

Typical Applications

The HMC642ALC5 is ideal for:

- EW Receivers
- Weather & Military Radar
- Satellite Communications
- Beamforming Modules
- Phase Cancellation

Functional Diagram

HMC642ALC5

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 9 - 12.5 GHz

Features

Low RMS Phase Error: 4.5° Low Insertion Loss: 7 dB High Linearity: +35 dBm Positive Control Logic 360° Coverage, LSB = 5.625° 32 Lead 5x5mm SMT Package: 25mm²

General Description

The HMC642ALC5 is a 6-bit digital phase shifter which is rated from 9 to 12.5 GHz, providing 360 degrees of phase coverage, with a LSB of 5.625 degrees. The HMC642ALC5 features very low RMS phase error of 4.5 degrees and extremely low insertion loss variation of \pm 0.4 dB across all phase states. This high accuracy phase shifter is controlled with positive control logic of 0/+5V The HMC642ALC5 is housed in a compact 5x5 mm ceramic leadless SMT package and is internally matched to 50 Ohms with no external components.

Electrical Specifications $T_{A} = +25^{\circ}$ C, Vss= -5V, Vdd= +5V, control Voltage = 0/ +5V, 50 Ohm System

A , , , ,	J	, ,	1	
Parameter	Min.	Тур.	Max.	Units
Frequency Range	9		12.5	GHz
Insertion Loss*		7	10	dB
Input Return Loss*		14		dB
Output Return Loss*		11		dB
Phase Error*		±10	+18/-10	deg
RMS Phase Error		4.5		deg
Insertion Loss Variation*		±0.4		dB
Input Power for 1 dB Compression		30		dBm
Input Third Order Intercept		35		dBm
Control Voltage Current		<250		μA
Bias Control Current		<12		mA

Note: Major States Shown

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC642ALC5

ROHS V

Insertion Loss, Major States Only -2 (dB) -4 **INSERTION LOSS** -6 -8 -10 -12 12 13 8 9 10 11 14 FREQUENCY (GHz)

Input Return Loss, Major States Only

Output Return Loss, Major States Only

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 9 - 12.5 GHz

Phase Error, Major States Only

Relative Phase Shift Major States Including All Bits

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Relative Phase Shift, RMS, Average, Max, All States

Input IP2, Major States Only

RMS Phase Error vs. Temperature

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 9 - 12.5 GHz

Input IP3, Major States Only

Input P1dB, Major States Only

Insertion Loss vs. Temperature, Major States Only

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC642ALC5

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 9 - 12.5 GHz

Phase Error vs. State

Bias Voltage & Current

Vdd	Idd
5.0	5.6mA
Vss	lss
-5.0	5.6mA

Control Voltage

State	Bias Condition	
Low (0)	0 to 0.2 Vdc	
High (1) Vdd ±0.2 Vdc @ 35 μA Typ.		

Absolute Maximum Ratings

29 dBm (T= +85 °C)
-0.2 to +12.5V
+0.2 to -12V
150 °C
190 °C/W
-65 to +150 °C
-40 to +85 °C
Class1A Passed 250V

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Truth Table

	Control Voltage Input					Phase Shift (Degrees)	
Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	RFIN - RFOUT	
0	0	0	0	0	0	Reference*	
1	0	0	0	0	0	5.625	
0	1	0	0	0	0	11.25	
0	0	1	0	0	0	22.5	
0	0	0	1	0	0	45.0	
0	0	0	0	1	0	90.0	
0	0	0	0	0	1	180.0	
1	1	1	1	1	1	354.375	
Any combina	Any combination of the above states will provide a phase shift approximately equal to the sum of the bits selected.						
*Reference c	*Reference corresponds to monotonic setting						

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 9 - 12.5 GHz

Outline Drawing

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[2]
HMC642ALC5	Alumina White	Gold over Nickel	MSL3 ^[1]	<u>H642A</u> XXXX

[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1 - 4, 8,17 21 - 32	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
5, 7, 18, 20	GND	These pins and exposed ground paddle must be connected to RF/DC ground.	
6	RFIN	This port is DC coupled and matched to 50 Ohms.	RFIN O
9 - 11, 13 - 15	BIT6, BIT5, BIT4, BIT3, BIT2, BIT1	Control Input. See truth table and control voltage tables.	
12	Vss	Voltage supply.	
16	Vdd	Voltage supply.	
19	RFOUT	This port is DC coupled and matched to 50 Ohms.	RFOUT

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC642ALC5

GaAs MMIC 6-BIT DIGITAL PHASE SHIFTER, 9 - 12.5 GHz

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC642ALC5 [1][3]

Item	Description
J1 - J2	PCB Mount SMA RF Connector
J3 - J4	Molex Header 2mm
U1 HMC642ALC5 6-Bit Digital Phase Shifter	
PCB [2]	117186 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

[3] Please refer to part's pin description and functional diagram for pin out assignments on evaluation board.

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.