 1.38 V LDO Power Output		-

*Process when pins are not used

NOTES: PIN TYPE "O" - Ensure that it is set to OPEN.

PIN TYPE "I" – OPEN is inhibited. Ensure that it is connected to the V_{DD} or V_{SS} even when it is unused.

(Please contact ON Semiconductor for more information about selection of V_{DD} or V_{SS})

PIN TYPE "B" - If you are unsure about processing method on the pin description of pin layout table, please contact us.

Note that incorrect processing of unused pins may result in defects.

ELECTRICAL CHARACTERISTICS

Table 2. ABSOLUTE MAXIMUM RATINGS at AVSS = 0 V, PGND = 0 V

Parameter	Symbol	Conditions	Ratings	Unit
Power supply voltage	V _{AD} 30 max	Ta ≤ 25°C	-0.3 to 4.6	V
	VM max	Ta ≤ 25°C	-0.3 to 4.6	
	V _{IO} max	Ta ≤ 25°C	-0.3 to 4.6	
Input/Output voltage	V _{AI} 30, V _{AO} 30	Ta ≤ 25°C	–0.3 to V _{AD} 30 + 0.3	V
	V _{MI} 30, V _{MO} 30	Ta ≤ 25°C	–0.3 to V _M 30 + 0.3	
	V _{II} , V _{IOO}	Ta ≤ 25°C	–0.3 to V _{IO} + 0.3	
Storage temperature	Tstg		-55 to 125	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 3. ALLOWABLE OPERATING RATINGS at Ta = -30 to 85°C, AVSS = 0 V, PGND = 0 V

			,	,	
Parameter	Symbol	Min	Тур	Мах	Unit
3.0 V Power Supply (AVDD30)					
Power supply voltage	V _{AD} 30	2.7	2.8	3.3	V
Input voltage range	V _{INA}	0	-	V _{AD} 30	V
3.0 V Power Supply (VM1, VM2	2) (Note 1)				
Power supply voltage	V _M 30	1.8 (Note 2)	2.8	the lower of 3.3 and AVDD30 + 0.5	V
Input voltage range	V _{INM}	0	-	V _M 30	V
1.8 V Power Supply (IOVDD)					
Power supply voltage	V _{IO}	1.7	1.8	3.3	V
Input voltage range	V _{INI}	0	-	V _{IO}	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

1. The VM1 and VM2 pins should be connected.

2. Constant current.

Table 4. D.C. CHARACTERISTICS: INPUT/OUTPUT

at Ta = -30 to 85°C, AVSS = 0 V, PGND = 0 V, AVDD30 = 2.7 to 3.3 V, IOVDD = 1.7 to 3.3 V

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Applicable Pins
High-level input voltage	VIH	CMOS	0.7 IOVDD			V	SCL, SDA, SSB,
Low-level input voltage	VIL	Schmitt			0.3 IOVDD	V	SCLK, MOSI, MISO, EIRQ1, EIRQ2
High-level input voltage	VIH	CMOS	0.7 AVDD30			V	MON1, MON2
Low-level input voltage	VIL	Schmitt			0.3 AVDD30	V	MON1, MON2
High-level output voltage	VOH	IOH = -3 mA	IOVDD - 0.2			V	SDA, SSB, SCLK, MOSI, MISO, EIRQ1, EIRQ2
Low-level output voltage	VOL	IOL = 3 mA			0.2	V	SCL, SDA, SSB, SCLK, MOSI, MISO, EIRQ1, EIRQ2
High-level output voltage	VOH	IOH = -2 mA	AVDD30 - 0.2			V	MON1, MON2
Low-level output voltage	VOL	IOL = 2 mA			0.2	V	MON1, MON2
Analog input voltage	VAI		AVSS		AVDD30	V	Mon1, Mon2, Opinpx, Opinmx, Opinpy, Opinmy
Pull Up resistor	Rup		20		250	kΩ	SSB, SCLK, MOSI, MISO, EIRQ1,
Pull Down resistor	Rdn		20		250	kΩ	EIRQ2, MON1, MON2

Table 5. DRIVER OUTPUT at Ta = 25°C, AVSS = 0 V, PGND = 0 V, AVDD30 = VM = 2.8 V

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Output Current OUT1 ~ OUT4	lfull	Full code	190	200	210	mA
Output Current OUT5, OUT6		Full code, OP-AF (bidirection)	123.5	130	136.5	mA

Table 6. NON-VOLATILE MEMORY CHARACTERISTICS

Operating tempe	Operating temperature		Rea	Read for FLASH			-30 ~ 85		
		Topr2	Program	&Erase for F	LASH	-10 ~ 65 ⁽¹⁾		°C	
Item	Symb	ol Conditio	n Min	Тур	Мах	Unit	Applicable Circuit		
Endurance	EN			- 196	1000	Cycles	Flash Memory		
Data retention	RT		10			Years			
Write time	tWT				3	ms			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. All drivers must be in the standby state.

AC CHARACTERISTICS

Power Supply Timing

Figure 3. V_{DD} Supply Timing

Table 7.

Item	Symbol	Min	Тур	Max	Units
Rise time	tR			3	ms
Wait time	tW	100			ms
Bottom Voltage	Vbot			0.2	V

Injection order between AVDD30, VM1,2 and IOVDD is below.

Table 8.

Item	Symbol	Min	Тур	Max	Units
IOVDD ON to AVDD30 ON	tIOAV	0			ms
AVDD30 ON to VM1,2 ON	tAVVM	0			ms
VM1,2 OFF to AVDD30 OFF	tVMAV	0			ms
AVDD30 OFF to IOVDD OFF	tAVIO	0		**	ms

NOTES: VM1 = VM2 \leq AVDD30 + 0.5 V

The VM1 and VM2 pins should be connected.

SDA, SCL, SSB, SCLK, MOSI, MISO, EIRQ1 and EIRQ2 tolerate 3 V input at the time of power off.

The data in the Flash memory may be rewritten unintentionally if you do not keep specifications. And it is forbidden to power off during Flash memory access. The data in the Flash memory may be rewritten unintentionally. OIS, AF drivers are recommended to set standby before VM1 and VM2 power off.

** Please make IOPRSTB(D0_0064h,bit0)=0 before turning OFF AVDD30 when AVDD30 is turned off with keeping IOVDD on.

2-wire Serial Interface Timing

The 2-wire serial interface timing definition and electric characteristics are shown below. The communication protocol is compatible with I^2C . This circuit has clock stretch function.

Static Address : 7'b0100100

Figure 5.

Table 9.

		Standard-mode		Fast-	mode	Fast-mo	de Plus	
Item	Symbol	Min	Max	Min	Max	Min	Max	Units
SCL clock frequency	fSCL	-	100	-	400	-	1000	kHz
START condition hold time	tHD;STA	4.0	-	0.6	-	0.26	-	μs
SCL clock Low period	tLOW	4.7	-	1.3	-	0.5	-	μs
SCL clock High period	tHIGH	4.0	-	0.6	-	0.26	-	μs
Setup time for repetition START condition	tSU;STA	4.7	-	0.6	-	0.26	-	μs
Data hold time	tHD;DAT	0 (1)	3.45	0 (1)	0.9	0 (1)	0.45	μs
Data setup time	tSU;DAT	250	-	100	-	50	-	ns
SDA, SCL rising time	tr	-	1000	-	300	-	120	ns
SDA, SCL falling time	tf	-	300	-	300	-	120	ns
STOP condition setup time	tSU;STO	4.0	_	0.6	-	0.26	-	μs
Bus free time between STOP and START	tBUF	4.7	-	1.3	-	0.5	-	μs

1. Although the I²C specification defines a condition that 300 ns of hold time is required internally, this LSI is designed for a condition with typ. 40 ns of hold time. If SDA (MOSI) signal is unstable around falling point of SCL (SCLK) signal, please implement an appropriate treatment on board, such as inserting a resister.

Development product sample is a product that intend to verify whether it is matched the customer's application spec. We kindly ask you to evaluate surely and enough prior mass-production. Please contact our sales, if there are any problems.

ON Semiconductor is licensed by the Philips Corporation to carry the I²C bus protocol.

WLCSP30, 1.175x4.3x0.33 CASE 567WW ISSUE O

DATE 18 JUL 2018

DOCUMENT NUMBER:	98AON95037G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WLCSP30, 1.175x4.3x0.33		PAGE 1 OF 1
ON Semiconductor and 00 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.			

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative