

ON Semiconductor DATA SHEET

Monolithic Digital IC Low-Voltage, Low-Saturation Bidirectional Motor Driver

Overview

The LB1838M is a low-saturation two-channel bidirectional motor driver IC for use in low-voltage applications. The LB1838M is a bipolar stepper-motor driver IC that is ideal for use in printers, cameras and other portable devices.

Functions

- Low voltage operation (2.5V min)
- Low saturation voltage (upper transistor + lower transistor residual voltage: 0.40V at 400mA)
- Built-in through-current prevention circuit
- Separate logic power supply and motor power supply
- Built-in spark killer diodes
- Built-in thermal shutdown circuit
- Compact package: MFP14S

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		-0.3 to +10.5	V
	V _S max		-0.3 to +10.5	V
Output applied voltage	VOUT		V _S +V _{SF}	V
Input applied voltage	VIN		-0.3 to +10	V
Ground pin flow-out current	IGND	Per channel	1.0	А
Allowable power dissipation	Pd max	Independent IC	550	mW
		Mounted on a specified board *	800	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-40 to +125	°C

* Specified board: 20mm \times 30mm \times 1.6mm, glass epoxy board.

LB1838M

Allowable Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		2.5 to 9.0	V
	VS		1.8 to 9.0	V
Input high-level voltage	∨ _{IH}		1.8 to 9.0	V
Input Low-level voltage	VIL		-0.3 to +0.7	V

Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{CC} = 3V$

Parameter	Cumbol	Sumbal Conditions	Ratings			Unit
Parameter	Symbol Conditions		min	typ	max	Unit
Current drain	ICC0	ENA1,2 = 0V, V _{IN} 1 = 3V or 0V		0.1	10	μΑ
	I _{CC} 1	ENA1 = 3V, V _{IN} 1 = 3V or 0V		12	18	mA
Output saturation voltage	VOUT ¹	ENA = 3V, V _{IN} = 3V or 0V, I _{OUT} = 200mA		0.2	0.28	V
	V _{OUT} 2	ENA = 3V, V_{IN} = 3V or 0V, I_{OUT} = 400mA		0.4	0.6	V
Input current	IIN	$V_{CC} = 6V, V_{IN} = 6V$			200	μΑ
	IENA	$V_{CC} = 6V, ENA = 6V$			200	μΑ
Output sustaining voltage	V _O (SUS)	I _{OUT} = 400mA	9			V
Spark killer diode						
Reverse current	I _S (leak)	V_{CC} 1, V_{S} = 7V			30	μA
Forward voltage	V _{SF}	I _{OUT} = 400mA			1.7	V

Package Dimensions

unit : mm (typ) 3111A

Pin Assignment

Note: Both GND pins should be connected to ground.

Block Diagram

Note: As long as the voltages applied to V_{CC}, V_S1, V_S2, ENA1, ENA2, IN1, and IN2 are within the limits set by the absolute maximum ratings, there are no restrictions on the relationship of each voltage level in comparison with the others (regarding which is higher or lower). (ex. V_{CC} = 3V, V_S1, 2 = 2V, ENA = IN = 5V)

Truth Table

IN1,2	ENA1,2	OUT1,3	OUT2,4	Mode
L	Н	Н	L	Forward
н	Н	L	Н	Reverse
L	L	OFF	OFF	Standby
Н	L	OFF	OFF	Standby

Vcont pin

As shown in the left diagram, the Vcont pin outputs the voltage of the band gap Zener V_Z +V_F (= 1.93V).

In normal use, this pin is left open.

The drive current I_D is varied by the V cont voltage. However, because the band gap Zener is shared, it functions as a bridge.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. SCILLC strives to supply high-quality high-reliability products and recommends adopting safety measures when designing equipment to avoid accidents or malfunctions. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design, "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals," must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights on the rights of others. SCILLC ordesigned, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application, in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unithended or unauthorized application, Buyer shall indemnify and hold SCILLC and is officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended our unauthorized use, even if such claim alleges that SCILLC was negligent regar

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

- N. American Technical Support: 800-282-9855 Toll Free USA/Canada
- USA/Canada Europe, Middle East and Africa Technical Support: Orde
- Phone: 421 33 790 2910 Japan Customer Focus Center
- Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative