

ISP1105/1106

Advanced USB transceivers Rev. 10 — 28 September 2009

Product data sheet

General description 1.

The ISP1105/1106 range of Universal Serial Bus (USB) transceivers are compliant with the Universal Serial Bus Specification Rev. 2.0. They can transmit and receive serial data at both full-speed (12 Mbit/s) and low-speed (1.5 Mbit/s) data rates. The ISP1105/1106 range can be used as a USB device transceiver or a USB host transceiver.

They allow USB Application Specific ICs (ASICs) and Programmable Logic Devices (PLDs) with power supply voltages from 1.65 V to 3.6 V to interface with the physical layer of the Universal Serial Bus. They have an integrated 5 V-to-3.3 V voltage regulator for direct powering via the USB supply V_{BUS}.

ISP1105 allows single-ended and differential input modes selectable by a MODE input and it is available in HVQFN16 and HBCC16 packages. ISP1106 allows only differential input mode and is available in both TSSOP16 and HBCC16 packages.

The ISP1105/1106 are ideal for portable electronics devices such as mobile phones, digital still cameras, Personal Digital Assistants (PDA) and Information Appliances (IA).

2. **Features**

- Complies with Universal Serial Bus Specification Rev. 2.0
- Can transmit and receive serial data at both full-speed (12 Mbit/s) and low-speed (1.5 Mbit/s) data rates
- Integrated bypassable 5 V-to-3.3 V voltage regulator for powering via USB V_{BUS}
- V_{BUS} disconnection indication through VP and VM
- Used as a USB device transceiver or a USB host transceiver
- Stable RCV output during SE0 condition
- Two single-ended receivers with hysteresis
- Low-power operation
- Supports an I/O voltage range from 1.65 V to 3.6 V
- ±12 kV ESD protection at the D+, D-, V_{CC(5.0)} and GND pins
- Full industrial operating temperature range from -40 °C to +85 °C
- Available in small HBCC16, HVQFN16 (only ISP1105) and TSSOP16 (only ISP1106) packages

The ISP1105 HBCC16 and HVQFN16 are lead-free and halogen-free. The ISP1106 HBCC16 is lead-free.

3. Applications

- Portable electronic devices, such as:
 - Mobile phone
 - Digital still camera
 - Personal Digital Assistant (PDA)
 - Information Appliance (IA).

4. Ordering information

Table 1.Ordering information

Commercial product code	Package description	Packing	Minimum sellable quantity
ISP1105BSTM	HVQFN16; 16 terminals; body $3 \times 3 \times 0.85$ mm	13 inch tape and reel non-dry pack	6000 pieces
ISP1105WTS	HBCC16; 16 terminals; body $3 \times 3 \times 0.65$ mm	7 inch tape and reel non-dry pack	1400 pieces
ISP1105WTM	HBCC16; 16 terminals; body $3 \times 3 \times 0.65$ mm	13 inch tape and reel non-dry pack	6000 pieces
ISP1106WTS	HBCC16; 16 terminals; body $3 \times 3 \times 0.65$ mm	7 inch tape and reel non-dry pack	1400 pieces
ISP1106DHTM	TSSOP16; 16 leads; body width 4.4 mm	13 inch tape and reel non-dry pack	2500 pieces

4.1 Ordering options

Table 2.	Selection guide	
Product	Package	Description
ISP1105	HVQFN16 and HBCC16	supports both single-ended and differential input modes; see <u>Table 5</u> and <u>Table 6</u> .
ISP1106	TSSOP16 and HBCC16	supports only the differential input mode; see <u>Table 6</u> .

Advanced USB transceivers

5. Block diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Symbol ^[1]	Pin				Туре	Description
-	ISP110	5	ISP110	6	-	
	BSTM		DHTM	WTS	_	
OE	1	1	3	1	I	output enable input (CMOS level with respect to $V_{CC(I/O)}$, active LOW) enables the transceiver to transmit data on the USB bus input pad; push pull; CMOS
RCV	2	2	4	2	0	differential data receiver output (CMOS level with respect to $V_{CC(I/O)}$): driven LOW when input SUSPND is HIGH; the output state of RCV is preserved and stable during an SE0 condition
		_		_	~	output pad; push pull; 4 mA output drive; CMOS
VP	3	3	5	3	0	single-ended D+ receiver output (CMOS level with respect to $V_{CC(I/O)}$) for external detection of single-ended zero (SE0), error conditions, speed of connected device; driven HIGH when no supply voltage is connected to $V_{CC(5.0)}$ and $V_{reg(3.3)}$
					_	output pad; push pull; 4 mA output drive; CMOS
VM	4	4	6	4	0	single-ended D– receiver output (CMOS level with respect to V _{CC(I/O)}) for external detection of single-ended zero (SE0), error conditions, speed of connected device; driven HIGH when no supply voltage is connected to V _{CC(5.0)} and V _{reg(3.3)}
						output pad; push pull; 4 mA output drive; CMOS
SUSPND	5	5	7	5	I	suspend input (CMOS level with respect to $V_{CC(I/O)}$); a HIGH level enables low-power state while the USB bus is inactive and drives output RCV to a LOW level
						input pad; push pull; CMOS
MODE	6	6	-	-	I	mode input (CMOS level with respect to $V_{CC(I/O)}$); a HIGH level enables the differential input mode (VPO, VMO) whereas a LOW level enables a single-ended input mode (VO, FSE0); see <u>Table 5</u> and <u>Table 6</u>
						input pad; push pull; CMOS
GND	die pad	die pad	8	6	-	ground supply ^[2]
V _{CC(I/O)}	7	7	9	7	-	supply voltage for digital I/O pins (1.65 V to 3.6 V). When V _{CC(I/O)} is not connected, the (D+, D–) pins are in three-state; this supply pin is totally independent of V _{CC(5.0)} and V _{reg(3.3)} and must never exceed the V _{reg(3.3)} voltage
SPEED	8	8	10	8	I	speed selection input (CMOS level with respect to $V_{CC(I/O)}$); adjusts the slew rate of differential data outputs D+ and D– according to the transmission speed
						LOW — low-speed (1.5 Mbit/s)
						HIGH — full-speed (12 Mbit/s)
						input pad; push pull; CMOS
D-	9	9	11	9	AI/O	negative USB data bus connection (analog, differential); for low-spee mode connect to pin $V_{pu(3.3)}$ via a 1.5 $k\Omega$ resistor
D+	10	10	12	10	AI/O	positive USB data bus connection (analog, differential); for full-speed mode connect to pin $V_{pu(3.3)}$ via a 1.5 k Ω resistor

Advanced USB transceivers

Symbol ^[1]	Pin	Pin			Туре	Description	
	ISP110	5	ISP110	6			
	BSTM	WTS, WTM	DHTM	WTS			
VPO/VO	11	11	-	-	I	driver data input (CMOS level with respect to $V_{CC(I/O)}$, Schmitt trigger)	
VPO	-	-	13	11		see Table 5 and Table 6	
VO	-	-	-	-		input pad; push pull; CMOS	
VMO/FSE0	12	12	-	-	I	driver data input (CMOS level with respect to $V_{CC(I/O)}$, Schmitt trigger)	
VMO	-	-	14	12		see <u>Table 5</u> and <u>Table 6</u>	
FSE0	-	-	-	-		input pad; push pull; CMOS	
V _{reg(3.3)}	13	13	15	13	-	internal regulator option: regulated supply voltage output (3.0 V to 3.6 V) during 5 V operation; a decoupling capacitor of at leas 0.1 μ F is required	
						regulator bypass option: used as a supply voltage input for 3.3 V \pm 10 % operation	
V _{CC(5.0)}	14	14	16	14	-	internal regulator option: supply voltage input (4.0 V to 5.5 V); can be connected directly to USB supply V_{BUS}	
						regulator bypass option: connect to V _{reg(3.3)}	
V _{pu(3.3)}	15	15	1	15	-	pull-up supply voltage (3.3 V \pm 10 %); connect an external 1.5 k Ω resistor on D+ (full-speed) or D– (low-speed); pin function is controlled by input SOFTCON	
						SOFTCON = LOW — $V_{pu(3.3)}$ floating (high impedance); ensures zero pull-up current	
						SOFTCON = HIGH — $V_{pu(3.3)}$ = 3.3 V; internally connected to $V_{reg(3.3)}$	
SOFTCON	16	16	2	16	I	software controlled USB connection input; a HIGH level applies 3.3 V to pin $V_{pu(3.3)}$, which is connected to an external 1.5 k Ω pull-up resistor; this allows USB connect/disconnect signalling to be controlled by software	
						input pad; push pull; CMOS	

 Table 3.
 Pin description ...continued

[1] Symbol names with an overscore (e.g. NAME) indicate active LOW signals.

[2] ISP1105: ground terminal is connected to the exposed die pad (heat sink).

7. Functional description

7.1 Function selection

Table 4. Function table

SUSPND	OE	(D+, D–)	RCV	VP/VM	Function
L	L	driving and receiving	active	active	normal driving (differential receiver active)
L	Н	receiving ^[1]	active	active	receiving
Η	L	driving	inactive ^[2]	active	driving during 'suspend' <u>^[3]</u> (differential receiver inactive)
Н	Н	high-Z <mark>[1]</mark>	inactive ^[2]	active	low-power state

[1] Signal levels on (D+, D-) are determined by other USB devices and external pull-up/down resistors.

[2] In 'suspend' mode (SUSPND = HIGH) the differential receiver is inactive and output RCV is always LOW. Out-of-suspend ('K') signalling is detected via the single-ended receivers VP and VM.

[3] During suspend, the slew-rate control circuit of low-speed operation is disabled. The (D+, D–) lines are still driven to their intended states, without slew-rate control. This is permitted because driving during suspend is used to signal remote wake-up by driving a 'K' signal (one transition from idle to 'K' state) for a period of 1 to 15 ms.

7.2 Operating functions

Table 5. Driving function (pin $\overline{OE} = L$) using single-ended input data interface for ISP1105 (pin MODE = L)

FSE0	VO	Data
L	L	differential logic 0
L	Н	differential logic 1
Н	L	SE0
Н	Н	SE0

Table 6.Driving function (pin $\overline{OE} = L$) using differential input data interface for ISP1105
(pin MODE = H) and ISP1106

u u	,	
VMO	VPO	Data
L	L	SE0
L	Н	differential logic 1
Н	L	differential logic 0
Н	Н	illegal state

Table 7. Receiving function (pin $\overline{OE} = H$)

(D+, D–)	RCV	VP ^[1]	VM[1]
Differential logic 0	L	L	Н
Differential logic 1	Н	Н	L
SE0	RCV*[2]	L	L

[1] VP = VM = H indicates the sharing mode ($V_{CC(5.0)}$ and $V_{reg(3.3)}$ are disconnected).

[2] RCV* denotes the signal level on output RCV just before SE0 state occurs. This level is stable during the SE0 period.

7.3 Power supply configurations

The ISP1105/1106 can be used with different power supply configurations, which can be changed dynamically. An overview is given in <u>Table 9</u>.

Normal mode — Both V_{CC(I/O)} and V_{CC(5.0)} or (V_{CC(5.0)} and V_{reg(3.3)}) are connected. For 5 V operation, V_{CC(5.0)} is connected to a 5 V source (4.0 V to 5.5 V). The internal voltage regulator then produces 3.3 V for the USB connections. For 3.3 V operation, both V_{CC(5.0)} and V_{reg(3.3)} are connected to a 3.3 V source (3.0 V to 3.6 V). V_{CC(I/O)} is independently connected to a voltage source (1.65 V to 3.6 V), depending on the supply voltage of the external circuit.

Disable mode — $V_{CC(I/O)}$ is not connected, $V_{CC(5.0)}$ or ($V_{CC(5.0)}$ and $V_{reg(3.3)}$) are connected. In this mode, the internal circuits of the ISP1105/1106 ensure that the (D+, D–) pins are in three-state and the power consumption drops to the low-power (suspended) state level. Some hysteresis is built into the detection of $V_{CC(I/O)}$ lost.

Sharing mode — V_{CC(I/O)} is connected, (V_{CC(5.0)} and V_{reg(3.3)}) are not connected. In this mode, the (D+, D–) pins are made three-state and the ISP1105/1106 allows external signals of up to 3.6 V to share the (D+, D–) lines. The internal circuits of the ISP1105/1106 ensure that virtually no current (maximum 10 μ A) is drawn via the (D+, D–) lines. The power consumption through pin V_{CC(I/O)} drops to the low-power (suspended) state level. Both the VP and VM pins are driven HIGH to indicate this mode. Pin RCV is made LOW. Some hysteresis is built into the detection of V_{reg(3.3)} lost.

Table 8. Pin states in disable or sharing mode

Pins	Disable mode state	Sharing mode state
V _{CC(5.0)} / V _{reg(3.3)}	5 V input / 3.3 V output; 3.3 V input / 3.3 V input	not present
V _{CC(I/O)}	not present	1.65 V to 3.6 V input
V _{pu(3.3)}	high impedance (off)	high impedance (off)
(D+, D–)	high impedance	high impedance
(VP, VM)	invalid ^[1]	Н
RCV	invalid ^[1]	L
Inputs (VO/VPO, FSE0/VMO, SPEED, MODE ^[2] , SUSPND, OE, SOFTCON)	high impedance	high impedance

[1] High impedance or driven LOW.

[2] ISP1105 only.

Table 9. Power supply configuration overview

$V_{CC(5.0)}$ or $V_{reg(3.3)}$	V _{CC(I/O)}	Configuration	Special characteristics				
Connected	connected	normal mode	-				
Connected	not connected	disable mode	(D+, D–) and V _{pu(3.3)} high impedance; VP, VM, RCV: invalid[<u>1]</u>				
Not connected	connected	sharing mode	(D+, D–) and V _{pu(3.3)} high impedance; VP, VM driven HIGH; RCV driven LOW				

[1] High impedance or driven LOW.

ISP1105 1106 10

7.4 Power supply input options

The ISP1105/1106 range has two power supply input options.

Internal regulator — V_{CC(5.0)} is connected to 4.0 V to 5.5 V. The internal regulator is used to supply the internal circuitry with 3.3 V (nominal). The V_{reg(3.3)} pin becomes a 3.3 V output reference.

Regulator bypass — $V_{CC(5.0)}$ and $V_{reg(3.3)}$ are connected to the same supply. The internal regulator is bypassed and the internal circuitry is supplied directly from the $V_{reg(3.3)}$ power supply. The voltage range is 3.0 V to 3.6 V to comply with the USB specification.

The supply voltage range for each input option is specified in Table 10.

Input option	V _{CC(5.0)}	V _{reg(3.3)}	V _{CC(I/O)}
Internal regulator	supply input for internal regulator (4.0 V to 5.5 V)	voltage reference output (3.3 V, 300 μA)	supply input for digital I/O pins (1.65 V to 3.6 V)
Regulator bypass	connected to $V_{reg(3.3)}$ with maximum voltage drop of 0.3 V (2.7 V to 3.6 V)	supply input (3.0 V to 3.6 V)	supply input for digital I/O pins (1.65 V to 3.6 V)

Table 10. Power supply input options

8. Electrostatic discharge (ESD)

8.1 ESD protection

The pins that are connected to the USB connector (D+, D–, V_{CC(5.0)} and GND) have a minimum of ±12 kV ESD protection. The ±12 kV measurement is limited by the test equipment. Capacitors of 4.7 μ F connected from V_{reg(3.3)} to GND and V_{CC(5.0)} to GND are required to achieve this ±12 kV ESD protection (see Figure 6).

8.2 ESD test conditions

A detailed report on test set-up and results is available on request.

9. Limiting values

Table 11. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{CC(5.0)}	supply voltage		-0.5	+6.0	V
V _{CC(I/O)}	I/O supply voltage		-0.5	+4.6	V
V _{reg(3.3)}	regulated supply voltage		-0.5	+4.6	V
VI	DC input voltage		-0.5	$V_{CC(I/O)} + 0.5$	V
l _{lu}	latch-up current	$V_I = -1.8 \text{ V}$ to 5.4 V	-	100	mA
V _{esd}	electrostatic discharge voltage	I _{LI} < 1 μΑ	<u>[1][2]</u>		
		on pins D+, D–, V _{CC(5.0)} and GND	-12000	+12000	V
		on other pins	-2000	+2000	V
T _{stg}	storage temperature		-40	+125	°C

[1] Testing equipment limits measurement to only ± 12 kV. Capacitors needed on V_{CC(5.0)} and V_{reg(3.3)}; see Section 8.

[2] Equivalent to discharging a 100 pF capacitor via a 1.5 k Ω resistor (Human Body Model).

10. Recommended operating conditions

Table 12. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC(5.0)}	supply voltage (internal regulator option)	5 V operation	4.0	5.0	5.5	V
V _{reg(3.3)}	supply voltage (regulator bypass option)	3.3 V operation	3.0	3.3	3.6	V
V _{CC(I/O)}	I/O supply voltage		1.65	-	3.6	V
VI	input voltage		0	-	V _{CC(I/O)}	V
V _{I(AI/O)}	input voltage on analog I/O pins (D+/D–)		0	-	3.6	V
T _{amb}	operating ambient temperatur	e	-40	-	+85	°C

11. Static characteristics

Table 13. Static characteristics: supply pins

 $V_{CC} = 4.0 \text{ V}$ to 5.5 V or $V_{reg(3.3)} = 3.0 \text{ V}$ to 3.6 V; $V_{CC(I/O)} = 1.65 \text{ V}$ to 3.6 V; $V_{GND} = 0 \text{ V}$; see <u>Table 10</u> for valid voltage level combinations; $T_{amb} = -40 \text{ °C}$ to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{reg(3.3)}	regulated supply voltage output	internal regulator option; $I_{load} \leq 300 \ \mu A$	<u>[1][2]</u>	3.0	3.3	3.6	V
I _{CC}	operating supply current	full-speed transmitting and receiving at 12 Mbit/s; $C_L = 50 \text{ pF}$ on D+/D–	[3]	-	4	8	mA
I _{CC(I/O)}	operating I/O supply current	full-speed transmitting and receiving at 12 Mbit/s	[3]	-	1	2	mA
I _{CC(idle)}	supply current during full-speed idle and SE0	full-speed idle: V_{D+} > 2.7 V, V_{D-} < 0.3 V; SE0: V_{D+} < 0.3 V, V_{D-} < 0.3 V	<u>[4]</u>	-	-	500	μΑ
I _{CC(I/O)(static)}	static I/O supply current	full-speed idle, SE0 or suspend		-	-	20	μA
I _{CC(susp)}	suspend supply current	SUSPND = HIGH	[4]	-	-	20	μA
I _{CC(dis)}	disable mode supply current	V _{CC(I/O)} not connected	[4]	-	-	20	μΑ
I _{CC(I/O)} (sharing)	sharing mode I/O supply current	$V_{CC(5.0)} \text{ or } V_{reg(3.3)} \text{ not connected}$		-	-	20	μA
I _{Dx(sharing)}	sharing mode load current on pins D+ and D–	$V_{CC(5.0)}$ or $V_{reg(3.3)}$ not connected; SOFTCON = LOW; $V_{Dx} = 3.6 V$		-	-	10	μA
V _{reg(3.3)th}	regulated supply voltage detection threshold	$\begin{array}{l} 1.65 \ V \leq V_{CC(I/O)} \leq V_{reg(3.3)}; \\ 2.7 \ V \leq V_{reg(3.3)} \leq 3.6 \ V \end{array}$					
		supply lost		-	-	0.8	V
		supply present	[5]	2.4	-	-	V
V _{reg(3.3)hys}	regulated supply voltage detection hysteresis	V _{CC(I/O)} = 1.8 V		-	0.45	-	V
V _{CC(I/O)th}	I/O supply voltage detection	V _{reg(3.3)} = 2.7 V to 3.6 V					
	threshold	supply lost		-	-	0.5	V
		supply present		1.4	-	-	V
V _{CC(I/O)hys}	I/O supply voltage detection hysteresis	V _{reg(3.3)} = 3.3 V		-	0.45	-	V

[1] I_{load} includes the pull-up resistor current via pin $V_{pu(3.3)}$.

[2] In 'suspend' mode, the minimum voltage is 2.7 V.

[3] Maximum value is characterized only, not tested in production.

[4] Excluding any load current and $V_{pu(3.3)}/V_{sw}$ source current to the 1.5 k Ω and 15 k Ω pull-up and pull-down resistors (200 μ A typ.).

[5] When $V_{CC(I/O)}$ < 2.7 V, the minimum value for $V_{th(reg3.3)(present)}$ is 2.0 V.

Table 14. Static characteristics: digital pins $V_{CC(I/O)} = 1.65 \text{ V to } 3.6 \text{ V}; V_{GND} = 0 \text{ V}; T_{amb} = -40 \text{ °C to } +85 \text{ °C}; unless otherwise specified.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC(I/O)} =	1.65 to 3.6 V					
Input leve	ls					
V _{IL}	LOW-level input voltage		-	-	0.3V _{CC(I/O)}	V
V _{IH}	HIGH-level input voltage		0.6V _{CC(I/O)}	-	-	V
Output lev	vels					
V _{OL}	LOW-level output voltage	I _{OL} = 100 μA	-	-	0.15	V
		$I_{OL} = 2 \text{ mA}$	-	-	0.4	V
V _{он}	HIGH-level output voltage	I _{OH} = 100 μA	$V_{CC(I/O)} - 0.15$	-	-	V
		I _{OH} = 2 mA	$V_{CC(I/O)} - 0.4$	-	-	V
Leakage o	current					
I _{LI}	input leakage current		-1	-	+1	μA
Example	1: $V_{CC(I/O)}$ = 1.8 V \pm 0.15 V					
Input leve	()					
V _{IL}	LOW-level input voltage		-	-	0.5	V
V _{IH}	HIGH-level input voltage		1.2	-	-	V
Output lev	vels					
V _{OL}	LOW-level output voltage	I _{OL} = 100 μA	-	-	0.15	V
		$I_{OL} = 2 \text{ mA}$	-	-	0.4	V
V _{он}	HIGH-level output voltage	I _{OH} = 100 μA	1.5	-	-	V
		I _{OH} = 2 mA	1.25	-	-	V
Example	2: $V_{CC(I/O)}$ = 2.5 V \pm 0.2 V					
	2: V _{CC(I/O)} = 2.5 V ± 0.2 V Is					
Input leve	()		-	-	0.7	V
Input leve V _{IL}	LOW-level input voltage			-	0.7	V V
Input level V _{IL} V _{IH}	LOW-level input voltage HIGH-level input voltage		-	-		
Input level V _{IL} V _{IH} Output lev	LOW-level input voltage HIGH-level input voltage		-	- -		
Input level V _{IL} V _{IH} Output lev	LOW-level input voltage HIGH-level input voltage	I _{OL} = 100 μA	- 1.7	-	- 0.15	V V
Input level V _{IL} V _{IH} Output lev V _{OL}	LOW-level input voltage HIGH-level input voltage Vels LOW-level output voltage	$\frac{I_{OL} = 100 \ \mu A}{I_{OL} = 2 \ mA}$	- 1.7 -	-	-	V V V
Input level V _{IL} V _{IH} Output lev V _{OL}	LOW-level input voltage HIGH-level input voltage	I _{OL} = 100 μA I _{OL} = 2 mA I _{OH} = 100 μA	- 1.7 - - 2.15	-	- 0.15 0.4	V V V V
Input level V _{IL} V _{IH} Output lev V _{OL} V _{OH}	LOW-level input voltage HIGH-level input voltage LOW-level output voltage HIGH-level output voltage	$\frac{I_{OL} = 100 \ \mu A}{I_{OL} = 2 \ mA}$	- 1.7 -	-	- 0.15 0.4	V V V
Input level V _{IL} V _{IH} Output lev V _{OL} Voн	LOW-level input voltage HIGH-level input voltage LOW-level output voltage HIGH-level output voltage	I _{OL} = 100 μA I _{OL} = 2 mA I _{OH} = 100 μA	- 1.7 - - 2.15	-	- 0.15 0.4	V V V V
Input level V _{IL} V _{IH} Output lev V _{OL} V _{OH} Example Input level	IS LOW-level input voltage HIGH-level input voltage LOW-level output voltage HIGH-level output voltage 3: V _{CC(I/O)} = 3.3 V ± 0.3 V IS	I _{OL} = 100 μA I _{OL} = 2 mA I _{OH} = 100 μA	- 1.7 - - 2.15	-	- 0.15 0.4 - -	V V V V
Input level V _{IL} Output lev V _{OL} Example Input level V _{IL}	LOW-level input voltage HIGH-level input voltage LOW-level output voltage HIGH-level output voltage 3: V _{CC(I/O)} = 3.3 V ± 0.3 V LOW-level input voltage	I _{OL} = 100 μA I _{OL} = 2 mA I _{OH} = 100 μA	- 1.7 - 2.15 1.9	- - -	- 0.15 0.4	V V V V
Input level V _{IL} V _{IH} Output lev V _{OL} V _{OH} Example Input level V _{IL} V _{IH}	IS LOW-level input voltage HIGH-level input voltage LOW-level output voltage HIGH-level output voltage 3: V _{CC(I/O)} = 3.3 V ± 0.3 V IS LOW-level input voltage HIGH-level input voltage	I _{OL} = 100 μA I _{OL} = 2 mA I _{OH} = 100 μA	- 1.7 - - 2.15 1.9		- 0.15 0.4 - -	V V V V
Input level V _{IL} Output lev V _{OL} VOH Example Input level V _{IL} VIH Output level	IS LOW-level input voltage HIGH-level input voltage LOW-level output voltage HIGH-level output voltage 3: V _{CC(I/O)} = 3.3 V ± 0.3 V IS LOW-level input voltage HIGH-level input voltage	$I_{OL} = 100 \ \mu A$ $I_{OL} = 2 \ m A$ $I_{OH} = 100 \ \mu A$ $I_{OH} = 2 \ m A$	- 1.7 - 2.15 1.9		- 0.15 0.4 - - 0.9 -	V V V V V
Input level VIL VIH Output lev VoL VoH Example Input level VIL VIH Output lev	IS LOW-level input voltage HIGH-level input voltage LOW-level output voltage HIGH-level output voltage 3: V _{CC(I/O)} = 3.3 V ± 0.3 V IS LOW-level input voltage HIGH-level input voltage	$I_{OL} = 100 \ \mu A$ $I_{OL} = 2 \ m A$ $I_{OH} = 100 \ \mu A$ $I_{OH} = 2 \ m A$ $I_{OH} = 100 \ \mu A$	- 1.7 - 2.15 1.9 - 2.15 - 2.15 -	- - - -	- 0.15 0.4 - - 0.9 - 0.15	V V V V V V
Input level V _{IL} V _{IH} Output lev V _{OL} VOH Example Input level V _{IL} VIH Output lev VoL	IS LOW-level input voltage HIGH-level input voltage Vels LOW-level output voltage HIGH-level output voltage 3: V _{CC(VO)} = 3.3 V ± 0.3 V IS LOW-level input voltage HIGH-level input voltage Vels LOW-level output voltage	$I_{OL} = 100 \ \mu A$ $I_{OL} = 2 \ m A$ $I_{OH} = 100 \ \mu A$ $I_{OH} = 2 \ m A$ $I_{OL} = 2 \ m A$	- 1.7 - 2.15 1.9 - 2.15 - 2.15 -	- - - - - -	- 0.15 0.4 - - 0.9 - 0.15 0.4	V V V V V V V V V
Input level V _{IL} V _{IH} Output lev V _{OL} VOH Example Input level V _{IL} VIH Output lev VoL	IS LOW-level input voltage HIGH-level input voltage LOW-level output voltage HIGH-level output voltage 3: V _{CC(I/O)} = 3.3 V ± 0.3 V IS LOW-level input voltage HIGH-level input voltage	$I_{OL} = 100 \ \mu A$ $I_{OL} = 2 \ m A$ $I_{OH} = 100 \ \mu A$ $I_{OH} = 2 \ m A$ $I_{OL} = 2 \ m A$ $I_{OL} = 100 \ \mu A$ $I_{OL} = 2 \ m A$ $I_{OL} = 100 \ \mu A$	- 1.7 - 2.15 1.9 - 2.15 1.9 - 2.15 - 2.15 - 2.85	- - - - - - - - - - - - - - - - -	- 0.15 0.4 - - 0.9 - 0.15 0.4 -	V V V V V V V V V V
Input level V _{IL} V _{IH} Output lev V _{OL} V _{OH} Example Input level V _{IL} V _{IH} Output lev V _{OL} V _{OH}	IS LOW-level input voltage HIGH-level input voltage KOW-level output voltage HIGH-level output voltage S: V _{CC(I/O)} = 3.3 V ± 0.3 V IS LOW-level input voltage HIGH-level input voltage KOW-level output voltage HIGH-level output voltage	$I_{OL} = 100 \ \mu A$ $I_{OL} = 2 \ m A$ $I_{OH} = 100 \ \mu A$ $I_{OH} = 2 \ m A$ $I_{OL} = 2 \ m A$	- 1.7 - 2.15 1.9 - 2.15 - 2.15 -	- - - - - - - -	- 0.15 0.4 - - 0.9 - 0.15 0.4	V V V V V V V V V
Input level V _{IL} V _{IH} Output lev V _{OL} V _{OH}	IS LOW-level input voltage HIGH-level input voltage KOW-level output voltage HIGH-level output voltage S: V _{CC(I/O)} = 3.3 V ± 0.3 V IS LOW-level input voltage HIGH-level input voltage KOW-level output voltage HIGH-level output voltage	$I_{OL} = 100 \ \mu A$ $I_{OL} = 2 \ m A$ $I_{OH} = 100 \ \mu A$ $I_{OH} = 2 \ m A$ $I_{OL} = 2 \ m A$ $I_{OL} = 100 \ \mu A$ $I_{OL} = 2 \ m A$ $I_{OL} = 100 \ \mu A$	- 1.7 - 2.15 1.9 - 2.15 1.9 - 2.15 - 2.15 - 2.85	- - - - - - - - - - - - - - - - -	- 0.15 0.4 - - 0.9 - 0.15 0.4 -	V V V V V V V V V V

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
Input level	S						
Differential	receiver						
V _{DI}	differential input sensitivity	$ V_{I(D+)}-V_{I(D-)} $		0.2	-	-	V
V _{CM}	differential common mode voltage	includes V _{DI} range		0.8	-	2.5	V
Single-ende	ed receiver						
VIL	LOW-level input voltage			-	-	0.8	V
V _{IH}	HIGH-level input voltage			2.0	-	-	V
V _{hys}	hysteresis voltage			0.4	-	0.7	V
Output lev	els						
V _{OL}	LOW-level output voltage	R_L = 1.5 k Ω to +3.6 V		-	-	0.3	V
V _{OH}	HIGH-level output voltage	R_L = 15 k Ω to GND	<u>[1]</u>	2.8	-	3.6	V
Leakage c	urrent						
I _{LZ}	OFF-state leakage current			-1	-	+1	μA
Capacitanc	e						
C _{IN}	transceiver capacitance	pin to GND		-	-	20	pF
Resistance	•						
Z _{DRV}	driver output impedance	steady-state drive	[2]	34	39	44	Ω
Z _{INP}	input impedance			10	-	-	MΩ
R _{SW}	internal switch resistance at pin $V_{\text{pu}(3.3)}$			-	-	10	Ω
Terminatio	n						
V _{TERM}	termination voltage for upstream port pull-up (R _{PU})		<u>[3][4]</u>	3.0	-	3.6	V

Table 15. Static characteristics: analog I/O pins (D+, D–)

[1] $V_{OH(min)} = V_{reg(3.3)} - 0.2 V.$

[2] Includes external resistors of 33 $\Omega \pm 1$ % on both D+ and D-.

[3] This voltage is available at pins $V_{reg(3.3)}$ and $V_{pu(3.3)}$.

[4] In 'suspend' mode the minimum voltage is 2.7 V.

12. Dynamic characteristics

Table 16. Dynamic characteristics: analog I/O pins (D+, D-)

 $V_{CC} = 4.0 \text{ V to } 5.5 \text{ V or } V_{reg(3.3)} = 3.0 \text{ V to } 3.6 \text{ V}; V_{CC(I/O)} = 1.65 \text{ V to } 3.6 \text{ V}; V_{GND} = 0 \text{ V}; \text{ see } \underline{\text{Table 10}}$ for valid voltage level combinations; $T_{amb} = -40 \text{ °C to } +85 \text{ °C};$ unless otherwise specified.[1]

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
Driver cha	aracteristics						
Full-speed	I mode						
t _{FR}	rise time	C_L = 50 pF to 125 pF; 10 % to 90 % of $ V_{OH}-V_{OL} ;$ see $\underline{Figure~7}$		4	-	20	ns
t _{FF}	fall time	C_L = 50 pF to 125 pF; 90 % to 10 % of $ V_{OH}-V_{OL} ;$ see $\underline{Figure~7}$		4	-	20	ns
FRFM	differential rise/fall time matching (t _{FR} /t _{FF})	excluding the first transition from idle state		90	-	111.1	%
V _{CRS}	output signal crossover voltage	excluding the first transition from idle state; see Figure 10	[2]	1.3	-	2.0	V
Low-speed	d mode						
t _{LR}	rise time	C_L = 50 pF to 600 pF; 10 % to 90 % of $ V_{OH}-V_{OL} ;$ see <u>Figure 7</u>		75	-	300	ns
t _{LF}	fall time	C_L = 50 pF to 600 pF; 90 % to 10 % of $ V_{OH}-V_{OL} ;$ see $\underline{Figure~7}$		75	-	300	ns
LRFM	differential rise/fall time matching (t _{LR} /t _{LF})	excluding the first transition from idle state		80	-	125	%
V _{CRS}	output signal crossover voltage	excluding the first transition from idle state; see Figure 10	[2]	1.3	-	2.0	V
Driver tim	ing						
Full-speed	l mode						
t _{PLH(drv)}	driver propagation delay (VO/VPO, FSE0/VMO to D+,D-)	LOW-to-HIGH; see Figure 10		-	-	18	ns
t _{PHL(drv)}	driver propagation delay (VO/VPO, FSE0/VMO to D+,D–)	HIGH-to-LOW; see Figure 10		-	-	18	ns
t _{PHZ}	driver disable delay (\overline{OE} to D+,D–)	HIGH-to-OFF; see Figure 8		-	-	15	ns
t _{PLZ}	driver disable delay (OE to D+,D–)	LOW-to-OFF; see Figure 8		-	-	15	ns
t _{PZH}	driver enable delay (OE to D+,D–)	OFF-to-HIGH; see Figure 8		-	-	15	ns
t _{PZL}	driver enable delay (OE to D+,D–)	OFF-to-LOW; see Figure 8		-	-	15	ns
Low-speed	d mode						

Not specified: low-speed delay timings are dominated by the slow rise/fall times t_{LR} and t_{LF}.

Table 16. Dynamic characteristics: analog I/O pins (D+, D-) ... continued

 $V_{CC} = 4.0 \text{ V}$ to 5.5 V or $V_{reg(3.3)} = 3.0 \text{ V}$ to 3.6 V; $V_{CC(I/O)} = 1.65 \text{ V}$ to 3.6 V; $V_{GND} = 0 \text{ V}$; see <u>Table 10</u> for valid voltage level combinations; $T_{amb} = -40 \text{ °C}$ to +85 °C; unless otherwise specified.[1]

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Receiver	timings (full-speed and	low-speed mode)				
Differentia	l receiver					
t _{PLH(rcv)}	propagation delay (D+,D– to RCV)	LOW-to-HIGH; see Figure 9	-	-	15	ns
t _{PHL(rcv)}	propagation delay (D+,D– to RCV)	HIGH-to-LOW; see Figure 9	-	-	15	ns
Single-end	ded receiver					
t _{PLH(se)}	propagation delay (D+,D– to VP, VM)	LOW-to-HIGH; see Figure 9	-	-	18	ns
t _{PHL(se)}	propagation delay (D+,D– to VP, VM)	HIGH-to-LOW; see Figure 9	-	-	18	ns

[1] Test circuit: see Figure 13.

[2] Characterized only, not tested. Limits guaranteed by design.

13. Test information

14. Package outline

Fig 14. HBCC16 package outline.

HVQFN16: plastic thermal enhanced very thin quad flat package; no leads; 16 terminals; body 3 x 3 x 0.85 mm

Fig 15. HVQFN16 package outline.

ISP1105_1106_10

ISP1105/1106 Advanced USB transceivers

Fig 16. TSSOP16 package outline.

ISP1105_1106_10

15. Revision history

Table 17. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
ISP1105_1106_10	20090928	Product data sheet	-	ISP1105_1106_9
Modifications:	Rebrande	d to the ST-Ericsson template.		
	Section 2	"Features": updated.		
	Section 4	"Ordering information": updated.		
	 Removed 	packing information.		
	 Removed 	soldering information.		
ISP1105_1106_9	20090119	Product data sheet	-	ISP1105_1106-08
ISP1105_1106-08 (9397 750 09529)	20040219	Product data	-	ISP1105_1106_1107-07
SP1105_1106_1107-07 9397 750 08872)	20020329	Product data	-	ISP1105_1106_1107-06
SP1105_1106_1107-06 (9397 750 08681)	20011130	Product data	-	ISP1105_1106_1107-05
SP1105_1106_1107-05 9397 750 08643)	20010903	Product data	-	ISP1105_1106_1107-04
SP1105_1106_1107-04 9397 750 08515)	20010802	Preliminary data	-	ISP1105_1106_1107-03
SP1105_1106_1107-03 9397 750 07879)	20010704	Preliminary data	-	ISP1107-02
SP1107-02 9397 750 06899)	20010205	Objective specification; ISP1107 stand-alone data sheet only	-	ISP1107-01
SP1107-01 9397 750 08643)	20000223	Objective specification; ISP1107 stand-alone data sheet only		-

16. Tables

Table 1.	Ordering information
Table 2.	Selection guide
Table 3.	Pin description
Table 4.	Function table
Table 5.	Driving function (pin $\overline{OE} = L$) using single-ended
	input data interface for ISP1105
	(pin MODE = L)
Table 6.	Driving function (pin $\overline{OE} = L$) using differential
	input data interface for ISP1105 (pin MODE = H)
	and ISP11067
Table 7.	Receiving function (pin $\overline{OE} = H$)7
Table 8.	Pin states in disable or sharing mode8
Table 9.	Power supply configuration overview8
Table 10.	Power supply input options
Table 11.	Limiting values11
Table 12.	Recommended operating conditions11
Table 13.	Static characteristics: supply pins12
Table 14.	Static characteristics: digital pins
Table 15.	Static characteristics: analog I/O pins (D+, D–) 14
Table 16.	Dynamic characteristics: analog I/O pins
	(D+, D–)
Table 17.	Revision history21

17. Figures

Fig 1.	Block diagram (combined ISP1105 and ISP1106). 3
Fig 2.	Pin configuration ISP1105BSTM (HVQFN)4
Fig 3.	Pin configuration ISP1105WTS and ISP1105WTM
	(HBCC16)4
Fig 4.	Pin configuration ISP1106DHTM (TSSOP16)4
Fig 5.	Pin configuration ISP1106WTS (HBCC16)4
Fig 6.	Human Body ESD test model10
Fig 7.	Rise and fall times
Fig 8.	Timing of \overline{OE} to D+, D16
Fig 9.	Timing of D+, D- to RCV, VP, VM
Fig 10.	Timing of VO/VPO, FSE0/VMO to D+, D16
Fig 11.	Load for enable and disable times
Fig 12.	Load for VM, VP and RCV17
Fig 13.	Load for D+, D17
Fig 14.	HBCC16 package outline
Fig 15.	HVQFN16 package outline
Fig 16.	TSSOP16 package outline

18. Contents

1	General description 1
2	Features 1
3	Applications 2
4	Ordering information 2
4.1	Ordering options 2
5	Block diagram 3
6	Pinning information 4
6.1	Pinning 4
6.2	Pin description 5
7	Functional description 7
7.1	Function selection7
7.2	Operating functions 7
7.3	Power supply configurations
7.4	Power supply input options
8	Electrostatic discharge (ESD) 10
8.1	Electrostatic discharge (ESD).10ESD protection10
•	Electrostatic discharge (ESD)10ESD protection10ESD test conditions10
8.1	Electrostatic discharge (ESD).10ESD protection10
8.1 8.2	Electrostatic discharge (ESD)10ESD protection10ESD test conditions10
8.1 8.2 9	Electrostatic discharge (ESD). 10 ESD protection 10 ESD test conditions 10 Limiting values. 11
8.1 8.2 9 10	Electrostatic discharge (ESD)10ESD protection10ESD test conditions10Limiting values11Recommended operating conditions11
8.1 8.2 9 10 11	Electrostatic discharge (ESD)10ESD protection10ESD test conditions10Limiting values11Recommended operating conditions11Static characteristics12
8.1 8.2 9 10 11 12	Electrostatic discharge (ESD)10ESD protection10ESD test conditions10Limiting values11Recommended operating conditions11Static characteristics12Dynamic characteristics15
8.1 8.2 9 10 11 12 13	Electrostatic discharge (ESD)10ESD protection10ESD test conditions10Limiting values11Recommended operating conditions11Static characteristics12Dynamic characteristics15Test information17
8.1 8.2 9 10 11 12 13 14	Electrostatic discharge (ESD)10ESD protection10ESD test conditions10Limiting values11Recommended operating conditions11Static characteristics12Dynamic characteristics15Test information17Package outline18
8.1 8.2 9 10 11 12 13 14 15	Electrostatic discharge (ESD)10ESD protection10ESD test conditions10Limiting values11Recommended operating conditions11Static characteristics12Dynamic characteristics15Test information17Package outline18Revision history21
8.1 8.2 9 10 11 12 13 14 15 16	Electrostatic discharge (ESD)10ESD protection10ESD test conditions10Limiting values11Recommended operating conditions11Static characteristics12Dynamic characteristics15Test information17Package outline18Revision history21Tables22

ISP1105/1106

Advanced USB transceivers

Please Read Carefully:

The contents of this document are subject to change without prior notice. ST-Ericsson makes no representation or warranty of any nature whatsoever (neither expressed nor implied) with respect to the matters addressed in this document, including but not limited to warranties of merchantability or fitness for a particular purpose, interpretability or interoperability or, against infringement of third party intellectual property rights, and in no event shall ST-Ericsson be liable to any party for any direct, indirect, incidental and or consequential damages and or loss whatsoever (including but not limited to monetary losses or loss of data), that might arise from the use of this document or the information in it.

ST-Ericsson and the ST-Ericsson logo are trademarks of the ST-Ericsson group of companies or used under a license from STMicroelectronics NV or Telefonaktiebolaget LM Ericsson.

All other names are the property of their respective owners.

© ST-Ericsson, 2009 - All rights reserved

Contact information at www.stericsson.com under Contacts

www.stericsson.com

ISP1105_1106_10

Product data sheet