Control integrated Power System (CIPOS[™])

IKCS12F60AA IKCS12F60AC

http://www.infineon.com/cipos

Power Management & Drives

Never stop thinking.

Revision History:	2009-04	Rev. 2.3
Previous Version:	2.2	
Page	Subjects (major changes since last revision)	
4	High temperature stress tests duration	
10	Changed VIT, HYS	
14	Updated Zth-diagram of Diode	

Authors: W. Frank, W. Brunnbauer

Edition 2007-07

Published by Infineon Technologies AG 85579 Neubiberg, Germany

© Infineon Technologies AG 4/6/09. All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office or representatives (http://www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office or representatives.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

TrenchStop[®] is a registered trademark of Infineon Technologies AG.

CIPOS[™], CoolMOS[™], CoolSET[™], DuoPack[™] and thinQ![™] are trademarks of Infineon Technologies AG.

Table of Contents

CIPOS™ Control integrated Power System	4
Features	4
Target Applications	4
Description	4
System Configuration	4
Internal Electrical Schematic	5
Pin Assignment	6
Pin Description	6
/HIN1,2,3 and /LIN1,2,3 (Low side and high side control pins, Pin 15 - 20)	6
EN (enable, Pin 24)	7
ITRIP (Over-current detection function, Pin 21)	7
VDD, VSS (control side supply and reference, Pin 22, 23)	7
VB1,2,3 and VS1,2,3 (High side supplies, Pin 1, 2, 4, 5, 7, 8)	7
VRU, VRV, VRW (low side emitter, Pin 12, 13, 14)	7
V+ (positive bus input voltage, Pin 10)	7
Absolute Maximum Ratings	8
Module Section	8
IGBT and Diode Section	8
Control Section	9
Recommended Operation Conditions	9
Static Parameters	10
Dynamic Parameters	11
Integrated Components	12
Circuit of a Typical Application	12
Characteristics	13
Test Circuits and Parameter Definiton	15
Package Outline IKCS12F60AA	18
Package Outline IKCS12F60AC	19

CIPOS™ IKCS12F60AA IKCS12F60AC

CIPOS[™] Control integrated **Po**wer System

Single In-Line Intelligent Power Module 3Φ-bridge 600V / 12A @ 25°C

Features

- Fully isolated Single In-Line molded module
- TrenchStop[®] IGBTs with lowest V_{CE(sat)}
- Optimal adapted antiparallel diode for low EMI
- Integrated bootstrap diode and capacitor
- Rugged SOI gate driver technology with stability against transient and negative voltage
- Temperature monitor and over temperature shutdown
- Overcurrent shutdown
- Undervoltage lockout at all channels
- Matched propagation delay for all channels
- Low side emitter pins accessible for all phase current monitoring (open emitter)
- Cross-conduction prevention
- Lead-free terminal plating; RoHS compliant
- Qualified according to JEDEC¹ (high temperature stress tests for 1000h) for target applications

Target Applications

- Washing machines
- Consumer Fans and Consumer Compressors

Description

The CIPOS[™] module family offers the chance for integrating various power and control components to increase reliability, optimize PCB size and system costs.

This SIL-IPM is designed to control AC motors in variable speed drives for applications like air conditioning, compressors and washing machines. The package concept is specially adapted to power applications, which need extremely good thermal conduction and electrical isolation, but also EMI-save control and overload protection. The features of Infineon TrenchStop[®] IGBTs and antiparallel diodes are combined with a new optimized Infineon SOI gate driver for excellent electrical performance.

System Configuration

- 3 halfbridges with TrenchStop[®] IGBT & FW-EmCon[™] diodes
- 3Φ SOI gate driver
- Bootstrap diodes for high side supply
- Integrated 100nF bootstrap capacitance
- Temperature sensor, passive components for adaptions
- Isolated heatsink
- Creepage distance typ. 3.2mm

Certification

UL 1577 (UL file E314539)

¹ J-STD-020 and JESD-022

Internal Electrical Schematic

Pin Assignment

Pin Number	Pin Name	Pin Description
1	VB3	high side floating IC supply voltage
2	W,VS3	motor output W, high side floating IC supply offset voltage
3	n.a.	None
4	VB2	high side floating IC supply voltage
5	V,VS2	motor output V, high side floating IC supply offset voltage
6	n.a.	None
7	VB1	high side floating IC supply voltage
8	U,VS1	motor output U, high side floating IC supply offset voltage
9	n.a.	None
10	V+	positive bus input voltage
11	n.a.	None
12	VRU	low side emitter
13	VRV	low side emitter
14	VRW	low side emitter
15	/HIN1	input gate driver high side 1/U
16	/HIN2	input gate driver high side 2/V
17	/HIN3	input gate driver high side 3/W
18	/LIN1	input gate driver low side 1/U
19	/LIN2	input gate driver low side 2/V
20	/LIN3	input gate driver low side 3/W
21	ITRIP	input overcurrent shutdown
22	VDD	module control supply
23	VSS	module negative supply
24	EN	input logic enable, output temperature monitoring

Pin Description

/HIN1,2,3 and /LIN1,2,3 (Low side and high side control pins, Pin 15 - 20)

These pins are active low and they are responsible for the control of the integrated IGBT The Schmitt-trigger input threshold of them are

Figure 2: Input pin structure

such to guarantee LSTTL and CMOS compatibility down to 3.3V controller outputs. Pull-up resistor of about 75 kOhm is internally provided to pre-bias inputs during supply start-up and a zener clamp is provided for pin protection purposes. Input schmitt-trigger and noise filter provide beneficial noise rejection to short input pulses.

It is recommended for proper work of CiPoS[™] not to provide input pulse-width lower than 1us.

The integrated gate drive provides additionally a shoot through prevention capability which avoids the simultaneous on-state of two gate drivers of the same leg (i.e. HO1 and LO1, HO2 and LO2, HO3 and LO3).

A minimum deadtime insertion of typ 380ns is also provided, in order to reduce cross-conduction of the external power switches.

EN (enable, Pin 24)

The signal applied to pin EN controls directly the output stages. All outputs are set to LOW, if EN is at LOW logic level. The internal structure of the pin is the same as Figure 2 made exception of the switching levels of the Schmitt-Trigger, which are here $V_{\text{EN,TH}}$ = 2.1 V and $V_{\text{EN,TH}}$ = 1.3 V. The typical propagation delay time is t_{EN} = 900 ns.

Figure 3: Internal Circuit at pin EN

This pin may also be used for reading out the temperature close to the gate drive IC. Please refer to section "Integrated Components" for the specification of the integrated parts.

ITRIP (Over-current detection function, Pin 21)

CiPoS[™] provides an over-current detection function by connecting the ITRIP input with the motor current feedback. The ITRIP comparator threshold (typ 0.46V) is referenced to VSS ground. A input noise filter prevents the driver to detect false over-current events.

Over-current detection generates a hard shut down of all outputs of the gate driver after the shutdown propagation delay of typically 900ns.

The fault-clear time is set to typically to 4.7 ms.

VDD, VSS (control side supply and reference,

Pin 22, 23)

VDD is the low side supply and it provides power both to input logic and to low side output power stage. Input logic is referenced to VSS ground as well as the under-voltage detection circuit.

The under-voltage circuit enables the device to operate at power on when a supply voltage of at least a typical voltage of $V_{\text{DDUV+}} = 12.1 \text{ V}$ is at least present.

The IC shuts down all the gate drivers power outputs, when the VCC supply voltage is below V_{DDUV} = 10.4 V. This prevents the external power switches from critically low gate voltage levels during on-state and therefore from excessive power dissipation.

VB1,2,3 and VS1,2,3 (High side supplies, Pin 1, 2, 4, 5, 7, 8)

VB to VS is the high side supply voltage. The high side circuit can float with respect to VSS following the external high side power device emitter/source voltage.

Due to the low power consumption, the floating driver stage is supplied by an integrated bootstrap circuit connected to VDD. This includes also

Figure 4: Input filter timing diagram

integrated bootstrap capacitors of 100 nF at each floating supply, which are located very close to the gate drive circuit.

The under-voltage detection operates with a rising supply threshold of typical $V_{\text{BSUV+}}$ = 12.1 V and a falling threshold of $V_{\text{DDUV-}}$ = 10.4 V according to Figure 4.

VS1,2,3 provide a high robustness against negative voltage in respect of VSS of -50 V. This ensures very stable designs even under rough conditions.

VRU, VRV, VRW (low side emitter, Pin 12, 13, 14)

The low side emitters are available for current measurements of each phase leg. It is recommended to keep the connection to pin VSS as short as possible in order to avoid unnecessary inductive voltage drops.

V+ (positive bus input voltage, Pin 10)

The high side IGBT are connected to the bus voltage. It is recommended, that the bus voltage does not exceed 500 V.

Absolute Maximum Ratings

 $(T_c = 25^{\circ}C, \text{ if not stated otherwise})$

Module Section

Description	Condition	Symbol	Value		Unit
			Min	max	
Storage temperature range		T _{stg}	-40	125	°C
Operating temperature control PCB ¹		T _{PCB}	-	125	°C
Solder temperature	Wave soldering, 1.6mm (0.063in.) from case for 10s	T _{sol}	-	260	°C
Insulation test voltage	RMS, f=50Hz, t =1min	V _{ISOL}	2500	-	V
Mounting torque	M3 screw and washer	Ms	-	0.6	Nm
Mounting pressure on surface	Package flat on mounting surface	N _{MC}	-	150	N/mm ²
Creepage distance		d _S	3.1	-	mm
External bootstrap capacitor	single capacitor charging, VDD = 15V	C _{bs,ext}		19	μF

IGBT and Diode Section

Description	Condition	Symbol	Value		Unit
			min	max	
Max. blocking voltage	V _{IN} =5V, I _C =0.25mA	V _{CES}	600	-	V
DC output current	$T_c = 25^{\circ}C, T_{vJ} < 150^{\circ}C$ $T_c = 80^{\circ}C, T_{vJ} < 150^{\circ}C$	I _u , I _v , I _w	-12 -6	12 6	A
Repetitive peak collector current	$t_{\rm p}$ limited by T _{vJmax}	I_u, I_v, I_w	-18	18	A
Short circuit withstand time ² (SCSOA)	$\label{eq:VDD} \begin{array}{l} V_{DD} \mbox{=} \mbox{15V}, V_{DC} \leq 400V, \\ T_j \leq 150^\circ C \end{array}$	t _{sc}	-	5	μs
IGBT reverse bias safe operating area (RBSOA)	$\begin{array}{l} V_{DD} = 15V, V_{DC} \leq 500V, \\ T_{j} = 150^{\circ}C, \ I_{C} = 6A \\ V_{CEmax} = 600V \end{array}$		Full Square		
Power dissipation per IGBT	$T_c = 25^{\circ}C$	P _{tot}	-	35	W
Operating junction temperature range	IGBT Diode	T _{vjl} T _{vjD}	-40 -40	150 150	°C

 $^{^1}$ Monitored by pin 24 2 Allowed number of short circuits: <1000; time between short circuits: >1s.

Description	Condition	Symbol	Value		Unit	
			min	typ	max	
Single IGBT thermal resistance, junction-case		R _{thJC}	-	-	3.0	K/W
Single diode thermal resistance, junction-case		R _{thJCD}	-	-	4.2	

Control Section

Description	Condition	Symbol	Value	Unit	
			min	max	
Module supply voltage		V _{DD}	-1	20	V
High side floating supply voltage (VB vs. VS)		V _{BS}	-1	20	V
High side floating IC supply offset voltage	t _p < 500ns	V _{S1,2,3}	VDD-VBS-6 VDD-VBS-50	600	V
Input voltage	LIN, HIN, EN, ITRIP	V _{in}	-1	10	V
Operating junction temperature ¹		T _{J,IC}	-	125	°C
Max. switching frequency		f _{PWM}	-	20	kHz

Recommended Operation Conditions

All voltages are absolute voltages referenced to V_{SS} -Potential unless otherwise specified.

Description	Symbol	Value		Unit
		min	max	
High side floating supply offset voltage	Vs	-3	500	V
High side floating supply voltage (V $_{\rm B}$ vs. V $_{\rm S}$)	V _{BS}	12.5	17.5	
Low side power supply	V _{DD}	12.5	17.5	
Logic input voltages LIN,HIN,EN,ITRIP	V _{IN}	0	5	

¹ Monitored by pin 24

Static Parameters

 $(T_c = 25^{\circ}C, \text{ if not stated otherwise})$

Description	Condition	Symbol	Value		Unit	
			min	typ	max	
Collector-Emitter blocking voltage	$V_{IN} = 5V, I_C = 0.25mA$	V _{(BR)CES}	600	-	-	V
Collector-Emitter saturation voltage	V _{DD} = 15V, I _{out} = +/- 6A 25°C 150°C	V _{CE(sat)}	-	1.6 1.9	2.1	
Diode forward voltage	V _{IN} =5V, I _{out} = +/- 6A 25°C 150°C	V _F	-	1.65 1.6	2.05	
Zero gate voltage collector current of IGBT	$V_{CE} = 600V, V_{IN} = 5V$ $T_j = 25^{\circ}C$ $T_j = 150^{\circ}C$	I _{CES}			40 1000	μA
Short circuit collector current ¹	V _{DD} = 15V, t _{SC} ≤ 5µs V _{DC} = 400V, T _{vJ} = 150°C	I _{C(SC)} ²	-	40	-	A
Logic "0" input voltage (LIN,HIN)		V _{IH}	1.7	2.1	2.4	V
Logic "1" input voltage (LIN,HIN)		V _{IL}	0.7	0.9	1.1	V
EN positive going threshold		V _{EN,TH+}	1.9	2.1	2.3	V
EN negative going threshold		V _{EN,TH-}	1.1	1.3	1.5	V
ITRIP positive going threshold		V _{IT,TH+}	360	460	540	mV
ITRIP input hysteresis		V _{IT,HYS}	45	75	-	mV
VDD and VBS supply undervoltage positive going threshold		V _{DDUV+} V _{BSUV+} ²	11.0	12.1	12.8	V
VDD and VBS supply undervoltage negative going threshold		V _{DDUV-} V _{BSUV-} ²	9.5	10.4	11.0	V
Vcc and VBs supply undervoltage lockout hysteresis		V _{DDUVH} V _{BSUVH} ²	1.2	1.7	-	V
Input clamp voltage (/HIN, /LIN, EN, ITRIP)	I _{IN} = 4 mA	VINCLAMP	9.0	10.1	13.0	V
Quiescent VB_x supply current (VB_x only)	V _{HIN} = low	I _{QB}	-	360	550	μA
Quiescent VDD supply current (VDD only)	V _{IN} = float	I _{QDD}	-	2.0	3.0	mA
Input bias current	V _{IN} = 5V	I _{IN+}	-	55	100	μA
Input bias current	V _{IN} = 0V	I _{IN-}	-	110	200	μA
ITRIP Input bias current	V _{ITRIP} = 5V	I _{ITRIP+}	-	75	120	μA
EN Input bias current	V _{EN} = 5V	I _{EN+}	-	180	300	μA
Leakage current of high side	T _{j,IC} = 125°C, VS = 600V	I _{LVS} ²	-	30	-	μA

¹ Allowed number of short circuits: <1000; time between short circuits: >1s.

² Test is not subject of product test, verified by characterisation

Dynamic Parameters

(Т _с =	25°C	; if not	stated	otherwise))
1	'C	20 0	,	. Stated		/

Description	Condition Symbol V		Value		Symbol Value			Unit
			min	typ	max			
Turn-on propagation delay High side or low side	$V_{\text{LIN,HIN}} = 0$ V; $I_{\text{out}} = 6$ A, $V_{\text{DC}} = 300$ V	t _{d(on)}	-	617	-	ns		
Turn-on rise time High side or low side	$I_{out} = 6A, V_{DC} = 300V$ $V_{LIN,HIN} = 5V$	tr	-	21	-	ns		
Turn-off propagation delay High side or low side	$V_{\text{LIN,HIN}} = 5V; I_{\text{out}} = 6A,$ $V_{\text{DC}} = 300V$	t _{d(off)}	-	832	-	ns		
Turn-off fall time High side or low side	I _{out} = 6A, V _{DC} = 300V V _{LIN,HIN} = 0V	t _f	-	29	-	ns		
Shutdown propagation delay ENABLE	$V_{EN} = 0V, I_u, I_v, I_w = 6A$	t _{EN}	-	900	-	ns		
Shutdown propagation delay ITRIP	$V_{\text{ITRIP}} = 1V, I_u, I_v, I_w = 6A$	t _{ITRIP}	-	900	-	ns		
Input filter time ITRIP	V _{ITRIP} = 1V	t _{ITRIPmin}	155	210	380	ns		
Input filter time at LIN for turn on and off and input filter time at HIN for turn on only	V _{LIN,HIN} = 0 V & 5V	t _{FILIN}	120	270	-	ns		
Input filter time at HIN for turn off	V _{HIN} = 5V	t _{FILIN1}	-	220	-	ns		
Input filter time at HIN for turn off	V _{HIN} = 5 V	t _{FILIN2}	-	400	-	ns		
Input filter time EN		t _{FILEN}	300	430	-	ns		
Fault clear time after ITRIP-fault	$V_{\text{LIN,HIN}} = 0 \vee \& 5 \vee V_{\text{ITRIP}} = 0 \vee$	t _{FLTCLR}	-	4.7	-	ms		
Min. deadtime between low side and high side		DT _{PWM}	-	1	-	μs		
Deadtime of gate drive circuit		DT _{IC}	-	380	-	ns		
IGBT Turn-on Energy (includes reverse recovery of diode)	$ I_{out} = 6A, V_{DC} = 300V T_{vj} = 25^{\circ}C T_{vj} = 150^{\circ}C $	E _{on}	- -	145 195	-	μJ		
IGBT Turn-off Energy	$ I_{out} = 6A, V_{DC} = 300V \\ T_{vj} = 25^{\circ}C \\ T_{vj} = 150^{\circ}C $	E _{off}	- -	122 160		μJ		
Diode recovery Energy	$I_{out} = 6A, V_{DC} = 300V$ $T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$	E _{rec}	- -	31 81		μJ		

Integrated Components

Description	Condition	Symbol ¹	Value		Unit	
			min	typ	max	
Resistor (0.25 W)		Rbs	-	10	-	Ω
Resistor		R	-	24	-	kΩ
Resistor	T _{NTC} = 25°C	RTS	-	100	-	
B-Constant of NTC (Negative Temperature Coefficient)	T _{NTC} = 25°C	B25	-	4250	-	K
Bootstrap diode forward voltage	I _{FDbs} = 100mA	V _{FDbs}	-	1.9	2.05	V
Capacitor		C1	-	100	-	nF
Capacitor		C2	-	2.2	-	
Bootstrap Capacitor		CbsH _x	-	100	-	

Circuit of a Typical Application

¹ Symbols according to Figure 1

Characteristics

 $(D=t_{\rm P}/T)$

Figure 12. Maximum ext. bootstrap capacitor as a function of supply voltage V_{DD} (T_J =25°C, single capacitor charging)

Test Circuits and Parameter Definition

Stray capacitance C_{σ} =39pF

Figure A: Dynamic test circuit Leakage inductance L_{σ} =180nH

Figure C: Definition of Enable and ITRIP propagation delay

Figure D: Switching times definition and switching energy definition

Figure E: Short Pulse suppression

Package Outline IKCS12F60AA

Note: There may occur discolourations on the copper surface without any effect on the thermal properties.

Package Outline IKCS12F60AC

Note: There may occur discolourations on the copper surface without any effect on the thermal properties.