

L9349

QUAD INTELLIGENT POWER LOW SIDE SWITCH

- Quad power low side driver with 2 x 5A and 2 x 3A output current capability
- Low R_{DSON} typically 200mΩ and 300mΩ
 @ T_i = 25°C
- Internal output clamping structures with V_{FB} = 50V for fast inductive load current recirculation
- Limited output voltage slew rate for low EMI
- Protected µP compatible enable and input
- Wide operating supply voltage range 4.5V to 32V
- Real time diagnostic functions:
 - Output shorted to GND
 - Output shorted to V_{SS}
 - Open load detection in ON and OFF condition
 - Load bypass detection
 - Overtemperature detection
- Device protection functions:
 - Overload disable

BLOCK DIAGRAM

- Selective thermal shutdown
- Signal- and Power-Ground-loss shutdown

DESCRIPTION

The L9349 is a monolithic integrated quad low side driver realized in an advanced MultipowerBCD mixed technology. The device is intended to drive valves in automotive environment.

The inputs are μP compatible. Particular care has been taken to protect the device against failures, to avoid electromagnetic interferences and to offer extensive real time diagnostic.

IN1 D1 Channel 1 OUT1 ΕN vs \$ 52V Output Control OUT4 IN4 Π Overtemp ¢ Delay Time Q Overload D4 Diagnostic Control Openload Channel 4 IN2 Channel 2 OUT2 D2 f Channel 3 OUT3 IN3 D3 GND 00AT0025

September 2002

L9349

PIN CONNECTION

PIN DESCRIPTION

N°	Pin	Function
1	PGND	Power Ground
2	Out1	Output 1 (5A)
3	D1	Diagnostic 1
4	IN4	Input 4
5	VS	Supply Voltage
6	NC	Not Connected
7	IN3	Input 3
8	D2	Diagnostic 2
9	Out2	Output 2 (5A)
10	PGND	Power Ground
11	PGND	Power Ground
12	Out3	Output 3 (3A)
13	D3	Diagnostic 3
14	IN2	Input 2
15	GND	Signal Ground
16	EN	Common Enable
17	IN1	Input 1
18	D4	Diagnostic 4
19	Out4	Output 4 (3A)
20	PGND	Power Ground

57

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{Th j-case}	Thermal resistance junction to case	3	°C/W

ABSOLUTE MAXIMUM RATINGSI

Symbol	Parameter	Conditions	Value	Unit
VS	DC Supply Voltage		-0.3 to 32	V
V _{SP}	Supply Voltage Pulse (duration <200ms)		-0.3 to 45	V
dV _S /dt	Supply Voltage Slope		10	V/µs
V _{IN, EN}	Input Voltage	I 10mA	-1.5 to 6	V
VD	Diagnostic DC Output Voltage	I 50mA	-0.3 to 16	V
V _{ODC}	DC Output Voltage		-0.3 to 45	V
I _{O1, 2}	DC Output Current Out 1, 2		5	А
I _{O3, 4}	DC Output Current Out 3, 4		3	Α
I _{OR1, 2}	Reverse Output Current		-5	А
I _{OR3, 4}	Reverse Output Current		-3	Α
E _{O1, 2}	Switch-off Energy for Inductive Loads	$t_{EO} = 250 \mu s,^{1)}$	50	mJ
E _{O3, 4}		T = 5ms	30	mJ
ΔV_{GND}	GND Potential Difference	T _j = -40 to 150°C	±0.3	V
T _{jEO}	Junction Temperature During Switch-off	$\Sigma t \le 30 \text{ min}$	175	°C
		$\Sigma t \le 15 min$	190	°C
Тj	Junction Temperature		-40 to T _{jDIS}	°C
T _{stg}	Storage Temperature		-55 to 150	°C
T _{jDIS}	Thermal Disable Junction Temp. Threshold		180 to 210	°C
ESD	Electrostatical Discharging	MIL883C	+-2	kV
ESD	OUT1 - 4	vs. Common-GND (PGNDs + GND)	+-4	kV

1) t_{EO} is the clamping time (see Figure 1)

Electrical Characteristcs (Operating Range)

The electrical characteristics are valid within the below defined operating range, unless otherwise specified.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
VS	Board Supply Voltage		4.5	12	32	V
T _{j1}	Junction Temperature		-40		150	°C
T _{j2}	Junction Temperature	$\Sigma t \leq 15 min^{-1}$ over life time	150		T _{jDIS}	°C

1) Parameters guaranteed by correlation

ELECTRICAL CHARACTERISTICS

(V_S = 4.5 to 32V; -40°C \leq T_{j1} \leq 150°C < T_{j2} \leq T_{jDIS}, unless other-wise specified.)

Symbol	Parameter	Values T _{j1} Values		Test Conditions	es T _{j2}	Unit		
Symbol	Parameter	lest conditions	Min.	Тур.	Max.	Min.	Max.	Unit
Supply	1	I						
$I_{VS OFF}$	DC Supply Current Off	EN = 1.0V		5	10			mA
I _{VS ON}	DC Supply Current On	$V_S \leq 14V; \ V_{IN}, \ V_{EN} = 2V$		8				mA
Diagnostic	Outputs D1 - D4		I	L				
V _{DL} Diagnostic Output Low Voltage		$I_D \leq 3mA$		0.65	1.0		1.5	V
IDLE	Diagnostic Output Leakage Current	$V_{\rm D} = 14V^{-1}$		0.1	2		20	μA
Outputs O	ut 1 - Out 4		1	1	1			1
RDSON 1, 2	Output On Resistance	$ T_{j} = 25^{\circ}C T_{j} = 150^{\circ}C V_{S} > 9.5V I_{O1,2} = 2A $		200	300 500			mΩ
R _{DSON 3, 4}	$\begin{array}{c} T_{j} = 25^{\circ}C \\ T_{j} = 150^{\circ} \\ V_{S} > 9.5^{\circ} \\ I_{O3,4} = 1. \end{array}$			300	450 750			mΩ
VZ	Z-diode clamping $I_{OCL} \ge 200 \text{mA}$ voltage		45		60			V
R _O	Output pull down resistor	VS > 9.5V EN = 0V	10		40		50	kΩ
V _{OUV 1-4}	Open Load Voltage Threshold	V _{IN} = 1V	0.525 x VS	0.55 x V _S	0.575 x V _S			V
V _{OUV hys} 1- 4	Hysteresis			0.003 x V _S				V
ΔV _{OUV 1-4,} 2-3, 4-1, 3-2	Open Load Difference Voltage Threshold	$\begin{array}{l} V_{\text{IN1,4/2,3}} = 1 V \ V_S \leq 16 V \\ \text{VOc} \ \check{S} \ 4.5 V \\ V_{\text{OC}} = \text{output voltage of} \\ \text{other channel} \end{array}$	V _{OC} - 1.0V	V _{OC} - 1.25V	V _{OC} - 1.5V			V
ΔV _{OUV hys} 1-4, 2-3, 4-1, 3-2	Open Load Hysteresis			40				mV
IOUC 1, 2, 3, 4	Open Load Current Threshold	V _{EN} =V _{IN} =2V; V _S =6.5 - 16V	160	320	480			mA
I _{OOC 1, 2}	Over Load Current	V _S > 6.5V;	5	10				А
IOOC 3, 4	Threshold $V_{out} = 32V$		3	6				А
T _{SD}	Thermal Shut Down		180	195	210			°C
T _{SD-hys}	Thermal Shut Down hysteresis			20				°C

57

ELECTRICAL CHARACTERISTICS (continued) $(V_S = 4.5 \text{ to } 32V; -40^{\circ}C \le T_{j1} \le 150^{\circ}C < T_{j2} \le T_{jDIS}, \text{ unless other-wise specified.})$

Cumula al	Descentar	Test Oser l'illere	Values T _{j1}			Values T _{j2}		
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Min.	Max.	Unit
I _{OUT-LE} OUT leakage current		V _{OUT} = 20V V _S = 0V			5			μA
Inputs IN1-	4, EN	L					1	1
V _{IN,EN L}	Logic Input/Enable Low Voltage		-0.3		1			V
V _{IN,EN H}	Logic Input/Enable IN, EN High Voltage		2.0		6			V
V _{EN,IN hys}	Logic Input Hysteresis		50	100				mV
I _{IN}	Input Sink Current	2V < V _{IN} , V _{EN} < 6V ²⁾	10	20	40			μΑ
I _{EN}	Enable Sink Current	$V_{IN}, V_{EN} < V_{s}$	10	20	40			μΑ
Timing	I	L					1	<u>.</u>
ton	Output Delay ON Time $I_O = 1A$ $V_S = 12V$ $^{(3))}$ Fig. 2			4	25			μs
t _{f,r}	$\begin{array}{c c} \text{Output fall and rise} & I_O = 1A\\ \text{time} & V_S = 12V\\ \text{Fig. 2} \end{array}$		3	10	30			μs
tOFF	Output Delay OFF $I_O = 1A$ Time $V_S = 12V$ ³⁾ Fig. 2		5	15	30			μs
t _{DH-L,} Diag	Diag. Delay Output OFF Time	³⁾ Fig. 2	8		65		90	μs
td IOU	Diagnostic Open Load Delay Time	9V< V _S <16V, Fig 3		8	50			μs
t _{DOL}	Diagnostic Overload Delay Switch-OFF Time	9V< V _S <16V, Fig 3	6		65			μs
t _{filt}	Filter time		4		24			μs
PGND	1	1	L	L	1	1	1	1
PGND _{loss,h}	Power GND loss threshold high			3				V
PGND _{loss,I}	Power GND loss threshold low			2				V

1) The diagnostic output is short circuit protected up to V_{D} = 16V

2) Open pins (EN, IN) are detected as low

 V_S = 9 to 16V \wedge $I_{OUC} \leq I_O \leq I_{OOC}$ 3)

DIAGNOSTIC TABLE

Cond	Conditions			OUT	DIAG.
Normal	Normal Function			off	L
				off	L
		Н	Н	on	Н
GND short	V _{Otyp} < 0.55VS	L	Х	off	Н
Load bypass	$\Delta V_{O1\text{-}4/2\text{-}3} \geq 1.25 V$	Н	L	off	Н
Open Load	I _{O1,2,3,4typ} < 320mA	Н	Н	on	L
T _{jtyp} ≥ 190°C 0	Dvertemperature	Х	Х	off	L
Over Load	I _{Omin 1,2} > 5A I _{Omin 3,4} > 3A	Н	Н	off	L
SGND or PGND loss	channel off	Х	L	off	Н
SGND or PGND loss	channel on	Н	Н	off	L

CIRCUIT DESCRIPTION

The L9349 is a quad low side driver for inductive loads like valves in automotive environment. The internal pull down current sources at the ENable and INput pins assure in case of open input conditions that the device is switched off. An output voltage slope limitation for du/dt is implemented to reduce the EMI. An integrated active flyback voltage limitation clamps the output voltage during the flyback phase to 50 V.

Each driver is protected against short circuit at $V_{OUT} < 32V$ and thermal overload. In short circuit condition the output will be disabled after a short delay time t_{DOL} . The thermal disable for $T_J > 180^{\circ}C$ of the output will be reset if the junction temperature decreases about 20°C below the disable threshold temperature.

The overtemperature, overload and groundloss information is stored until IN is low.

For the real time error diagnosis the voltage and the current of the outputs are compared with internal fixed values V_{OUV} for OFF and I_{OUC} for ON conditions to recognize open load ($R_L \ge 20K\Omega$, $R_L > 38\Omega$) in OFF and ON conditions.

Also the output voltages V_{O1-4} are compared to each other output in OFF condition with a fixed offset of ΔV_{OUV} to recognize load bypasses. The ΔV_{OUV} diagnoses is suppressed during the flyback phases of the compared output. The outputs 1 and 4 are compared for ΔV_{OUV} and also outputs 2 and 3 are compared.

The diagnostic output level in connection with different ENable and INput conditions allows to recognize different fail states, like overtemp, short to V_S , short to GND, bypass to GND and disconnected load (see diagnostic table).

The diagnostic output is protected against short circuit. Exceeding the over load current threshold I_{OOC} , the output current will be limited internally during the diagnostic overload delay switch-off time t_{DOL} .

The device complies the I_{SO} pulses imposed to the supply voltage of the valves without any failures of the functionality. Therefore some diagnostic functions are internal filtered. The following table shows the corresponding filter time for each detected signal.

έτ/

	ON State EN and IN = HIGH	OFF State EN or IN, = LOW	min. Filter time	Reset done by
Overloading of output (also shorted load to supply)	Х		4µs	INx = "LOW"
Open load (under voltage detection)		Х	-	
Open load (under current detection)	Х		-	
Overtemperature	Х		4µs	INx = "LOW"
Power-Signal GND-loss	Х		4μs	INx = "LOW"
Power- Signal-GND-loss		Х	4µs	
Openload difference		Х	4µs	

Figure 1. t_{EO} Clamping Time

Figure 2. Output Slope (resistive load for testing)

57

Figure 5. Logic Diagram

57

DIM.		mm			inch	
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			3.6			0.142
a1	0.1		0.3	0.004		0.012
a2			3.3			0.130
a3	0		0.1	0.000		0.004
b	0.4		0.53	0.016		0.021
С	0.23		0.32	0.009		0.013
D (1)	15.8		16	0.622		0.630
D1	9.4		9.8	0.370		0.386
Е	13.9		14.5	0.547		0.570
е		1.27			0.050	
e3		11.43			0.450	
E1 (1)	10.9		11.1	0.429		0.437
E2			2.9			0.114
E3	5.8		6.2	0.228		0.244
G	0		0.1	0.000		0.004
Н	15.5		15.9	0.610		0.626
h			1.1			0.043
L	0.8		1.1	0.031		0.043
Ν			8° (1	typ.)		
S			8° (n	nax.)		
Т		10			0.394	

OUTLINE AND MECHANICAL DATA

(1) "D and E1" do not include mold flash or protusions.
Mold flash or protusions shall not exceed 0.15mm (0.006")
Critical dimensions: "E", "G" and "a3".

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics © 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com