

Order

Now

INA818

SBOS894-APRIL 2019

INA818 35-μV Offset, 8-nV/√Hz Noise, Low-Power, Precision Instrumentation Amplifier

Technical

Documents

1 Features

- Low offset voltage: 10 μV (typ), 35 μV (max)
- Gain drift: 5 ppm/°C (G = 1), 35 ppm/°C (G > 1) (max)
- Noise: 8 nV/√Hz
- Bandwidth: 2 MHz (G = 1), 270 kHz (G = 100)
- Stable with 1-nF capacitive loads
- Inputs protected up to ±60 V
- Common-mode rejection: 110 dB, G = 10 (min)
- Power supply rejection: 100 dB, G = 1 (min)
- Supply current: 385 µA (max)
- Supply voltage range:
 - Single supply: 4.5 V to 36 V
 - Dual supply: ±2.25 V to ±18 V
- Specified temperature: -40°C to +125°C
- Package: 8-Pin SOIC

2 Applications

- Industrial process control
- Circuit breakers
- Battery testers
- ECG amplifiers
- Power automation
- Medical instrumentation
- Portable instrumentation

INA818 Simplified Internal Schematic

3 Description

Tools &

Software

The INA818 is a high-precision instrumentation amplifier that offers low power consumption and operates over a very wide single-supply or dualsupply range. A single external resistor sets any gain from 1 to 1000. The device offers high precision as a result of super-beta input transistors, which provide exceptionally low input offset voltage, offset voltage drift, input bias current, input voltage, and current noise. Additional circuitry protects the inputs against overvoltage up to ± 60 V.

Support &

Community

2.0

The INA818 is optimized to provide a high commonmode rejection ratio. At G = 1, the common-mode rejection ratio exceeds 90 dB across the full input common-mode range. The device is designed for lowvoltage operation from a 4.5-V single supply, as well as dual supplies up to ± 18 V.

The INA818 is available in an 8-pin SOIC package and is specified over the -40° C to $+125^{\circ}$ C temperature range.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
INA818	SOIC (8)	4.90 mm × 3.91 mm

(1) For all available packages, see the package option addendum at the end of the data sheet.

25% 22.5% 20% 17.5% % 15% Amplifiers 12.5% 10% 7.5% 5% 2.5% 0 -0.3 -02 -0.1 0 0.1 0.2 0.3 04 -0.4 Input Stage Offset Voltage Drift (µV/°C) D002

Typical Distribution of Input Stage Offset Voltage Drift

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. ADVANCE INFORMATION for pre-production products; subject to change without notice.

Texas Instruments

www.ti.com

Table of Contents

1	Feat	tures	1
2	Арр	lications	1
3	Des	cription	1
4	Rev	ision History	2
5	Dev	ice Comparison Table	3
6	Pin	Configuration and Functions	4
7	Spe	cifications	5
	7.1	Absolute Maximum Ratings	5
	7.2	ESD Ratings	5
	7.3	Recommended Operating Conditions	
	7.4	Thermal Information	5
	7.5	Electrical Characteristics	<mark>6</mark>
	7.6	Typical Characteristics: Table of Graphs	<mark>8</mark>
	7.7	Typical Characteristics	10
8	Deta	ailed Description	19
	8.1	Overview	19
	8.2	Functional Block Diagram	19

	8.3	Feature Description	20
	8.4	Device Functional Modes	26
9	Арр	lication and Implementation	26
	9.1	Application Information	26
	9.2	Typical Applications	29
10	Pow	ver Supply Recommendations	32
11	Lay	out	32
	11.1	Layout Guidelines	32
	11.2	Layout Example	33
12	Dev	ice and Documentation Support	34
	12.1	Documentation Support	34
	12.2	Receiving Notification of Documentation Updates	34
	12.3	Community Resources	34
	12.4	Trademarks	34
	12.5	Electrostatic Discharge Caution	34
	12.6	Glossary	34
13	Mec	hanical, Packaging, and Orderable	
	Info	mation	34

4 Revision History

DATE	REVISION	NOTES
April 2019	*	Initial release.

5 Device Comparison Table

DEVICE	DESCRIPTION	GAIN EQUATION	RG PINS AT PIN
INA818	35-µV Offset, 0.4 µV/°C V_{OS} Drift, 8-nV/ \sqrt{Hz} Noise, Low-Power, Precision Instrumentation Amplifier	G = 1 + 50 kΩ / RG	1, 8
INA819	35-µV Offset, 0.4 µV/°C V_{OS} Drift, 8-nV/ \sqrt{Hz} Noise, Low-Power, Precision Instrumentation Amplifier	G = 1 + 50 kΩ / RG	2, 3
INA821	35-µV Offset, 0.4 µV/°C V _{OS} Drift, 7-nV/ \sqrt{Hz} Noise, High-Bandwidth, Precision Instrumentation Amplifier	G = 1 + 49.4 kΩ / RG	2, 3
INA828	50- μV Offset, 0.5 $\mu V/^{\circ}C$ V_{OS} Drift, 7-nV/ \sqrt{Hz} Noise, Low-Power, Precision Instrumentation Amplifier	G = 1 + 50 kΩ / RG	1, 8
INA333	25-µV V _{OS} , 0.1 µV/°C V _{OS} Drift, 1.8-V to 5-V, RRO, 50-µA $I_Q,$ Chopper-Stabilized INA	G = 1 + 100 kΩ / RG	1, 8
PGA280	20-mV to \pm 10-V Programmable Gain IA With 3-V or 5-V Differential Output; Analog Supply up to \pm 18 V	Digital programmable	N/A
INA159	G = 0.2 V Differential Amplifier for ±10-V to 3-V and 5-V Conversion	G = 0.2 V/V	N/A
PGA112	Precision Programmable Gain Op Amp With SPI	Digital programmable	N/A

Texas Instruments

www.ti.com

6 Pin Configuration and Functions

Pin Functions

1	PIN I/O DESCRIPTION		DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
–IN	2	I	Negative (inverting) input	
+IN	3	I	sitive (noninverting) input	
OUT	6	0	tput	
REF	5	I	ference input. This pin must be driven by a low-impedance source.	
RG	1, 8	—	in setting pin. Place a gain resistor between pin 1 and pin 8.	
–VS	4	—	Negative supply	
+VS	7	_	Positive supply	

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	MIN	MAX	UNIT
Supply voltage dual supply, $V_S = (V+) - (V-)$		±20	V
Supply voltage single supply, $V_S = (V+) - (V-)$		40, (single supply)	V
Signal input pins	-60	60	V
VREF pin	-20	20	V
Signal output pins maximum voltage	(-V _s) - 0.5	$(+V_{s}) + 0.5$	V
Signal output pins maximum current	-50	50	mA
Output short-circuit ⁽²⁾	Continuo	ous	
Operating Temperature, T _A	-50	150	
Junction Temperature, T _J		175	°C
Storage Temperature, T _{stg}	-65	150	

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Short-circuit to $V_S / 2$.

7.2 ESD Ratings

				VALUE	UNIT
	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾				
	V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±750	v

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Supply voltage V _S	Single-supply	4.5	36	V
	Dual-supply	±2.25	±18	V
Specified temperature	Specified temperature	-40	125	°C

7.4 Thermal Information

		INA818	
	THERMAL METRIC ⁽¹⁾	D (SOIC)	UNIT
		8 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	119.6	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	66.3	°C/W
$R_{\theta J B}$	Junction-to-board thermal resistance	61.9	°C/W
ΨJT	Junction-to-top characterization parameter	20.5	°C/W
Ψјв	Junction-to-board characterization parameter	61.4	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

INA818

SBOS894-APRIL 2019

ISTRUMENTS

EXAS

7.5 Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT						
				10	35	μV
V _{OSI}	Input stage offset voltage ⁽¹⁾⁽²⁾	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C^{(3)}$			75	μV
	vollage	drift vs temperature, $T_A = -40^{\circ}$ C to 125°C			0.4	µV/⁰C
				50	300	μV
V _{oso}	Output stage offset voltage ⁽¹⁾⁽²⁾	$T_A = -40^{\circ}C$ to $125^{\circ}C^{(3)}$			800	μV
000	voltage	drift vs temperature, $T_A = -40^{\circ}C$ to 125°C			5	μV/°C
		G = 1, RTI	110	120		
	Power-supply rejection	G = 10, RTI	114	130		
PSRR	ratio	G = 100, RTI	130	135		dB
		G = 1000, RTI	136	140		
z _{id}	Differential impedance			100 1		GΩ∥p
Zic	Common-mode impedance			100 4		GΩ p
	RFI filter, –3-dB frequency			32		MHz
			(V–) + 2		(V+) − 2	
V _{CM}	Operating input range ⁽⁴⁾	$V_{S} = \pm 2.25$ V to ± 18 V, $T_{A} = -40^{\circ}$ C to 125° C		Figure 49 to Figure 52	, 2	V
	Input overvoltage range	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C^{(3)}$			±60	V
		At DC to 60 Hz, RTI, $V_{CM} = (V-) + 2 V$ to $(V+) - 2 V$,			200	•
CMRR	Common-mode rejection ratio	G = 1	90	105		
		At DC to 60 Hz, RTI, $V_{CM} = (V-) + 2 V$ to $(V+) - 2 V$,	110	105		
		G = 10	110	125		dB
		At DC to 60 Hz, RTI, $V_{CM} = (V-) + 2 V$ to $(V+) - 2 V$,	130	145		uВ
		G = 100	100	110		
		At DC to 60 Hz, RTI, $V_{CM} = (V-) + 2 V$ to $(V+) - 2 V$,	140	150		
		G = 1000				
BIAS CU		V V / 2		0.45	0.5	
I _B	Input bias current	$V_{CM} = V_S / 2$		0.15	0.5	nA
		$T_{A} = -40^{\circ}C \text{ to } 125^{\circ}C$			2	
l _{os}	Input offset current	$V_{CM} = V_S / 2$		0.15	0.5	nA
		$T_A = -40^{\circ}C$ to $125^{\circ}C$			2	
NOISE V	OLTAGE					
e _{NI}	Input stage voltage noise ⁽⁵⁾	$f = 1 \text{ kHz}, G = 100, R_S = 0 \Omega$		8		nV/√H:
	noise	$f_B = 0.1$ Hz to 10 Hz, G = 100, R _S = 0 Ω		0.19		μV _{PP}
e _{NO}	Output stage voltage	$f = 1 \text{ kHz}, R_S = 0 \Omega$		80		nV/√H:
	noise ⁽⁵⁾	$f_B = 0.1$ Hz to 10 Hz, $R_S = 0$ Ω		2.6		μV _{PP}
l.	Noise current	f = 1 kHz		130		fA/√Hz
'n		$f_B = 0.1 \text{ Hz to } 10 \text{ Hz}, \text{ G} = 100$		4.7		рА _{РР}
GAIN			1			
	Gain equation			1 + (50 k Ω / R _G)		V/V
G	Gain		1		1000	V/V
		$G = 1, V_0 = \pm 10 V$		±0.005%	±0.025%	
CE.	Cain arror	$G = 10, V_0 = \pm 10 V$		±0.025%	±0.15%	
GE	Gain error	G = 100, V _O = ±10 V		±0.025%	±0.15%	
		G = 1000, V _O = ±10 V		±0.05%		
	0.1	G = 1, $T_A = -40^{\circ}$ C to 125°C, $V_O = \pm 10$ V			±5	
	Gain error drift ⁽⁶⁾	$G > 1$, $T_A = -40^{\circ}C$ to 125°C, $V_O = \pm 10$ V			±35	ppm/°(

(1)

(2)

(3)

Total offset, referred-to-input (RTI): $V_{OS} = (V_{OSI}) + (V_{OSO} / G)$. Offset drifts are uncorrelated. Input-referred offset drift is calculated using: $\Delta V_{OS(RTI)} = \sqrt{[\Delta V_{OSI}^2 + (\Delta V_{OSO} / G)^2]}$ Specified by characterization. Input voltage range of the INA818 input stage. The input range depends on the common-mode voltage, differential voltage, gain, and reference voltage. See *Typical Characteristic* curves Figure 49 through Figure 52 for more information. Total RTI voltage noise is equal to: $e_{N(RTI)} = \sqrt{[e_{NI}^2 + (e_{NO} / G)^2]}$ The values specified for G > 1 do not include the effects of the external gain-setting resistor, R_G. (4)

(5)

(6)

6 Submit Documentation Feedback

Electrical Characteristics (continued)

|--|

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
-		G = 1 to 10, $V_0 = -10$ V to 10 V, $R_L = 10$ k Ω		1	10	
	Onia analia anaita	G = 100, V _O = -10 V to 10 V, R _L = 10 k Ω			15	
	Gain nonlinearity	G = 1000, V _O = -10 V to 10 V, R _L = 10 k Ω		10		ppm
		G = 1 to 100, $V_O = -10$ V to 10 V, $R_L = 2$ k Ω		30		
Ουτρι	Л		· · ·			
	Voltage swing		(V–) + 0.15		(V+) – 0.15	V
	Load capacitance stability			1000		pF
Zo	Closed-loop output impedance	f = 10 kHz		5.0		Ω
I _{SC}	Short-circuit current	Continuous to V _S / 2		±20		mA
FREQU	JENCY RESPONSE		· ·			
BW		G = 1		2.0		MHz
	Bandwidth, –3 dB	G = 10		890		
		G = 100		270		kHz
		G = 1000		30		
SR	Slew rate	$G = 1, V_0 = \pm 10 V$		0.9		V/µs
		0.01%, G = 1 to 100, V _{STEP} = 10 V		12		
	Cattling time	0.01%, G = 1000, V _{STEP} = 10 V		40		
t _S	Settling time	0.001%, G = 1 to 100, V _{STEP} = 10 V		16		μs
		0.001%, G = 1000, V _{STEP} = 10 V		60		
REFER	ENCE INPUT		· · ·			
R _{IN}	Input impedance			40		kΩ
	Voltage range		(V–)		(V+)	V
	Gain to output			1		V/V
	Reference gain error			0.01%		
POWE	R SUPPLY					
		V _{IN} = 0 V		350	385	
l _Q	Quiescent current	$V_{IN} = 0 V, T_A = -40^{\circ}C \text{ to } 125^{\circ}C$			520	μA

7.6 Typical Characteristics: Table of Graphs

Table 1. Table of Graphs

Typical Distribution of Input Stage Offset Voltage Figure 1 Typical Distribution of Output Stage Offset Voltage Drift Figure 3 Typical Distribution of Output Stage Offset Voltage Drift Figure 4 Input Stage Offset Voltage Voltage Drift Figure 5 Output Stage Offset Voltage Voltage Stress Figure 6 Typical Distribution of Input Bias Current T _a = 26°C Figure 7 Typical Distribution of Input Bias Current T _a = 26°C Figure 9 Input Bias Current vs Temperature Figure 10 Input Bias Current vs Temperature Figure 11 Typical Distribution of a 10 Figure 12 Typical CMRR Distribution G = 1 Figure 13 CMRR vs Temperature G = 10 Figure 14 CMRR vs Temperature G = 10 Figure 15 Input Gister Unrent vs Temperature G = 10 Figure 16 Positive PSRR vs Frequency (RTI) Figure 18 Gain vs Frequency (RTI) Figure 19 Voltage Noise Spectral Density vs Frequency (RTI) Figure 21 Cut-rent Noise Spectral Density vs Frequency (RTI) Figure 23 Cut-rent Noise Spectral Density vs Frequency (RTI) Figure 23 Cut-rent Noise G = 1	DESCRIPTION	FIGURE
Typical Distribution of Output Stage Offset Voitage Figure 3 Typical Distribution of Output Stage Offset Voitage Drift Figure 4 Input Stage Offset Voitage vs Temperature Figure 6 Output Stage Offset Voitage vs Temperature Figure 6 Typical Distribution of Input Bias Current T _a = 28°C Figure 9 Input Bias Current vs Temperature Figure 9 Input Bias Current vs Temperature Figure 10 Input Offset Current vs Temperature Figure 11 Typical Distribution G = 1 Figure 12 Typical CMRR Distribution G = 1 Figure 13 CMR vs Temperature G = 10 Figure 16 CMR vs Temperature G = 1 Figure 16 Input Bias Prequency (RTI) Figure 17 Negative PSRR vs Frequency (RTI) Figure 20 Current Noise Spectral Density vs Frequency (RTI) Figure 21 Outage Noise Spectral Density vs Frequency (RTI) Figure 23 Out-Hz RTI Voitage Noise G = 1 Figure 23 Out-Hz RTI Voitage Noise G = 1 Figure 23 Out-Hz RTI Voitage Noise G = 1 Figure 23 Out-Hz RTI Voitage Noise G = 1 Figure 23 Out-Hz RTI Voitage Noi	Typical Distribution of Input Stage Offset Voltage	Figure 1
Typical Distribution of Output Stage Offset Voltage DriftFigure 4Input Stage Offset Voltage vs TemperatureFigure 5Output Stage Offset Voltage vs TemperatureFigure 6Typical Distribution of Input Bias Current $T_A = 25^{\circ}$ CFigure 7Typical Distribution of Input Bias Current $T_A = 90^{\circ}$ CFigure 8Typical Distribution of Input Bias Current $T_A = 90^{\circ}$ CFigure 9Input Bias Current vs TemperatureFigure 10Input Offset Current vs TemperatureFigure 11Typical CMRR Distribution G = 1Figure 12Typical CMRR Distribution G = 0Figure 13CMRR vs Temperature G = 1Figure 16Output Stage Note Sea (RTI)Figure 16Offset Current vs Input OverotageFigure 16Positive PSRR vs Frequency (RTI)Figure 17Negative PSRR vs Frequency (RTI)Figure 19Voltage Noise Spectral Density vs Frequency (RTI)Figure 20Current Noise Spectral Density vs Frequency (RTI)Figure 21O.1-Hz to 10-Hz RTI Voltage Noise G = 1Figure 23O.1-Hz to 10-Hz RTI Voltage Noise G = 10Figure 24Typical Distribution of Gain Error G = 1Figure 26Typical Distribution of Gain Error G = 1Figure 23Offset Voltage Swing Vs Output CurrentFigure 31Gain Nonlinearity G = 10Figure 31Offset Voltage Swing Vs Output CurrentFigure 31Gain Nonlinearity G = 10Figure 32Offset Voltage Swing Vs Output CurrentFigure 31Gain Nonlinearity G = 10Figure 33Offset Voltage Swing Vs Out	Typical Distribution of Input Stage Offset Voltage Drift	Figure 2
Input Stage Offset Voltage vs Temperature Figure 5 Output Stage Offset Voltage vs Temperature Figure 6 Typical Distribution of Input Bias Current T _A = 25°C Figure 9 Typical Distribution of Input Offset Current Figure 9 Input Bias Current T _A = 30°C Figure 9 Typical Distribution of Input Offset Current Figure 9 Input Bias Current Vs Temperature Figure 10 Typical OMRK Distribution G = 1 Figure 12 Typical CMRK Distribution G = 10 Figure 13 CMRR vs Temperature G = 10 Figure 16 Input Current vs Input Overvoltage Figure 16 Positive PSRR vs Frequency (RTI) Figure 16 Negative PSRR vs Frequency (RTI) Figure 20 Current Noise Spectral Density vs Frequency (RTI) Figure 21 Ot-Hz to 10-Hz RTI Voltage Noise G = 1 Figure 22 0.1-Hz to 10-Hz RTI Voltage Noise G = 1 Figure 23 0.1-Hz to 10-Hz RTI Voltage Noise G = 1 Figure 23 0.1-Hz to 10-Hz RTI Voltage Noise G = 1 Figure 23 0.1-Hz to 10-Hz RTI Voltage Noise G = 1 Figure 23 0.1-Hz to 10-Hz RTI Current Noise Figure 23 <t< td=""><td>Typical Distribution of Output Stage Offset Voltage</td><td>Figure 3</td></t<>	Typical Distribution of Output Stage Offset Voltage	Figure 3
Output Siage Offset Voltage vs TemperatureFigure 6Typical Distribution of Input Bias Current $T_A = 25^{\circ}C$ Figure 7Typical Distribution of Input Offset CurrentFigure 8Typical Distribution of Input Offset CurrentFigure 9Input Bias Current vs TemperatureFigure 10Input Offset Current vs TemperatureFigure 11Typical CMRR Distribution G = 10Figure 12CMRR vs Temperature G = 10Figure 13CMR vs Temperature G = 10Figure 15Input Offset Current vs Input OveroltageFigure 15Positive PSR vs Frequency (RTI)Figure 16Positive PSR vs Frequency (RTI)Figure 17Negative PSR vs Frequency (RTI)Figure 18Gain vs Frequency (RTI)Figure 20Current Noise Spectral Density vs Frequency (RTI)Figure 210.1-Hz to 10-Hz RTI Voltage Noise G = 1Figure 210.1-Hz to 10-Hz RTI Voltage Noise G = 10Figure 230.1-Hz to 10-Hz RTI Voltage Noise G = 1Figure 24Typical Distribution of Gain Error G = 1Figure 231.1-Hz to 10-Hz RTI Voltage Noise G = 1Figure 25Gain Error vs Temperature G = 1Figure 231.1-Hz to 10-Hz RTI Voltage Noise G = 10Figure 251.1-Hz to 10-Hz RTI Voltage Noise G = 10Figure 251.1-Hz to 10-Hz RTI Voltage Noise G = 10Figure 251.1-Hz to 10-Hz RTI Voltage Noise G = 10Figure 251.1-Hz to 10-Hz RTI Voltage Noise G = 10Figure 311.1-Hz to 10-Hz RTI Voltage Noise G = 10Figure 321.1-Hz to 10-Hz RTI Voltage Noise G = 10	Typical Distribution of Output Stage Offset Voltage Drift	Figure 4
Typical Distribution of Input Bias Current $T_A = 25^{\circ}C$ Figure 7Typical Distribution of Input Offset CurrentFigure 9Input Bias Current vs TemperatureFigure 10Input Offset Current vs TemperatureFigure 11Typical Distribution G = 10Figure 13CMRR vs Temperature G = 1Figure 16Input Offset Current vs Input PoilsonFigure 13CMRR vs Temperature G = 10Figure 16CMRR vs Temperature G = 10Figure 16Positive PSRR vs Frequency (RTI)Figure 16Negative PSRR vs Frequency (RTI)Figure 19Voltage Noise Spectral Density vs Frequency (RTI)Figure 20Current Noise Spectral Density vs Frequency (RTI)Figure 20Current Noise Spectral Density vs Frequency (RTI)Figure 230.1-Hz to 10-Hz RTI Voltage Noise G = 10Figure 230.1-Hz to 10-Hz RTI Current NoiseFigure 30Gain Error vs Temperature G = 10Figure 30Gain Error vs Temperature G = 10Figure 30Gain Nonlinearity G = 1Figure 33Grifset Voltage vs Negative Common-Mode VoltageFigure 33Grifset Voltage vs Negative Common-Mode VoltageFigure 33Grifset Voltage	Input Stage Offset Voltage vs Temperature	Figure 5
Typical Distribution of Input Bias CurrentFigure 9Typical Distribution of Input Offset CurrentFigure 9Input Bias Current vs TemperatureFigure 10Input Bias Current vs TemperatureFigure 11Typical CMRR Distribution G = 1Figure 12Typical CMRR Distribution G = 10Figure 13CMR vs Temperature G = 1Figure 14CMR vs Temperature G = 1Figure 15Input Current vs Input OvervoltageFigure 16Positive PSRR vs Frequency (RTI)Figure 17Negative PSRR vs Frequency (RTI)Figure 18Gain vs FrequencyFigure 20Current vs Input Ovarge Network (RTI)Figure 20Current Voltage Noise G = 1Figure 20Current Noise Spectral Density vs Frequency (RTI)Figure 20Outrent Noise Spectral Density vs Frequency (RTI)Figure 230.1-Hz to 10-Hz RTI Voltage Noise G = 100Figure 230.1-Hz to 10-Hz RTI Voltage Noise G = 100Figure 230.1-Hz to 10-Hz RTI Voltage Noise G = 10Figure 25Gain Error vs Temperature G = 1Figure 25Gain Error vs Temperature G = 10Figure 25Gain Error vs Temperature G = 10Figure 30Gain Nonlinearity G = 1Figure 30Gain Nonlinearity G = 1Figure 30Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 1Figure 33Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 34	Output Stage Offset Voltage vs Temperature	Figure 6
Typical Distribution of Input Offset Current Figure 9 Input Bias Current vs Temperature Figure 10 Input Offset Current vs Temperature Figure 11 Typical CMRR Distribution G = 1 Figure 12 Typical CMRR Distribution G = 1 Figure 13 CMR vs Temperature G = 1 Figure 14 CMRR vs Temperature G = 10 Figure 15 Input Current vs Input Overvoltage Figure 16 Positive PSRR vs Frequency (RTI) Figure 18 Gain vs Frequency Figure 21 Voltage Noise Spectral Density vs Frequency (RTI) Figure 21 0.1-Hz to 10-Hz RTI Voltage Noise G = 100 Figure 22 0.1-Hz to 10-Hz RTI Voltage Noise G = 100 Figure 23 0.1-Hz to 10-Hz RTI Voltage Noise G = 100 Figure 24 Typical Distribution of Gain Error G = 1 Figure 25 Gain Error vs Temperature G = 1 Figure 28 Gain Error vs Temperature G = 10 Figure 28 Gain Error vs Temperature G = 10 Figure 31 Gain Error vs Temperature G = 10 Figure 32 Offset Voltage vs Negative Common-Mode Voltage Figure 33 Gain Error vs Temperature G = 10 Fi	Typical Distribution of Input Bias Current $T_A = 25^{\circ}C$	Figure 7
Input Blas Current vs Temperature Figure 10 Input Offset Current vs Temperature Figure 11 Typical CMRR Distribution G = 1 Figure 12 Typical CMRR Distribution G = 10 Figure 13 CMRR vs Temperature G = 1 Figure 14 CMR vs Temperature G = 10 Figure 15 Input Current vs Input Overvoltage Figure 16 Positive PSRR vs Frequency (RTI) Figure 17 Negative PSRR vs Frequency (RTI) Figure 19 Ovitage Noise Spectral Density vs Frequency (RTI) Figure 21 0.1-#z to 10-#z RTI voltage Noise G = 100 Figure 22 0.1-#z to 10-#z RTI voltage Noise G = 100 Figure 23 0.1-#z to 10-#z RTI voltage Noise G = 100 Figure 24 Typical Distribution of Gain Error G = 1 Figure 25 Gain Error vs Temperature G = 10 Figure 23 Out-#z to 10-#z RTI voltage Voltage Figure 24 Typical Distribution of Gain Error G = 1 Figure 23 Input Blas Current vs Common-Mode Voltage Figure 31 Gain Fort vs Temperature Figure 32 Gain Fort vs Temperature Figure 33 Gain Nonlinearity G = 10 Figure 33	Typical Distribution of Input Bias Current $T_A = 90^{\circ}C$	Figure 8
Input Offset Current vs Temperature Figure 11 Typical CMRR Distribution G = 1 Figure 12 Typical CMRR Distribution G = 10 Figure 13 CMRR vs Temperature G = 1 Figure 14 CMRR vs Temperature G = 1 Figure 15 Input Ourrent vs Input Overvoltage Figure 16 Positive PSRR vs Frequency (RTI) Figure 17 Negative PSRR vs Frequency (RTI) Figure 18 Gain vs Frequency Figure 19 Voltage Noise Spectral Density vs Frequency (RTI) Figure 20 Current Noise Spectral Density vs Frequency (RTI) Figure 21 0.1-Hz to 10-Hz RTI Voltage Noise G = 1 Figure 22 0.1-Hz to 10-Hz RTI Voltage Noise G = 10 Figure 23 0.1-Hz to 10-Hz RTI Voltage Noise G = 1 Figure 26 Typical Distribution of Gain Error G = 1 Figure 27 Input Bias Current vs Common-Mode Voltage Figure 28 Gain Error vs Temperature G = 10 Figure 23 Offset Voltage vs Negative Common-Mode Voltage Figure 31 Gain Nonlinearity G = 10 Figure 34 Offset Voltage vs Negative Common-Mode Voltage Figure 33 Offset Voltage vs Negative Common-M	Typical Distribution of Input Offset Current	Figure 9
Typical CMRR Distribution G = 1 Figure 12 Typical CMRR Distribution G = 10 Figure 13 CMR vs Temperature G = 1 Figure 14 CMR vs Temperature G = 10 Figure 15 Input Current vs Input Overvoltage Figure 16 Positive PSRR vs Frequency (RTI) Figure 17 Negative PSRR vs Frequency (RTI) Figure 19 Voltage Noise Spectral Density vs Frequency (RTI) Figure 20 Current Noise Spectral Density vs Frequency (RTI) Figure 21 0.1-Hz to 10-Hz RTI Voltage Noise G = 1 Figure 22 0.1-Hz to 10-Hz RTI Voltage Noise G = 10 Figure 23 0.1-Hz to 10-Hz RTI Voltage Noise G = 10 Figure 27 Typical Distribution of Gain Error G = 1 Figure 25 Gain Error vs Temperature G = 10 Figure 23 Input Bias Current vs Common-Mode Voltage Figure 31 Gain Nonlinearity G = 1 Figure 31 Gain Nonlinearity G = 1 Figure 33 Offset Voltage vs Positive Common-Mode Voltage Figure 31 Gain Nonlinearity G = 1 Figure 31 Gain Nonlinearity G = 1 Figure 33 Offset Voltage vs Positive Common-Mode Voltage F	Input Bias Current vs Temperature	Figure 10
Typical CMRR Distribution G = 10Figure 13CMRR vs Temperature G = 1Figure 14CMR vs Temperature G = 10Figure 15Input Current vs Input OvervoltageFigure 16Positive PSRR vs Frequency (RTI)Figure 17Negative PSRR vs Frequency (RTI)Figure 19Voltage Noise Spectral Density vs Frequency (RTI)Figure 20Current Noise Spectral Density vs Frequency (RTI)Figure 210.1-Hz to 10-Hz RTI Voltage Noise G = 1Figure 210.1-Hz to 10-Hz RTI Voltage Noise G = 100Figure 230.1-Hz to 10-Hz RTI Voltage Noise G = 10Figure 24Typical Distribution of Gain Error G = 1Figure 25Gain Error vs Temperature G = 10Figure 29Supply Current vs Temperature G = 10Figure 29Supply Current vs Temperature G = 10Figure 30Gain Error vs Temperature G = 10Figure 31Gain Error vs Temperature G = 10Figure 32Offset Voltage vs Negative Common-Mode VoltageFigure 33Gfifset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal FrequencyFigure 36Short Circuit Current vs TemperatureFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal FrequencyFigure 36 <td>Input Offset Current vs Temperature</td> <td>Figure 11</td>	Input Offset Current vs Temperature	Figure 11
CMRR vs Temperature G = 1 Figure 14 CMRR vs Temperature G = 10 Figure 15 Input Current vs Input Overvoltage Figure 16 Positive PSRR vs Frequency (RTI) Figure 17 Negative PSRR vs Frequency (RTI) Figure 18 Gain vs Frequency Figure 19 Voltage Noise Spectral Density vs Frequency (RTI) Figure 20 Current Noise Spectral Density vs Frequency (RTI) Figure 21 0.1-Hz to 10-Hz RTI Voltage Noise G = 100 Figure 23 0.1-Hz to 10-Hz RTI Voltage Noise G = 100 Figure 24 Typical Distribution of Gain Error G = 10 Figure 27 Input Bias Current vs Common-Mode Voltage Figure 28 Gain Error vs Temperature G = 1 Figure 29 Supply Current vs Temperature G = 1 Figure 20 Gain Inori vs Temperature G = 1 Figure 23 Gain Error vs Temperature G = 1 Figure 23 Gain Nonlinearity G = 1 Figure 28 Gain Nonlinearity G = 1 Figure 30 Offset Voltage vs Negative Common-Mode Voltage Figure 32 Offset Voltage vs Negative Common-Mode Voltage Figure 34 Positive Output Voltage Swing vs Output Current Figure 35 Negative Outpu	Typical CMRR Distribution G = 1	Figure 12
CMRR vs Temperature G = 10 Figure 15 Input Current vs Input Overvoltage Figure 16 Positive PSRR vs Frequency (RTI) Figure 17 Negative PSRR vs Frequency (RTI) Figure 19 Voltage Noise Spectral Density vs Frequency (RTI) Figure 19 Outage Noise Spectral Density vs Frequency (RTI) Figure 21 0.1-Hz to 10-Hz RTI Voltage Noise G = 1 Figure 22 0.1-Hz to 10-Hz RTI Voltage Noise G = 1000 Figure 23 0.1-Hz to 10-Hz RTI Voltage Noise G = 1000 Figure 24 Typical Distribution of Gain Error G = 1 Figure 27 Input Bias Current Noise Figure 25 Gain Error vs Common-Mode Voltage Figure 28 Gain Error vs Temperature G = 1 Figure 29 Supply Current vs Temperature G = 10 Figure 31 Gain Error vs Temperature G = 1 Figure 30 Gain Error vs Temperature G = 10 Figure 33 Offset Voltage vs Negative Common-Mode Voltage Figure 33 Offset Voltage vs Negative Common-Mode Voltage <t< td=""><td>Typical CMRR Distribution G = 10</td><td>Figure 13</td></t<>	Typical CMRR Distribution G = 10	Figure 13
Input Current vs Input Overvoltage Figure 16 Positive PSRR vs Frequency (RTI) Figure 17 Negative PSRR vs Frequency (RTI) Figure 18 Gain vs Frequency Figure 19 Voltage Noise Spectral Density vs Frequency (RTI) Figure 20 Current Noise Spectral Density vs Frequency (RTI) Figure 21 0.1-Hz to 10-Hz RTI Voltage Noise G = 1 Figure 23 0.1-Hz to 10-Hz RTI Voltage Noise G = 1 Figure 24 Typical Distribution of Gain Error G = 1 Figure 26 Typical Distribution of Gain Error G = 1 Figure 26 Typical Distribution of Gain Error G = 1 Figure 26 Typical Distribution of Gain Error G = 1 Figure 26 Gain Error vs Temperature G = 1 Figure 28 Gain Error vs Temperature G = 1 Figure 29 Supply Current vs Common-Mode Voltage Figure 30 Gain Nonlinearity G = 1 Figure 31 Gain Nonlinearity G = 1 Figure 33 Offset Voltage vs Negative Common-Mode Voltage Figure 34 Positive Output Voltage Swing vs Output Current Figure 33 Offset Voltage vs Negative Common-Mode Voltage Figure 34 Positive Output Voltage Swing vs Output Current Figure 36	CMRR vs Temperature G = 1	Figure 14
Positive PSRR vs Frequency (RTI) Figure 17 Negative PSRR vs Frequency (RTI) Figure 18 Gain vs Frequency Figure 19 Voltage Noise Spectral Density vs Frequency (RTI) Figure 20 Current Noise Spectral Density vs Frequency (RTI) Figure 21 0.1-Hz to 10-Hz RTI Voltage Noise G = 1 Figure 22 0.1-Hz to 10-Hz RTI Voltage Noise G = 1000 Figure 23 0.1-Hz to 10-Hz RTI Voltage Noise G = 1 Figure 24 Typical Distribution of Gain Error G = 1 Figure 26 Typical Distribution of Gain Error G = 1 Figure 25 Gain Error vs Common-Mode Voltage Figure 25 Gain Error vs Temperature G = 1 Figure 30 Gain Nonlinearity G = 10 Figure 31 Gain Nonlinearity G = 10 Figure 32 Offset Voltage vs Negative Common-Mode Voltage Figure 33 Offset Voltage vs Negative Common-Mode Voltage Figure 33 Offset Voltage vs Negative Common-Mode Voltage Figure 34 Positive Output Voltage Swing vs Output Current Figure 37 Large-Signal Frequency Figure 36 Negative Output Voltage Swing vs Output Current Figure 37 Large-Signal Frequency Response Figure 40 <td>CMRR vs Temperature G = 10</td> <td></td>	CMRR vs Temperature G = 10	
Positive PSRR vs Frequency (RTI) Figure 17 Negative PSRR vs Frequency (RTI) Figure 18 Gain vs Frequency Figure 19 Voltage Noise Spectral Density vs Frequency (RTI) Figure 20 Current Noise Spectral Density vs Frequency (RTI) Figure 21 0.1-Hz to 10-Hz RTI Voltage Noise G = 1 Figure 22 0.1-Hz to 10-Hz RTI Voltage Noise G = 1000 Figure 23 0.1-Hz to 10-Hz RTI Current Noise Figure 24 Typical Distribution of Gain Error G = 1 Figure 25 Gain Error vs Common-Mode Voltage Figure 25 Gain Error vs Temperature G = 1 Figure 25 Gain Nonlinearity G = 10 Figure 30 Gain Nonlinearity G = 10 Figure 32 Offset Voltage vs Negative Common-Mode Voltage Figure 32 Offset Voltage vs Negative Common-Mode Voltage Figure 32 Offset Voltage vs Negative Common-Mode Voltage Figure 33 Offset Voltage vs Negative Common-Mode Voltage Figure 32 Offset Voltage vs Negative Common-Mode Voltage Figure 34 Positive Output Voltage Swing vs Output Current Figure 37 Large-Signal Frequency Response Figure 37 Large-Signal Frequency Response Figure 38	Input Current vs Input Overvoltage	
Gain vs FrequencyFigure 19Voltage Noise Spectral Density vs Frequency (RTI)Figure 20Current Noise Spectral Density vs Frequency (RTI)Figure 210.1-Hz to 10-Hz RTI Voltage Noise G = 1Figure 220.1-Hz to 10-Hz RTI Voltage Noise G = 1000Figure 230.1-Hz to 10-Hz RTI Current NoiseFigure 24Typical Distribution of Gain Error G = 1Figure 26Typical Distribution of Gain Error G = 10Figure 25Gain Error vs Temperature G = 1Figure 29Supply Current vs Common-Mode VoltageFigure 29Gain Nonlinearity G = 1Figure 30Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 10Figure 33Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 37Large-Signal Frequency ResponseFigure 37Large-Signal Response G = 1Figure 34Small-Signal Response G = 10Figure 42Small-Signal Response G = 100Figure 43Small-Signal Response G = 100Figure 43Small	Positive PSRR vs Frequency (RTI)	Figure 17
Voltage Noise Spectral Density vs Frequency (RTI)Figure 20Current Noise Spectral Density vs Frequency (RTI)Figure 210.1-Hz to 10-Hz RTI Voltage Noise G = 1Figure 220.1-Hz to 10-Hz RTI Voltage Noise G = 1000Figure 230.1-Hz to 10-Hz RTI Current NoiseFigure 230.1-Hz to 10-Hz RTI Current NoiseFigure 24Typical Distribution of Gain Error G = 1Figure 26Typical Distribution of Gain Error G = 10Figure 25Gain Error vs Temperature G = 1Figure 28Gain Error vs Temperature G = 1Figure 30Gain Nonlinearity G = 1Figure 30Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 1Figure 32Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal FrequencyFigure 38THD+N vs FrequencyFigure 38Overshoot vs Capacitive LoadsFigure 41Small-Signal Response G = 10Figure 41Small-Signal Response G = 100Figure 43Small-Signal Response G = 1000Figure 43	Negative PSRR vs Frequency (RTI)	Figure 18
Current Noise Spectral Density vs Frequency (RTI)Figure 210.1-Hz to 10-Hz RTI Voltage Noise G = 1Figure 220.1-Hz to 10-Hz RTI Voltage Noise G = 1000Figure 230.1-Hz to 10-Hz RTI Voltage Noise G = 1000Figure 230.1-Hz to 10-Hz RTI Current NoiseFigure 24Typical Distribution of Gain Error G = 1Figure 26Typical Distribution of Gain Error G = 10Figure 25Gain Error vs Temperature G = 1Figure 28Gain Error vs Temperature G = 10Figure 29Supply Current vs Common-Mode VoltageFigure 30Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 10Figure 31Gain Nonlinearity G = 10Figure 33Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage soluty V Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 37Large-Signal Frequency ResponseFigure 33THJ-N vs FrequencyFigure 33Overshoot vs Capacitive LoadsFigure 41Small-Signal Response G = 10Figure 41Small-Signal Response G = 1000Figure 43Small-Signal Response G = 1000Figure 43	Gain vs Frequency	Figure 19
Current Noise Spectral Density vs Frequency (RTI)Figure 210.1-Hz to 10-Hz RTI Voltage Noise G = 1Figure 220.1-Hz to 10-Hz RTI Voltage Noise G = 1000Figure 230.1-Hz to 10-Hz RTI Voltage Noise G = 1000Figure 230.1-Hz to 10-Hz RTI Current NoiseFigure 24Typical Distribution of Gain Error G = 1Figure 26Typical Distribution of Gain Error G = 10Figure 25Gain Error vs Temperature G = 1Figure 25Gain Error vs Temperature G = 10Figure 29Supply Current vs Temperature G = 10Figure 30Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 10Figure 33Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 33Overshoot vs Capacitive LoadsFigure 34Overshoot scapacitive LoadsFigure 41Small-Signal Response G = 10Figure 41Small-Signal Response G = 100Figure 43Small-Signal Response G = 1000Figure 43	Voltage Noise Spectral Density vs Frequency (RTI)	
0.1-Hz to 10-Hz RTI Voltage Noise G = 1Figure 220.1-Hz to 10-Hz RTI Voltage Noise G = 1000Figure 230.1-Hz to 10-Hz RTI Current NoiseFigure 24Typical Distribution of Gain Error G = 1Figure 26Typical Distribution of Gain Error G = 10Figure 27Input Bias Current vs Common-Mode VoltageFigure 25Gain Error vs Temperature G = 1Figure 29Supply Current vs Temperature G = 10Figure 30Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 10Figure 32Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal FrequencyFigure 38THD+N vs FrequencyFigure 38Overshoot vs Capacitive LoadsFigure 40Small-Signal Response G = 10Figure 41Small-Signal Response G = 100Figure 43Small-Signal Response G = 1000Figure 43Small-Signal Response G = 1000Figure 44		Figure 21
0.1-Hz to 10-Hz RTI Voltage Noise G = 1000Figure 230.1-Hz to 10-Hz RTI Current NoiseFigure 24Typical Distribution of Gain Error G = 1Figure 26Typical Distribution of Gain Error G = 10Figure 27Input Bias Current vs Common-Mode VoltageFigure 25Gain Error vs Temperature G = 1Figure 28Gain Error vs Temperature G = 10Figure 29Supply Current vs Temperature G = 10Figure 30Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 1Figure 32Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 38THD+N vs FrequencyFigure 38Overshoot vs Capacitive LoadsFigure 41Small-Signal Response G = 100Figure 41Small-Signal Response G = 1000Figure 41		
0.1-Hz to 10-Hz RTI Current NoiseFigure 24Typical Distribution of Gain Error G = 1Figure 26Typical Distribution of Gain Error G = 10Figure 27Input Bias Current vs Common-Mode VoltageFigure 25Gain Error vs Temperature G = 1Figure 28Gain Error vs Temperature G = 10Figure 29Supply Current vs Temperature G = 10Figure 30Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 10Figure 32Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal FrequencyFigure 38THD+N vs FrequencyFigure 39Overshoot vs Capacitive LoadsFigure 40Small-Signal Response G = 10Figure 41Small-Signal Response G = 100Figure 41		
Typical Distribution of Gain Error G = 1Figure 26Typical Distribution of Gain Error G = 10Figure 27Input Bias Current vs Common-Mode VoltageFigure 25Gain Error vs Temperature G = 1Figure 28Gain Error vs Temperature G = 10Figure 29.Supply Current vs TemperatureFigure 30Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 10Figure 32Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 38THD+N vs FrequencyFigure 39Overshoot vs Capacitive LoadsFigure 40Small-Signal Response G = 10Figure 41Small-Signal Response G = 100Figure 43Small-Signal Response G = 1000Figure 44		
Typical Distribution of Gain Error G = 10Figure 27Input Bias Current vs Common-Mode VoltageFigure 25Gain Error vs Temperature G = 1Figure 28Gain Error vs Temperature G = 10Figure 29.Supply Current vs TemperatureFigure 30Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 10Figure 32Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 38THD+N vs FrequencyFigure 39Overshoot vs Capacitive LoadsFigure 40Small-Signal Response G = 10Figure 41Small-Signal Response G = 100Figure 43Small-Signal Response G = 1000Figure 44	Typical Distribution of Gain Error G = 1	
Input Bias Current vs Common-Mode VoltageFigure 25Gain Error vs Temperature G = 1Figure 28Gain Error vs Temperature G = 10Figure 29.Supply Current vs TemperatureFigure 30Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 10Figure 32Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 38THD+N vs FrequencyFigure 39Overshoot vs Capacitive LoadsFigure 41Small-Signal Response G = 10Figure 43Small-Signal Response G = 1000Figure 44		
Gain Error vs Temperature G = 10Figure 29.Supply Current vs TemperatureFigure 30Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 10Figure 32Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Positive Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 38THD+N vs FrequencyFigure 40Small-Signal Response G = 1Figure 41Small-Signal Response G = 100Figure 43Small-Signal Response G = 1000Figure 44	Input Bias Current vs Common-Mode Voltage	Figure 25
Supply Current vs TemperatureFigure 30Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 10Figure 32Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 39Overshoot vs Capacitive LoadsFigure 40Small-Signal Response G = 10Figure 41Small-Signal Response G = 1000Figure 43Small-Signal Response G = 1000Figure 44		Figure 28
Supply Current vs TemperatureFigure 30Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 10Figure 32Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Negative Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 39Overshoot vs Capacitive LoadsFigure 40Small-Signal Response G = 10Figure 41Small-Signal Response G = 1000Figure 43Small-Signal Response G = 1000Figure 44	Gain Error vs Temperature G = 10	Figure 29
Gain Nonlinearity G = 1Figure 31Gain Nonlinearity G = 10Figure 32Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Positive Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 38THD+N vs FrequencyFigure 39Overshoot vs Capacitive LoadsFigure 40Small-Signal Response G = 10Figure 41Small-Signal Response G = 1000Figure 43Small-Signal Response G = 1000Figure 44		Figure 30
Gain Nonlinearity G = 10Figure 32Offset Voltage vs Negative Common-Mode VoltageFigure 33Offset Voltage vs Positive Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 39Overshoot vs Capacitive LoadsFigure 40Small-Signal Response G = 10Figure 41Small-Signal Response G = 1000Figure 43Small-Signal Response G = 1000Figure 44		
Offset Voltage vs Positive Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 38THD+N vs FrequencyFigure 39Overshoot vs Capacitive LoadsFigure 40Small-Signal Response G = 10Figure 41Small-Signal Response G = 100Figure 42Small-Signal Response G = 1000Figure 43Small-Signal Response G = 1000Figure 44		
Offset Voltage vs Positive Common-Mode VoltageFigure 34Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 38THD+N vs FrequencyFigure 39Overshoot vs Capacitive LoadsFigure 40Small-Signal Response G = 10Figure 41Small-Signal Response G = 100Figure 42Small-Signal Response G = 1000Figure 43Small-Signal Response G = 1000Figure 44	Offset Voltage vs Negative Common-Mode Voltage	Figure 33
Positive Output Voltage Swing vs Output CurrentFigure 35Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 38THD+N vs FrequencyFigure 39Overshoot vs Capacitive LoadsFigure 40Small-Signal Response G = 10Figure 41Small-Signal Response G = 100Figure 42Small-Signal Response G = 1000Figure 43Small-Signal Response G = 1000Figure 44		
Negative Output Voltage Swing vs Output CurrentFigure 36Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 38THD+N vs FrequencyFigure 39Overshoot vs Capacitive LoadsFigure 40Small-Signal Response G = 1Figure 41Small-Signal Response G = 100Figure 42Small-Signal Response G = 1000Figure 43Small-Signal Response G = 1000Figure 44	Positive Output Voltage Swing vs Output Current	
Short Circuit Current vs TemperatureFigure 37Large-Signal Frequency ResponseFigure 38THD+N vs FrequencyFigure 39Overshoot vs Capacitive LoadsFigure 40Small-Signal Response G = 1Figure 41Small-Signal Response G = 10Figure 42Small-Signal Response G = 100Figure 43Small-Signal Response G = 1000Figure 44		
Large-Signal Frequency ResponseFigure 38THD+N vs FrequencyFigure 39Overshoot vs Capacitive LoadsFigure 40Small-Signal Response G = 1Figure 41Small-Signal Response G = 10Figure 42Small-Signal Response G = 100Figure 43Small-Signal Response G = 1000Figure 44		
THD+N vs Frequency Figure 39 Overshoot vs Capacitive Loads Figure 40 Small-Signal Response G = 1 Figure 41 Small-Signal Response G = 10 Figure 42 Small-Signal Response G = 100 Figure 43 Small-Signal Response G = 1000 Figure 44		
Overshoot vs Capacitive Loads Figure 40 Small-Signal Response G = 1 Figure 41 Small-Signal Response G = 10 Figure 42 Small-Signal Response G = 100 Figure 43 Small-Signal Response G = 1000 Figure 44		
Small-Signal Response G = 1Figure 41Small-Signal Response G = 10Figure 42Small-Signal Response G = 100Figure 43Small-Signal Response G = 1000Figure 44		
Small-Signal Response G = 10Figure 42Small-Signal Response G = 100Figure 43Small-Signal Response G = 1000Figure 44	•	
Small-Signal Response G = 100 Figure 43 Small-Signal Response G = 1000 Figure 44		
Small-Signal Response G = 1000 Figure 44		
Closed-Loop Output Impedance Figure 46		

Copyright © 2019, Texas Instruments Incorporated

Typical Characteristics: Table of Graphs (continued)

DESCRIPTION	FIGURE
Differential-Mode EMI Rejection Ratio	Figure 47
Common-Mode EMI Rejection Ratio	Figure 48
Input Common-Mode Voltage vs Output Voltage G = 1, V_S = 5 V	Figure 49
Input Common-Mode Voltage vs Output Voltage G = 100, $V_S = 5 V$	Figure 50
Input Common-Mode Voltage vs Output Voltage $V_S = \pm 5 V$	Figure 51
Input Common-Mode Voltage vs Output Voltage V _S =±15 V	Figure 52

7.7 Typical Characteristics

at $T_A = 25^{\circ}C$, $V_S = \pm 15$ V, $R_L = 10$ k Ω , $V_{REF} = 0$ V, and G = 1 (unless otherwise noted)

Copyright © 2019, Texas Instruments Incorporated

Typical Characteristics (continued)

Figure 11. Input Offset Current vs Temperature

Figure 12. Typical CMRR Distribution

Typical Characteristics (continued)

at $T_A = 25^{\circ}C$, $V_S = \pm 15$ V, $R_L = 10$ k Ω , $V_{REF} = 0$ V, and G = 1 (unless otherwise noted)

12

Typical Characteristics (continued)

Texas Instruments

www.ti.com

Typical Characteristics (continued)

Typical Characteristics (continued)

at $T_A = 25^{\circ}C$, $V_S = \pm 15$ V, $R_L = 10$ k Ω , $V_{REF} = 0$ V, and G = 1 (unless otherwise noted)

Typical Characteristics (continued)

at $T_A = 25^{\circ}C$, $V_S = \pm 15$ V, $R_L = 10$ k Ω , $V_{REF} = 0$ V, and G = 1 (unless otherwise noted)

Typical Characteristics (continued)

at $T_A = 25^{\circ}$ C, $V_S = \pm 15$ V, $R_L = 10$ k Ω , $V_{REF} = 0$ V, and G = 1 (unless otherwise noted)

NSTRUMENTS

ÈXAS

www.ti.com

Typical Characteristics (continued)

at $T_A = 25^{\circ}C$, $V_S = \pm 15$ V, $R_L = 10$ k Ω , $V_{REF} = 0$ V, and G = 1 (unless otherwise noted)

Figure 51. Input Common-Mode Voltage vs Output Voltage

ADVANCE INFORMATION

Figure 52. Input Common-Mode Voltage vs Output Voltage

8 Detailed Description

8.1 Overview

The INA818 is a monolithic, precision instrumentation amplifier incorporating a current-feedback input stage and a four-resistor difference amplifier output stage. The functional block diagram in the next section shows how the differential input voltage is buffered by transistors Q_1 and Q_2 and is forced across resistor R_G , which causes a signal current to flow through resistors R_G , R_1 , and R_2 . The output difference amplifier, A_3 , removes the common-mode component of the input signal and refers the output signal to the REF pin. The V_{BE} and voltage drop across R_1 and R_2 produce output voltages on A_1 and A_2 that are approximately 0.8 V lower than the input voltages.

Each input is protected by two field-effect transistors (FETs) that provide a low series resistance under normal signal conditions, and preserve excellent noise performance. When excessive voltage is applied, these transistors limit input current to approximately 8 mA.

8.2 Functional Block Diagram

INA818 SBOS894 – APRIL 2019

8.3 Feature Description

8.3.1 Setting the Gain

Figure 53 shows that the gain of the INA818 is set by a single external resistor (R_G) connected between the RG pins (pins 1 and 8).

The value of R_G is selected according to Equation 1:

$$G = 1 + \frac{50 \text{ k}\Omega}{R_G}$$

(1)

Table 2 lists several commonly-used gains and resistor values. The 50-k Ω term in Equation 1 comes from the sum of the two internal 25-k Ω feedback resistors. These on-chip resistors are laser-trimmed to accurate absolute values. The accuracy and temperature coefficients of these resistors are included in the gain accuracy and drift specifications of the INA818. As shown in Figure 53 and explained in more details in the *Layout* section, make sure to connect low-ESR, 0.1- μ F ceramic bypass capacitors between each supply pin and ground that are placed as close to the device as possible.

DESIRED GAIN	R _G (Ω)	NEAREST 1% R _G (Ω)
1	NC	NC
2	50 k	49.9 k
5	12.5 k	12.4 k
10	5.556 k	5.49 k
20	2.632 k	2.61 k
50	1.02 k	1.02 k
100	505.1	511
200	251.3	249
500	100.2	100
1000	50.05	49.9

EXAS

8.3.1.1 Gain Drift

The stability and temperature drift of the external gain setting resistor (R_G) also affects gain. The contribution of R_G to gain accuracy and drift is determined from Equation 1.

The best gain drift of 5 ppm/°C (maximum) is achieved when the INA818 uses G = 1 without R_G connected. In this case, gain drift is limited by the mismatch of the temperature coefficient of the integrated 40-k Ω resistors in the differential amplifier (A₃). At gains greater than 1, gain drift increases as a result of the individual drift of the 25-k Ω resistors in the feedback of A₁ and A₂, relative to the drift of the external gain resistor (R_G.) The low temperature coefficient of the internal feedback resistors improves the overall temperature stability of applications using gains greater than 1 V/V over alternate solutions.

Low resistor values required for high gain make wiring resistance an important consideration. Sockets add to the wiring resistance and contribute additional gain error (such as a possible unstable gain error) at gains of approximately 100 or greater. To maintain stability, avoid parasitic capacitance of more than a few picofarads at R_G connections. Careful matching of any parasitics on the R_G pins maintains optimal CMRR over frequency.

8.3.2 EMI Rejection

Texas Instruments developed a method to accurately measure the immunity of an amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. This method uses an EMI rejection ratio (EMIRR) to quantify the ability of the INA818 to reject EMI. The offset resulting from an input EMI signal is calculated using Equation 2:

$$\Delta V_{OS} = \left(\frac{V_{RF} PEAK^{2}}{100 \text{ mV}_{P}} \cdot 10^{-\left(\frac{EMIRR (dB)}{20}\right)}\right)$$

where

• V_{RF PEAK} is the peak amplitude of the input EMI signal.

Figure 54 and Figure 55 show the INA818 EMIRR graphs for differential and common-mode EMI rejection across this frequency range. Table 3 lists the EMIRR values for the INA818 at frequencies commonly encountered in real-world applications. Applications listed in Table 3 are centered on or operated near the frequency shown. Depending on the end-system requirements, additional EMI filters may be required near the signal inputs of the system. Incorporating known good practices, such as using short traces, low-pass filters, and damping resistors combined with parallel and shielded signal routing may also be required.

(2)

NSTRUMENTS

Texas

FREQUENCY	APPLICATION OR ALLOCATION	DIFFERENTIAL EMIRR	COMMON-MODE EMIRR
400 MHz	Mobile radio, mobile satellite, space operation, weather, radar, ultrahigh-frequency (UHF) applications	52 dB	80 dB
900 MHz	Global system for mobile communications (GSM) applications, radio communication, navigation, GPS (up to 1.6 GHz), GSM, aeronautical mobile, UHF applications	55 dB	71 dB
1.8 GHz	GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)	58 dB	73 dB
2.4 GHz	802.11b, 802.11g, 802.11n, Bluetooth [®] , mobile personal communications, industrial, scientific and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)	59 dB	95 dB
3.6 GHz	Radiolocation, aero communication and navigation, satellite, mobile, S-band	78 dB	96 dB
5 GHz	802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite operation, C-band (4 GHz to 8 GHz)	70 dB	100 dB

Table 3. INA818 EMIRR for Frequencies of Interest

8.3.3 Input Common-Mode Range

The linear input voltage range of the INA818 input circuitry extends within 1.5 V (typical) of both power supplies and maintains excellent common-mode rejection throughout this range. The common-mode range for the most common operating conditions are shown in Figure 56, Figure 51, and Figure 52. The common-mode range for other operating conditions is best calculated using the *Common-Mode Input Range Calculator for Instrumentation Amplifiers*.

8.3.4 Input Protection

The inputs of the INA818 device are individually protected for voltages up to ± 60 V. For example, a condition of -60 V on one input and ± 60 V on the other input does not cause damage. Internal circuitry on each input provides low series impedance under normal signal conditions. If the input is overloaded, the protection circuitry limits the input current to a value of approximately 8 mA.

Figure 60. Input Current Path During an Overvoltage Condition

During an input overvoltage condition, current flows through the input protection diodes into the power supplies; see Figure 60. If the power supplies are unable to sink current, then Zener diode clamps (ZD1 and ZD2 in Figure 60) must be placed on the power supplies to provide a current pathway to ground. Figure 61 shows the input current for input voltages from -50 V to +50 V when the INA818 is powered by ± 15 -V supplies.

Figure 61. Input Current vs Input Overvoltage

8.3.5 Operating Voltage

The INA818 operates over a power-supply range of 4.5 V to 36 V (±2.25 V to ±18 V).

CAUTION Supply voltages higher than 40 V (±20 V) can permanently damage the device. Parameters that vary over supply voltage or temperature are shown in *Typical Characteristics*.

8.3.6 Error Sources

Most modern signal-conditioning systems calibrate errors at room temperature. However, calibration of errors that result from a change in temperature is normally difficult and costly. Therefore, minimize these errors by choosing high-precision components, such as the INA818, that have improved specifications in critical areas that impact the precision of the overall system. Figure 62 shows an example application.

Figure 62. Example Application With G = 10 V/V and 1-V Output Voltage

Resistor-adjustable devices (such as the INA818) show the lowest gain error in G = 1 because of the inherently well-matched drift of the internal resistors of the differential amplifier. At gains greater than 1 (for instance, G = 10 V/V or G = 100 V/V), the gain error becomes a significant error source because of the contribution of the resistor drift of the 25-k Ω feedback resistors in conjunction with the external gain resistor. Except for very high gain applications, the gain drift is by far the largest error contributor compared to other drift errors, such as offset drift.

The INA818 offers excellent gain error over temperature for both G > 1 and G = 1 (no external gain resistor). Table 5 summarizes the major error sources in common INA applications and compares the three cases of G = 1 (no external resistor) and G = 10 (5.49-k Ω external resistor) and G = 100 (511- Ω external resistor). All calculations are assuming an output voltage of $V_{OUT} = 1$ V. Thus, the input signal V_{DIFF} (given by $V_{DIFF} = V_{OUT} / G$) exhibits smaller and smaller amplitudes with increasing gain G. $V_{DIFF} = 1$ mV at G = 1000 in this example. All calculations refer the error to the input for easy comparison and system evaluation. As Table 5 shows, errors generated by the input stage (such as input offset voltage) are more dominant at higher gain, while the effects of output stage are suppressed because they are divided by the gain when referring them back to the input. The gain error and gain drift error are much more significant for gains greater than 1 because of the contribution of the resistor drift of the 25-k Ω feedback resistors in conjunction with the external gain resistor. In most applications, static errors (absolute accuracy errors) can readily be removed during calibration in production, while the drift errors are the key factors limiting overall system performance.

Table 4. System Specifications for Error Calculation

QUANTITY	VALUE	UNIT
V _{OUT}	1	V
VCM	10	V
VS	1	V
R _{S+}	1000	Ω
R _{S-}	999	Ω
RG tolerance	0.01	%
RG drift	10	ppm/°C
Temperature range upper limit	105	°C

Table 5. Error Calculation

		INA818 VALUES					
ERROR SOURCE	ERROR CALCULATION	SPECIFICATION	UNIT	G = 1 ERROR (ppm)	G = 100 ERROR (ppm)	G = 1000 ERROR (ppm)	
ABSOLUTE ACCURACY AT 25°C							
Input offset voltage	V _{OSI} / V _{DIFF}	35	μV	35	350	3500	
Output offset voltage	V _{OSO} / (G × V _{DIFF})	300	μV	300	300	300	
Input offset current	I _{OS} × maximum (R _{S+} , R _{S-}) / V _{DIFF}	0.5	nA	1	5	50	
CMRR (min)	V _{CM} / (10 ^{CMRR/20} × V _{DIFF})	90 (G = 1), 110 (G = 10), 130 (G = 100)	dB	316	316	316	
PSRR (min)	$(V_{CC} - V_S)/(10^{PSRR/20} \times V_{DIFF})$	110 (G = 1), 114 (G = 10), 130 (G = 100)	dB	3	20	32	
Gain error from INA (max)	GE(%) × 10 ⁴	0.02 (G = 1), 0.15 (G = 10, 100)	%	200	1500	1500	
Gain error from external resistor RG (max)	GE(%) × 10 ⁴	0.01	%	100	100	100	
Total absolute accuracy error (ppm) at 25°C, worst case	sum of all errors	_	_	955	2591	5798	
Total absolute accuracy error (ppm) at 25°C, average	rms sum of all errors	—	—	491	1604	3835	
DRIFT TO 105°C							
Gain drift from INA (max)	GTC × (T _A – 25)	5 (G = 1), 35 (G = 10, 100)	ppm/°C	400	2800	2800	
Gain drift from external resistor RG (max)	GTC × (T _A – 25)	10	ppm/°C	800	800	800	
Input offset voltage drift (max)	$(V_{OSI_{TC}} / V_{DIFF}) \times (T_A - 25)$	0.4	μV/°C	32	320	3200	
Output offset voltage drift	$[V_{OSO_TC} / (G \times V_{DIFF})] \times (T_A - 25)$	5	μV/°C	400	400	400	
Offset current drift	$\begin{array}{l} I_{\text{OS}_\text{TC}} \times \text{maximum (R}_{\text{S+}},\text{R}_{\text{S-}}) \times \\ (\text{T}_{\text{A}}-25) \;/\; \text{V}_{\text{DIFF}} \end{array}$	20	pA/°C	2	16	160	
Total drift error to 105°C (ppm), worst case	sum of all errors	—	—	1634	4336	7360	
Total drift error to 105°C (ppm), typical	rms sum of all errors	—	—	980	2957	4348	
RESOLUTION							
Gain nonlinearity		10 (G = 1, 10), 15 (G = 100)	ppm of FS	10	10	15	
Voltage noise (at 1 kHz)	$\sqrt{BW} \times \sqrt{\left(e_{Nl}^{2} + \left(\frac{e_{NO}}{G}\right)^{2}} \times \frac{6}{V_{\text{DIFF}}}$	e _{NI} = 8, e _{NO} = 90	μV _{PP}	1204	1070	3941	
Current noise (at 1kHz)	$I_N \times maximum (R_{S+}, R_{S-}) \times \sqrt{BW} / V_{DIFF}$	0.13	pA/√Hz	0.3	2	11	
Total resolution error (ppm), worst case	sum of all errors	—	_	1214	1080	3956	
Total resolution error (ppm), typical	rms sum of all errors	—	—	1204	1070	3941	
TOTAL ERROR							
Total error (ppm), worst case	sum of all errors	—	_	3802	8007	17113	
Total error (ppm), typical	rms sum of all errors			1628	3530	7010	

8.4 Device Functional Modes

The INA818 has a single functional mode and operates when the power-supply voltage is greater than 4.5 V (\pm 2.25 V). The maximum power-supply voltage for the INA818 is 36 V (\pm 18 V.)

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 Reference Pin

The output voltage of the INA818 is developed with respect to the voltage on the reference pin, REF. In dualsupply operation, REF (pin 6) is connected to the low-impedance system ground. In single-supply operation, offsetting the output signal to a precise midsupply level is useful (for example, 2.5 V in a 5-V supply environment). To accomplish this level shift, a voltage source must be connected to the REF pin to level-shift the output so that the INA818 drives a single-supply ADC.

The voltage source applied to the reference pin must have a low output impedance. As shown in Figure 63, any resistance at the reference pin (shown as R_{REF} in Figure 63) is in series with an internal 40-k Ω resistor.

Figure 63. Parasitic Resistance Shown at the Reference Pin

Application Information (continued)

The parasitic resistance at the reference pin (R_{REF}) creates an imbalance in the four resistors of the internal difference amplifier, which degrades the common-mode rejection ratio (CMRR). Figure 64 shows the degradation in CMRR of the INA818 as a result of increased resistance at the reference pin. For the best performance, keep the source impedance to the REF pin (R_{REF}) below 5 Ω .

Figure 64. The Effect of Increasing Resistance at the Reference Pin

Voltage-reference devices are a suitable option for providing a low-impedance voltage source for the reference pin. However, if a resistor voltage divider generates a reference voltage, the divider must be buffered by an op amp, as Figure 65 shows, in order to avoid CMRR degradation.

Figure 65. Using an Op Amp to Buffer Reference Voltages

Application Information (continued)

9.1.2 Input Bias Current Return Path

The input impedance of the INA818 is extremely high—approximately 100 G Ω . However, a path must be provided for the input bias current of both inputs. This input bias current is typically 150 pA. High input impedance means that this input bias current changes very little with varying input voltage.

For proper operation, input circuitry must provide a path for input bias current. Figure 66 shows various provisions for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds the common-mode range of the INA818, and the input amplifiers saturate. If the differential source resistance is low, the bias current return path can connect to one input (as shown in the thermocouple example in Figure 66). With a higher source impedance, using two equal resistors provides a balanced input with possible advantages of a lower input offset voltage as a result of bias current and better high-frequency common-mode rejection.

Copyright © 2017, Texas Instruments Incorporated

Figure 66. Providing an Input Common-Mode Current Path

9.2 Typical Applications

9.2.1 Three-Pin Programmable Logic Controller (PLC)

Figure 67 shows a three-pin programmable-logic controller (PLC) design for the INA818. This PLC reference design accepts inputs of ± 10 V or ± 20 mA. The output is a single-ended voltage of 2.5 V ± 2.3 V (or 200 mV to 4.8 V). Many PLCs typically have these input and output ranges.

Copyright © 2017, Texas Instruments Incorporated

Figure 67. PLC Input (±10 V, 4 mA to 20 mA)

9.2.1.1 Design Requirements

For this application, the design requirements are as follows:

- 4-mA to 20-mA input with less than $20-\Omega$ burden
- ±20-mA input with less than 20-Ω burden
- ±10-V input with impedance of approximately 100 kΩ
- Maximum 4-mA to 20-mA or ±20-mA burden voltage equal to ±0.4 V
- Output range within 0 V to 5 V

9.2.1.2 Detailed Design Procedure

There are two modes of operation for the circuit shown in Figure 67: current input and voltage input. This design requires $R_1 >> R_2 >> R_3$. Given this relationship, Equation 3 calculates the current input mode transfer function.

$$V_{OUT-I} = V_D \times G + V_{REF} = -(I_{IN} \times R_3) \times G + V_{REF}$$

where

- G represents the gain of the instrumentation amplifier
- V_D represents the differential voltage at the INA818 inputs
- V_{REF} is the voltage at the INA818 REF pin
- I_{IN} is the input current

Equation 4 shows the transfer function for the voltage input mode.

$$V_{OUT-V} = V_{D} \times G + V_{REF} = -\left(V_{IN} \times \frac{R_{2}}{R_{1} + R_{2}}\right) \times G + V_{REF}$$

where

• V_{IN} is the input voltage

ADVANCE INFORMATION

(7)

Typical Applications (continued)

 R_1 sets the input impedance of the voltage input mode. The minimum typical input impedance is 100 k Ω . 100 k Ω is selected for R_1 because increasing the R_1 value also increases noise. The value of R_3 must be extremely small compared to R_1 and R_2 . 20 Ω for R_3 is selected because that resistance value is much smaller than R_1 and yields an input voltage of ±400 mV when operated in current mode (±20 mA).

Use Equation 5 to calculate R₂ given V_D = ±400 mV, V_{IN} = ±10 V, and R₁ = 100 k Ω .

$$V_{\rm D} = V_{\rm IN} \times \frac{R_2}{R_1 + R_2} \to R_2 = \frac{R_1 \times V_{\rm D}}{V_{\rm IN} - V_{\rm D}} = 4.167 \text{ k}\Omega$$
(5)

The value obtained from Equation 5 is not a standard 0.1% value, so 4.17 k Ω is selected. R₁ and R₂ also use 0.1% tolerance resistors to minimize error.

Use Equation 6 to calculate the ideal gain of the instrumentation amplifier.

$$G = \frac{V_{OUT} - V_{REF}}{V_{D}} = \frac{4.8 \text{ V} - 2.5 \text{ V}}{400 \text{ mV}} = 5.75 \frac{\text{V}}{\text{V}}$$
(6)

Equation 7 calculates the gain-setting resistor value using the INA818 gain equation, Equation 1.

$$R_{G} = \frac{50 \text{ k}\Omega}{G-1} = \frac{50 \text{ k}\Omega}{5.75-1} = 10.5 \text{ k}\Omega$$

10.5 k Ω is a standard 0.1% resistor value that can be used in this design.

9.2.1.3 Application Curves

Figure 68 and Figure 69 show typical characteristic curves for the circuit in Figure 67.

Typical Applications (continued)

9.2.2 Resistance Temperature Detector Interface

Figure 70 illustrates a 3-wire interface circuit for resistance temperature detectors (RTDs). The circuit incorporates analog linearization and has an output voltage range from 0 V to 5 V. The linearization technique employed is described in the *Analog linearization of resistance temperature detectors* analog application journal. Series and parallel combinations of standard 1% resistor values are used to achieve less than 0.02°C of error over a 200°C temperature span.

Copyright © 2017, Texas Instruments Incorporated

Figure 70. A 3-Wire Interface for RTDs With Analog Linearization

10 Power Supply Recommendations

The nominal performance of the INA818 is specified with a supply voltage of ± 15 V and midsupply reference voltage. The device can also be operated using power supplies from ± 2.25 V (4.5 V) to ± 18 V (36 V) and non-midsupply reference voltages with excellent performance. Parameters that can vary significantly with operating voltage and reference voltage are shown in the *Typical Characteristics* section.

11 Layout

11.1 Layout Guidelines

Attention to good layout practices is always recommended. For best operational performance of the device, use good PCB layout practices, including:

- Take care to make sure that both input paths are well-matched for source impedance and capacitance to avoid converting common-mode signals into differential signals. Even slight mismatch in parasitic capacitance at the gain setting pins can degrade CMRR over frequency. For example, in applications that implement gain switching using switches or PhotoMOS[®] relays to change the value of R_G, select the component so that the switch capacitance is as small as possible and most importantly so that capacitance mismatch between the RG pins is minimized.
- Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of the device itself. Bypass capacitors reduce the coupled noise by providing low-impedance power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better than in parallel with the noisy trace.
- Place the external components as close to the device as possible. As shown in Figure 73, keeping R_G close to the pins minimizes parasitic capacitance.
- Keep the traces as short as possible.

11.2 Layout Example

Copyright © 2017, Texas Instruments Incorporated

Figure 73. Example Schematic and Associated PCB Layout

TEXAS INSTRUMENTS

www.ti.com

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, Universal Instrumentation Amplifier EVM user's guide
- Texas Instruments, Comprehensive Error Calculation for Instrumentation Amplifiers application note

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments. Bluetooth is a registered trademark of Bluetooth SIG, Inc. PhotoMOS is a registered trademark of Panasonic Electric Works Europe AG. All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

19-Apr-2019

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
INA818ID	PREVIEW	SOIC	D	8	75	TBD	Call TI	Call TI	-40 to 125		
INA818IDR	PREVIEW	SOIC	D	8	2500	TBD	Call TI	Call TI	-40 to 125		
XINA818ID	ACTIVE	SOIC	D	8	75	TBD	Call TI	Call TI	-40 to 125		Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

D0008A

PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

D0008A

EXAMPLE BOARD LAYOUT

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

D0008A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2019, Texas Instruments Incorporated