

Analog Devices Welcomes Hittite Microwave Corporation

NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

www.hittite.com

www.analog.com

THIS PAGE INTENTIONALLY LEFT BLANK

ACTIVE BIAS CONTROLLER High Current

Typical Applications

- Microwave Radio & VSAT
- Military & Space
- Test Instrumentation
- Fiber Optic Modulator Driver Biasing
- CATV Laser Driver Biasing
- Cellular Base Station
- Wireless Infrastructure Equipment

Features

- Automatic Gate voltage adjustment (No Calibration required)
- Supply Voltage (5V to 16.5V)
- Bias both Enhancement or Depletion type devices
 - Adjustable Drain Current up to 1.6 A
- Sink or source gate current
- Internal negative voltage generation
 - Can be disabled to use external negative rail
- Fast Enable/Disable
- Trigger-out Output for Daisy Chain
- Power-Up and Power-Down Sequencing
- Over/Under Current Alarm with built-in hystresis
- Die Size: 1.4 x 2.26 x 0.25mm

General Description

HMC980 is an active bias controller that can automatically adjust the gate voltage of an external amplifier to achieve constant bias current. With an integrated controller, HMC980 achieves safe power on/ off, disable/enable and automatic supply sequencing ensuring the safety of the external amplifier. It can be used to bias any enhancement and depletion type amplifier operating in Class-A regime with drain voltages (VDRAIN) from 5V to 16.5V and drain currents (IDRAIN) up to 1.6 A, offering a complete biasing solution.

HMC980 achieves excellent bias stability over supply, temperature and process variations, and eliminates the required calibration procedures usually employed to prevent RF performance degradation due to such variations. All data shown herein is taken with appropriate probes.

For price, delivery and to place orders: Hittite Microwave Corporation, 2 Elizabeth Drive, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373 Order On-line at www.hittite.com Application Support: Phone: 978-250-3343 or apps@hittite.com

Functional Diagram

RoHS√

ACTIVE BIAS CONTROLLER High Current

Electrical Specifications, $T_A = +25^{\circ}$ C, VDD=12V, VDIG= 3.3V, Depletion Master Unless Otherwise Noted

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Units
Supply Voltage	Vdd			5		16.5	V
		VDD = 5V	EN = VDIG		19		mA
VDD Quiescent Current	IDD	VUU = 3V	EN = GND		7.5		mA
VDD Quescent Gunent		VDD = 12V	EN = VDIG		20		mA
		VDD = 12V	EN = GND		9		mA
VDIG Quiescent Current	IDIG	VDIG	= 3.3 V		3.5		mA
		VDIG	i= 5 V		6.5		mA
Charge Pump Oscillator Frequency	FOSC				300		kHz
Voltage Reference	VREF				1.44		V
ALMTRIG Input Threshold	ALMTRIG	Vir	low			1	V
		Vin	high	1.4			V
Enable Input Threshold	ENTHRS	Vir	low			1	V
		Vin	high	1.4			V
S0, S1 Input Threshold	SWTHRS		low			1	V
		Vin	high	1.4			V
VDRAIN Characteristics		1			· · · ·		
		S1=S0)=GND	0.05		0.3	A
DRAIN Current Adjustment Range	IDRAIN	S1=GND,	S0=VDIG	0.3		0.6	A
		S1=VDIG, S0=GND		0.6		1.2	A
		S1=VDIG, S0=VDIG		1.2		1.6	A
DRAIN Current Change Over Digital Voltage		VDRAIN set to 12V,			0.4		%/V
DRAIN Current Change Over Temperature		IDRAIN set to 400 mA			0.023		%/C
DRAIN Range	VDRAIN			5		16.5	V
VDRAIN Change Over Temperature	ΔVDRAIN	VDRAIN set to 12V, IDRAIN set to 400 mA			0.02		%/C
VNEG Characteristics							
Negative Voltage Output	VNEG				-2.46		V
VNEG Current Sink	INEG			0		60	mA
VGATE Characteristics							
GATE Current Supply	IG			-4		4	mA
VGATE Low Level	VG_MIN				VNEG		V
VGATE High Level	VG_MAX				VNEG+4.5		V
VG2 Characteristics							
		VG2	2<2V	-0.1		0.1	mA
VG2 Current Supply	IG2	6V>VG2>2V		-1		1	mA
		VG2	2>6V	-5		5	mA
VG2 Adjustment Range	VG2			1		VDD-1.3	V
VDIG Characteristics							
Adjustment Range	VDIG			3.3		5	V
VIDIO Outransit Outransi		VDD:	= 12V,		0.5		
VDIG Quiescent Current	IDIG	VDIG=EN =3.3 V			3.5		mA
SW Characteristics							
		S1=S0)=GND		2.8		Ohm
			S0=VDIG		1.55		Ohm
Internal Switch Resistance	RDS_ON	S1=VDIG, S0=VDIG			0.85		Ohm
		S1=VDIG, S0=VDIG			0.7		Ohm
			00-0010		0.7		

High Current

ROHS

Bias Current Accuracy^[1]

Power Up Waveform

Enable Waveform

[1] HMC637LP5 is used as external amplifier [2] HMC591LP5 is used as external amplifier

Bias Current Accuracy^[2]

ACTIVE BIAS CONTROLLER

Shutdown Waveform

Disable Waveform

Load Regulation @ VDD=5V, VDIG=3.3V, SW0=GND, SW1=GND

Load Regulation @ VDD=16.5V, VDIG=5.0V, SW0=GND, SW1=VDIG

VNEG Load Regulation @ VDD=5V

ACTIVE BIAS CONTROLLER High Current

Load Regulation @ VDD=5V, VDIG=3.3V, SW0=3.3V, SW1=GND

Load Regulation @ VDD=16.5V, VDIG=5.0V, SW0=VDIG, SW1=VDIG

High Current

VNEG Load Transient VDD=5V

VGATE Load Regulation @ VDD=12V [1]

VNEG Line Regulation vs. Supply Voltage

VNEG Load Transient VDD=16.5V

ACTIVE BIAS CONTROLLER

VG2 Load Regulation @ VDD=12V [1]

ACTIVE BIAS CONTROLLER High Current

Absolute Maximum Ratings

VDD	18V
S0, S1, EN, ALM,ALMTRG, VREF, VNEGFB, VGATEFB, TRIG_OUT, ISENSE, ALML, ISET, ALMH, FIX- BIAS	-0.5V to VDIG + 0.5V
CP_VDD	VDD-0.5V to VDD+0.5V
CP_OUT, VG2_CONT, VG2, VDRAIN	-0.5V to VDD + 0.5V
VDIG	5.5V
VNEG	-4V to GND
VGATE	VNEG to GND
Junction Temperature	125 °C

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

Note that there are two different voltage domains on HMC980; a high voltage domain Vdd, and a low voltage domain VDIG. Take necessary precautions not to violate ABS MAX ratings of each subdomains.

Pad Descriptions

Pad Number	Function	Description	Interface Schematic
1,12,13,20,21, 35	GND	These pads and the die bottom must be connected to a high quality RF/DC ground.	
2	ALM	Over/under current alarm. Provides an active high signal (VDIG) if the quiescent bias exceed the upper threshold or drops below the lower threshold.	VDIG
19	TRIGOUT	Trigger out signal. Generates a HIGH (3.3V) signal when the active bias system stabilizes. This signal can be used to trigger next device (ENABLE) if more than one HMC980 is used in a daisy chain.	
3	ALMTRG	Dummy alarm trigger signal to create test alarm when taken HIGH (3.3V). Defaults to LOW (GND) when left floating.	VDIG
4	EN	Enable pad. Bias control loop is enabled when Ven is HIGH(VDIG). If left floating, Ven defaults to HIGH (enabled).	S0,S1 EN ALMTRG
5,6	S1,S0	Control pads for internal switch resistance. If left float- ing, default to HIGH. Refer to Table-1 in Application Notes for recommended settings.	GND
7,8,9,10,11	VDD	Bias supply Pad. Connect supply voltage to this pad with appropriate filtering.	
14	FIXBIAS	A high precision (e.g. 0.5%, ±25 ppm TCR) 10K resistor to ground is recommended for good bias accuracy.	VDD INTERNAL BIAS FIXBIAS

ROHS V

Pad Descriptions (Continued)

Pad Number	Function	Description	Interface Schematic
15	ALMH	A high precision resistor (e.g. 0.5%, ±25 ppm TCR) to ISet pad is recommended for good bias accuracy. The value of the resistor sets the threshold. If alarm feature is not used ALMH can be shorted to ISet.	VDIG ALMH
16	ISET	A high precision resistor (e.g. 0.5%, ±25 ppm TCR) between ALML and ISet is recommended for good bias accuracy. The total external resistance from ISet pad to GND should always be equal to 5 k Ω.	
17	ALML	A high precision resistor (e.g. 0.5%, ±25 ppm TCR) to GND is recommended for good bias accuracy. The value of the resistor sets the threshold value for under current alarm. If alarm feature is not used ALML can be shorted to ISet.	
18	ISENSE	Drain current adjustment pad. To adjust the bias current of the external amplifier connect a resistor (Rsense) from ISENSE pad to GND according to eqn(2) on page 13-15. A high precision resistor (e.g. 0.5%, ±25 ppm TCR) is recommended for good bias accuracy.	

Pad Descriptions (Continued)

Pad Number	Function	Description	Interface Schematic
22,23,24,25 26	VDRAIN	Drain voltage. Should be connected to the supply termi- nal of the external amplifier. A minimum 10 nF capacitor has to be placed close to the external amplifier to improve load regulation.	VDD VDRAIN
27	VGATE	Gate Control pad for external amplifier. Connect to the gate (base) of the external amplifier. In order to guar- antee stability, a 2.2µF capacitor should be connected between the gate (base) terminal of the external ampli- fier and GND as close to the amplifier as possible.	VDD VGATE
28	VNEG	Negative input to the chip. Should be supplied with CPOUT when negative voltage generator is enabled, or connect to external VSS when negative voltage genera- tor is enabled. Defaults to -2.5V. If a value different than -2.5V required, please contact factory.	
29	VG2	Second gate control.	
30	VG2_CONT	Control voltage of the second gate pad VG2. Use a resistor divider between VDD and GND to set the voltage. VG2 is typically 1.3V lower than the VG2CONT.	

ROHS

ACTIVE BIAS CONTROLLER High Current

Pad Descriptions (Continued)

Pad Number	Function	Description	Interface Schematic
31	VGATEFB	Control pad for VGATEFB. Float VGATEFB when a depletion mode transistor is biased. Selects the mode of operation along with VNEGFB pad.	VDIG VGATEFB VNEGFB
32	VNEGFB	Feedback (Control) pad for Negative Voltage Genera- tor Charge Pump. Float to activate the negative voltage generator / Short to GND to disable the negative voltage generator.	
33	VREF	1.44V reference voltage.	VDD VREF
34	VDIG	3.3V-5V Digital Bias supply Pad. Connect supply volt- age to this pad with appropriate filtering.	
37	CP_OUT	Negative voltage generator charge pump output. Nega- tive voltage generator requires a flying capacitor, a reservoir capacitor and two diodes to operate.	
38	CP_VDD	Bias supply for negative voltage generator. Connect supply voltage with appropriate filtering. CP_VDD supply voltage should be same as VDD.	

Application Circuit

Notes:

[1] A variable resistor is assembled on RSENSE slot to adjust bias current for evaluating various different amplifiers without soldering.

ROHS

ACTIVE BIAS CONTROLLER High Current

Application Notes

Detailed Description

All amplifiers require stable quiescent current to operate at their specifications. Many amplifiers in the market require external biasing to achieve stable quiscent current. HMC980 is a fully integrated biasing solution for such amplifiers. With an internal feedback, the automatic gate voltage control achieves constant quiescent bias through the amplifier under bias, independent of temperature and amplifier threshold variations. The quiescent current is adjusted with a resistor connected externally. The HMC980 employs an integrated control circuitry to manage safe power-up and power-down sequencing of the targeted amplifier. The HMC980 can provide auto-bias solution to virtually any amplifier in the market (both enhancement and depletion type) with a quiescent current of up to 1.6A and a supply voltage of up to 16.5V.

The HMC980 has an integrated negative voltage generator to create negative voltages required to drive depletion mode amplifiers. If an external negative supply is already available or an enhancement mode device is targeted, the negative voltage generator can be disabled.

The HMC980 achieves excellent bias stability over supply and temperature variations. The gate control can both sink and source current (±4 mA) which is required to compensate for charging gate current of the amplifier over input power variations. The HMC980 also generates a second gate voltage VG2. VG2 can be adjusted through a resistor divider connected to VDD for the amplifiers which require second gate voltage.

The HMC980 ensures safety of the external amplifier during turn on/off by automatically adjusting the sequence of VDRAIN, VGATE and VG2 outputs.

The HMC980 has a built-in over-under current alarm feature. If a fault conditions arises (either under or over current) an alarm signal is generated (ALM, active HIGH). The current alarm signal provided in HMC980 does not affect the operation of the controller. It is included for monitoring purposes where a system level protection can be implemented with external control circuitry.

The HMC980 employs S0, S1 pads to control RDS_ON resistance of the internal switch between VDD and VDRAIN. Refer to the section under the "Supply and Drain Voltage" section for details.

The HMC980 has a built-in self protection feature to protect itself against short circuit conditions at the VDRAIN output. The HMC980 has also a built-in VNEG fault protection feature to protect both itself and the amplifier under bias against short circuit conditions at the VNEG pad.

Digital Power Supply (VDIG)

The HMC980 requires an external low voltage bias rail (3.3V to 5.0V). VDIG powers the internal logic circuitry. VDIG draws and average of 3.5 mA from a 3.3V. VDIG can accept voltages up to 5.0V.

Supply and Drain Voltage (VDD and VDRAIN)

The VDD supply to the HMC980 is directly connected to the VDRAIN output through an internal MOSFET switch. This internal MOSFET is controlled through power-up sequencing which ensures that no voltage is applied to the drain of the external amplifier until the gate voltage is pulled down to VNEG (ensuring external amplifier is pinched-off). The VDRAIN output of the HMC980 should be connected to the drain (collector) of the amplifier under bias for the active bias control feedback and power-up/down sequencing to operate properly.

There will be a voltage drop from VDD to VDRAIN due to finite RDS_ON resistance of the internal switch. To compensate for this voltage drop choose the VDD value as shown in equation (1).

VDD = VDRAIN + IDRAIN x RDS_ON

(1)

where VDRAIN is the supply voltage of the external amplifier and IDRAIN is the desired constant bias current through the external amplifier.

Note that RDS_ON resistance of the internal FET switch can be adjusted through S0, S1 pads based on the DRAIN current requirement as shown in table-1. RDS_ON is typically equal to 0.7 Ohm when S0 and S1 are pulled up to VDIG, and is typically equal to 2.8 Ohm when S0 and S1 are pulled down to GND. If S0 and S1 pads are left floating, it is pulled up to VDIG through an internal weak pull-up. Recommended settings for the S0 and S1 positions are given in Table-1. Not using the HMC980 in the recommended settings may increase the power dissipation of the part and the part-to-part variation.

Table 1. Recomended Current Range Configuration

Current Range (A)	Condition	RD_ON Value (Ohm)
0.05 to 0.3	S1=S0=GND	2.8
0.3 to 0.6	S1=GND, S0=VDIG	1.55
0.6 to 1.2	S1=VDIG, S0=GND	0.85
1.2 to 1.6	S1=VDIG, S0=VDIG	0.7

Negative Voltage Generator (VNEGOUT)

The HMC980 has internal regulated charge pump circuitry to generate the negative voltage (VNEGOUT) required for depletion mode devices. The HMC980 generates -2.5V at the VNEGOUT output in default configuration. It requires two diodes and two capacitors connected externally as shown in the sample application schematics. It can be disabled through the VGATEFB and VNEGFB pads, if an enhancement device is targeted or a negative supply is already available in the system. In this configuration, simply connect the available negative supply to the VNEG pad. See Table-2 for the operation mode selection. The HMC980 is designed to reject the ripple on the VNEGOUT pad by isolating VNEGOUT from the VGATE. Thus, switching noise of the charge-pump is effectively isolated from the external amplifier.

Enable/Disable (EN)

The active bias control loop is enabled when EN is pulled up to VDIG, and it is disabled when it is pulled down to GND. If EN is left floating HMC980 is enabled through an internal weak pull-up. Note that VNEG operation is independent of EN condition. EN signal controls the operation of only VGATE, VG2 and VDRAIN outputs. When EN pulled down to GND, the HMC980 discharges VDRAIN and VG2 down to GND and it pulls the VGATE down to VNEG. When EN pulled high to VDIG, HM980 enables, VDRAIN and VG2, and enables the bias control loop to automatically adjust the VGATE voltage. Please see the "Active Bias Control Loop" section for detailed explanation and refer to the Enable and Disable waveforms for transient characteristics.

Active Bias Control Loop

The HMC980 regulates the bias current (IDRAIN) of the amplifier under bias through VGATE output connected to the gate of the external amplifier. In this closed loop operation the current passing through the amplifier under bias is sampled and is used to automatically adjust VGATE to achieve constant quiescent bias through the external amplifier.

The HMC980 continuously adjusts VGATE voltage to achieve constant DRAIN current over any supply, temperature, process variations and threshold drifts due to aging. The part-to-part, temperature, and supply variation of the HMC980 is excellent. Thus, by using an accurate sense resistor connected to the ISENSE pad, expensive calibration procedures in high volume production could be avoided.

The gate control of the HMC980 is designed to both sink and source current in to the gate of the targeted amplifier (at least ± 4 mA). This unique feature is important to achieve nearly constant quiescent bias through the amplifier under varying gate current at different input power values.

ACTIVE BIAS CONTROLLER High Current

The bias current passing through the external amplifier can be adjusted with RSENSE, where RSENSE is the R10 connected from ISENSE to GND. Use the relation given in equation (2) to set the desired bias current through the external amplifier.

(2)

VG2 Voltage Adjustment

The HMC980 generates a second gate voltage (VG2). VG2 can be adjusted through a resistor divider connected to VG2_CONT for the amplifiers which require second gate voltage. Eqn. (3) gives the formula to adjust VG2 :

$$VG2(V) = VDD^{R4}/(R3+R4) - 1.3$$
 (3)

For instance, choosing 5.1k Ohm as R3 and 3.3k Ohm as R4 sets VG2 voltage to 3.4V when VDD=12V. For improved accuracy, choose resistor values below 5k Ohm on R3.

Self Protection Feature

Due to the small resistance of the internal switch FET between VDD and VDRAIN, a large amount of current may flow through the HMC980. HMC980 limits the maximum current to self protect itself under such fault conditions, by turning off VDRAIN and VGATE.

The HMC980 will remain in this protection mode until a full power-cycle or enable/disable cycle is applied.

VNEG Fault Detection Feature

In depletion mode operation VNEG is continuously monitored against short circuit fault to GND. If VNEG rises above a preset value (typically -0.6V) the system and the external amplifier are disabled by pulling VDRAIN and VG2 to GND and VGATE to VNEG. The system will stay in this stand-by mode until short fault at VNEG is fixed.

Over/Under Current Alarm

The HMC980 provides over and under current alarm indicator ALM (pad#2) signal. The ALM is pulled up to VDIG when the IDRAIN current exceeds \pm 6% (With the given R11, R12, and R13 values in application circuit) of IDRAIN regulation target value as shown in Figure 1. The alarm threshold level is user adjustable through R11,R12, and R13 according to the following equations:

Over current ALM Threshold = I_{octh} = IDRAIN (1+R11/(R12+R13)),

Under current ALM Threshold = I_{ucth} = IDRAIN (1-R12/(R12+R13)) ,

where R12+R13 should always be equal to 5 k Ω (%1 accuracy)

Threshold values possess a small built-in hysterisis. The condition of ALM signal does not effect the operation of HMC980. It is provided only for monitoring purposes.

Power-up and Enable Sequencing

To ensure the safety of the external amplifier, the HMC980 provides an automatic power-up sequence for enabling the active bias control loop. During start-up VDRAIN and VG2 are kept at GND while VGATE is taken to the most negative supply available (VGATE=VNEG). This ensures that external amplifier is completely pinched-off before VDRAIN is applied. When EN signal is received, VDRAIN is applied and the active bias loop is enabled. After the VDRAIN is applied, VG2 is generated. The power-up sequence is completed by increasing the VGATE linearly until the set IDRAIN value is reached.

For power-down and disabling, the same sequencing is applied in the reverse order.

Daisy-Chain Operation

HMC980 produces a trigger out signal (TRIGOUT pad#19) when the quiscent current is in regulation. This trigger signal can be used to enable additional HMC980 chips in a chain of amplifiers. The triggering sequence can be routed in any way, from input to output, or from output to input depending on the use. Figure-2 shows a sample use of three HMC980s in an amplification chain. Please note that, only one of the HMC980 (in master mode) is used to generate the negative voltage and the remaining HMC980 (in slave mode) is set to receive external negative voltage (which is provided from the master depletion mode HMC980). Generating negative voltage from a single HMC980 reduces the number of the components in the system, and decreases the over all current consumption.

Please note that, to ensure proper start-up, the system enable signal should be applied to the depletion master mode device that has the negative voltage generator.

Figure 2. Daisy Chain Operation

Operation Modes

HMC980 can be configured to bias both enhancement and depletion mode external amplifiers. The mode of operation can be selected by setting two pads (VNEGFB, VGATEFB) as tabulated in Table-2. The connection to the VNEGIN should be adjusted accordingly.

In order not to bias external amplifier in a wrong region, please make sure that the correct mode of operation is selected before powering up the HMC980.

The HMC980 does not allow the internal negative voltage generator to work if an enhancement mode is selected. Therefore, if VNEGFB is left floating while VGATEFB is grounded, HMC980 will stay in standby mode.

Please note that in depletion slave mode the external negative voltage should be between -2.3V to -3.5V for HMC980 to operate. If your application requires negative voltages outside this range please contact Hittite application support.

Table 2. mode delection									
	VNEGFB	VGATEFB	VNEGIN	Description					
MODE1 (Depletion/Master Mode)	FLOAT	FLOAT	Connected to VNEGOUT	Depletion mode transistor. Internal negative voltage generator is active and generates -2.5V. Sample application schematic given shown in Fig.3a.					
MODE2 (Depletion/Slave Mode)	GND	FLOAT	Connected to External VSS	Depletion mode transistor. Internal negative voltage generator is disabled. An external negative voltage less than -2.3V should be connected to VNEGIN. Sample application schematic given shown in Fig.3b.					
	FLOAT	GND	N/A	Not allowed. HMC980 stays in standby.					
MODE3 (Enhancement Mode)	GND	GND	Connected to GND	Enhancement mode transistor. Internal negative voltage generator is disabled. Sample application schematic given shown in Fig.3c.					

Table 2. Mode Selection

ROHS EARTH FRIENDL

ACTIVE BIAS CONTROLLER High Current

Figure 3a. Depletion/Master Mode Amplifier Typical Application Circuit (Mode 1)

ACTIVE BIAS CONTROLLER High Current

Figure 3c. Enhancement Mode Amplifier Typical Application Circuit (Mode 3)

For biasing Hittite amplifiers compatable with HMC980 refer to the Table 3, where values of the external components are provided on typical application circuit shown in Figure 3a.

Hittite Part Number	VDRAIN (V)	VDD (V)	IDRAIN (mA)	RSENSE (kOhm)	R4 (kOhm)	R3 (kOhm)	VG2 (V)	S1	S0
Gain Blocks & Drivers									
HMC-AUH256	5	5.83	295	0.508	open	open	-	GND	GND
				LNAs					
HMC-ALH435	5	5.08	30	5.000	6.13	5	1.5	GND	GND
HMC-ALH444	5	5.15	55	2.727	5.95	5	1.5	GND	GND
HMC490	5	5.56	200	0.750	open	open	-	GND	GND
HMC490LP5	5	5.56	200	0.750	open	open	-	GND	GND
HMC594	6	6.28	100	1.500	open	open	-	GND	GND
HMC594LC3B	6	6.28	100	1.500	open	open	-	GND	GND
HMC609	6	6.48	170	0.882	open	open	-	GND	GND
HMC609LC4	6	6.48	170	0.882	open	open	-	GND	GND
HMC753LP4E	5	5.15	55	2.727	5.95	5	1.5	GND	GND
				Linear & Power					
HMC-ABH209	5	5.22	80	1.875	open	open	-	GND	GND
HMC-ABH264	5	5.34	120	1.250	open	open	-	GND	GND
HMC442	5	5.24	85	1.765	open	open	-	GND	GND
HMC442LC3B	5	5.24	84	1.786	open	open	-	GND	GND

Table 3 - List of Bias Settings for Various Hittite Amplifiers

Table 3 - List of Bias Settings for Various Hittite Amplifiers (Continued)

Hittite Part Number	VDRAIN (V)	VDD (V)	IDRAIN (mA)	RSENSE (kOhm)	R4 (kOhm)	R3 (kOhm)	VG2 (V)	S1	S0
HMC442LM1	5	5.24	85	1.765	open	open	-	GND	GND
HMC499	5	5.56	200	0.750	open	open	-	GND	GND
HMC499LC4	5	5.56	200	0.750	open	open	-	GND	GND
HMC-ABH241	5	5.62	220	0.682	open	open	-	GND	GND
HMC-APH403	5	5.74	475	0.316	open	open	-	GND	VDIG
HMC-APH460	5	5.77	900	0.167	open	open	-	VDIG	GND
HMC-APH462	5	6.22	1440	0.104	open	open	-	VDIG	GND
HMC-APH473	5	5.92	1080	0.139	open	open	-	VDIG	GND
HMC-APH478	5	5.77	900	0.167	open	open	-	VDIG	GND
HMC-APH510	5	5.99	640	0.234	open	open	-	GND	VDIG
HMC-APH518	5	5.81	950	0.158	open	open	-	VDIG	GND
HMC-APH596	5	6.12	400	0.375	open	open	-	GND	GND
HMC-APH608	5	5.81	950	0.158	open	open	-	VDIG	GND
HMC486	7	8.11	1300	0.115	open	open	-	VDIG	GND
HMC486LP5 / HMC486LP5E	7	8.11	1300	0.115	open	open	-	VDIG	GND
HMC487LP5 / HMC487LP5E	7	8.11	1300	0.115	open	open	-	VDIG	GND
HMC489LP5 / HMC489LP5E	7	8.11	1300	0.115	open	open	-	VDIG	GND
HMC498	5	5.70	250	0.600	open	open	-	GND	GND
HMC498LC4	5	5.70	250	0.600	open	open	-	GND	GND
HMC590	7	7.70	820	0.183	open	open	-	VDIG	GND
HMC590LP5 / HMC590LP5E	7	7.70	820	0.183	open	open	-	VDIG	GND
HMC591	7	8.14	1340	0.112	open	open	-	VDIG	GND
HMC591LP5 / HMC591LP5E	7	8.14	1340	0.112	open	open	-	VDIG	GND
HMC592	7	8.16	750	0.200	open	open	-	GND	VDIG
HMC608LC4	5	5.87	310	0.484	open	open	-	GND	GND
HMC693	5	6.24	800	0.188	open	open	-	GND	VDIG
HMC756	7	8.22	790	0.190	open	open	-	GND	VDIG
HMC757	7	8.11	395	0.380	open	open	-	GND	GND
HMC757LP4E	5	6.12	400	0.375	open	open	-	GND	GND
HMC863	6	7.05	375	0.400	open	open	-	GND	GND
HMC863LP4E	6	7.05	375	0.400	open	open	-	GND	GND
HMC864	6	7.16	750	0.200	open	open	-	GND	VDIG
HMC906	6	7.02	1200	0.125	open	open	-	VDIG	GND
HMC943LP5E	5.5	6.52	1200	0.125	open	open	-	VDIG	GND
HMC949	7	8.02	1200	0.125	open	open	-	VDIG	GND
HMC965LP5E	6	7.02	1200	0.125	open	open	-	VDIG	GND
HMC968	6	6.77	900	0.167	open	open	-	VDIG VDIG	GND GND
HMC969	6	6.77	900 Wid	0.167	open	open	-		GND
HMC-AUH232	5	5.50	180	0.833	5.18	5	1.5	GND	GND
HMC-AUH232	5	5.50	200	0.833	5.18	5	1.5	GND	GND
HMC-AUH312	8	8.17	60	2.500	3.06	5	1.5	GND	GND
TIMIC-AUTIST2	0	0.17	00	2.000	5.00	5	1.0		

ACTIVE BIAS CONTROLLER High Current

Table 3 - List of Bias Settings for Various Hittite Amplifiers (Continued)

Hittite Part Number	VDRAIN (V)	VDD (V)	IDRAIN (mA)	RSENSE (kOhm)	R4 (kOhm)	R3 (kOhm)	VG2 (V)	S1	S0
HMC460	8	8.17	60	2.500	open	open	-	GND	GND
HMC460LC5	8	8.21	75	2.000	open	open	-	GND	GND
HMC463	5	5.17	60	2.500	open	open	-	GND	GND
HMC463LH250	5	5.17	60	2.500	open	open	-	GND	GND
HMC463LP5	5	5.17	60	2.500	open	open	-	GND	GND
HMC465	8	8.45	160	0.938	2.48	5	1.5	GND	GND
HMC465LP5	8	8.45	160	0.938	2.48	5	1.5	GND	GND
HMC562	8	8.22	80	1.875	open	open	-	GND	GND
HMC633	5	5.50	180	0.833	open	open	-	GND	GND
HMC633LC4	5	5.50	180	0.833	open	open	-	GND	GND
HMC634	5	5.50	180	0.833	open	open	-	GND	GND
HMC634LC4	5	5.50	180	0.833	open	open	-	GND	GND
HMC-930	10	10.49	175	0.857	4.22	5	3.5	GND	GND
HMC-459	8	8.81	290	0.517	4.77	5	3	GND	GND
HMC-464	8	8.81	290	0.517	4.77	5	3	GND	GND
HMC464LP5 / HMC464LP5E	8	8.81	290	0.517	4.77	5	3	GND	GND
HMC559	10	11.12	400	0.375	4.55	5	4	GND	GND
HMC619	12	12.84	300	0.500	4.82	5	5	GND	GND
HMC619LP5 / HMC619LP5E	12	12.84	300	0.500	4.82	5	5	GND	GND
HMC635	5	5.78	280	0.536	open	open	-	GND	GND
HMC635LC4	5	5.78	280	0.536	open	open	-	GND	GND
HMC637	12	13.12	400	0.375	6.27	5	6	GND	GND
HMC637LP5 / HMC637LP5E	12	13.12	400	0.375	4.62	5	5	GND	GND
HMC659	8	8.84	300	0.500	4.74	5	3	GND	GND
HMC659LC5	8	8.84	300	0.500	4.74	5	3	GND	GND
HMC797	10	11.12	400	0.375	3.80	5	3.5	GND	GND
HMC797LP5E	10	11.12	400	0.375	3.80	5	3.5	GND	GND
	Microv	wave & C	ptical Driver	S					
HMC870LC5	7	7.46	165	0.909	open	open	-	GND	GND
HMC871LC5	8	8.21	75	2.000	open	open	-	GND	GND