

Diode Rapid Switching Emitter Controlled Diode

IDP40E65D2

Emitter Controlled Diode

Data sheet

Industrial Power Control

Rapid Switching Emitter Controlled Diode

Features:

- Qualified according to JEDEC for target applications
- 650 V Emitter Controlled technology
- Fast recovery
- Soft switching
- Soft switching
 Low reverse recovery charge
 Low forward voltage and stable over temperature
 175 °C junction operating temperature
 Easy paralleling

- Pb-free lead plating; RoHS compliant

Applications:

Boost diode in CCM PFC

IDP40E65D2

Key Performance and Package Parameters

Туре	Vrrm	l _f	<i>V</i> _f , <i>T</i> _{vj} =25°C	T _{vjmax}	Marking	Package
IDP40E65D2	650V	40A	1.6V	175°C	E40ED2	PG-TO220-2-1

Table of Contents

Description
Table of Contents
Maximum Ratings
Thermal Resistance
Electrical Characteristics
Electrical Characteristics Diagrams
Package Drawing
Testing Conditions
Revision History
Disclaimer

Maximum Ratings

For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of the maximum ratings stated in this datasheet.

Parameter	Symbol	Value	Unit
Repetitive peak reverse voltage	V _{RRM}	650	V
Diode forward current, limited by T_{vjmax} $T_{C} = 25^{\circ}C$ $T_{C} = 100^{\circ}C$	/ _F	80.0 40.0	A
Diode pulsed current, t_p limited by T_{vjmax}	I _{Fpuls}	120.0	Α
Diode surge non repetitive forward current $T_{\rm C}$ = 25°C, $t_{\rm p}$ = 8.3ms, sine halfwave	/ _{FSM}	250.0	А
Power dissipation $T_{\rm C}$ = 25°C	P _{tot}	200.0	W
Operating junction temperature	T _{vj}	-40+175	°C
Storage temperature	T _{stg}	-55+150	°C
Soldering temperature, wave soldering 1.6 mm (0.063 in.) from case for 10s		260	°C
Mounting torque, M3 screw Maximum of mounting processes: 3	М	0.6	Nm

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic	i			
Diode thermal resistance, ¹⁾ junction - case	$R_{\mathrm{th(j-c)}}$		0.75	K/W
Thermal resistance junction - ambient	$R_{\mathrm{th}(j-a)}$		62	K/W

Electrical Characteristic, at T_{vj} = 25°C, unless otherwise specified

Parameter	Cumb al	Symbol Conditions		Value		
	Symbol	Conditions	min.	typ.	max.	Unit
Static Characteristic	L L					
Diode forward voltage	VF	/ _F = 40.0A <i>T</i> _{vj} = 25°C <i>T</i> _{vj} = 175°C		1.60 1.65	2.20	V
Reverse leakage current	I _R	V _R = 650V T _{vj} = 25°C T _{vj} = 175°C		-	40.0 4000.0	μA

Electrical Characteristic, at T_{vj} = 25°C, unless otherwise specified

Devenuetor	C. maked	ymbol Conditions		Value		
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
Dynamic Characteristic						
Internal emitter inductance measured 5mm (0.197 in.) from case	LE		-	7.0	-	nH

Switching Characteristic, Inductive Load

Deremeter	Symbol	Conditions	Value			11
Parameter	Symbol Conditions	Conditions	min.	typ.	max.	Unit

Diode Characteristic, at T_{vj} = 25°C

Diode reverse recovery time	$t_{\rm rr}$ $T_{\rm vj}$ = 25°C,		-	36	-	ns
Diode reverse recovery charge	Qrr	$V_{\rm R} = 400V,$ $V_{\rm F} = 40.0A,$	-	0.40	-	μC
Diode peak reverse recovery current			-	22.0	-	Α
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$ $di_{\rm rr}/dt$		-	-10000	-	A/µs	
	1					
Diode reverse recovery time	t _{rr}	$T_{\rm vj} = 25^{\circ} {\rm C},$	-	75	-	ns
Diode reverse recovery charge	Qrr	$V_{\rm R} = 400 V,$ $J_{\rm F} = 40.0 A,$	-	0.13	-	μC
Diode peak reverse recovery current	l _{rrm}	di _F /dt = 200A/μs	-	2.9	-	Α
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$ $d_{\rm in}/dt$			-	-54	-	A/µs

Switching Characteristic, Inductive Load

Poromotor	Symbol Conditions	Value			Ilmit
Parameter		Conditions	min.	typ.	max.

Diode Characteristic, at $T_{vj} = 175^{\circ}C/125^{\circ}C$

	1		1	1		
Diode reverse recovery time	e reverse recovery time $t_{\rm rr}$		-	60	-	ns
Diode reverse recovery charge	Qrr	$V_{\rm R} = 400V,$ $V_{\rm F} = 40.0A,$	-	1.14	-	μC
Diode peak reverse recovery current			-	32.0	-	Α
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	-8700	-	A/µs
	1	1	I			
Diode reverse recovery time	t _{rr}	$T_{\rm vj} = 125^{\circ}{\rm C},$	-	83	-	ns
Diode reverse recovery charge	Qrr	$V_{\rm R} = 400V,$ $I_{\rm F} = 40.0A,$	-	0.32	-	μC
Diode peak reverse recovery current	l _{rrm}	/⊧ = 40.0A, di⊧/dt = 200A/μs	-	5.6	-	Α
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$ $di_{\rm rr}/dt$			-	-51	-	A/µs

(V_R=400V)

Figure 7. Typical diode forward current as a function of Figure 8. Typical diode forward voltage as a function of forward voltage forward voltage as a function of junction temperature

Figure B. Definition of switching losses

Figure C. Definition of diodes switching characteristics

Figure D. Thermal equivalent circuit

Figure E. Dynamic test circuit Parasitic inductance L_{σ} , Parasitic capacitor C_{σ} , Relief capacitor C_{r} (only for ZVT switching)

Revision History

IDP40E65D2

Revision: 2014-03-31, Rev. 2.2

Previous Revision							
Revision	Date	Subjects (major changes since last revision)					
1.1	2013-03-14	Preliminary data sheet					
1.2	2013-03-14	-					
2.1	2013-12-16	Final DS / New Marking Pattern					
2.2	2014-03-31	Value VFmax limit according BE test					

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all ? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by Infineon Technologies AG 81726 Munich, Germany 81726 München, Germany © 2014 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.