

HMC306AMS10 / 306AMS10E v00.1113

0.5 DB LSB GAAS MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

Typical Applications

The HMC306AMS10 / 306AMS10E is ideal for:

- Cellular: UMTS/3G Infrastructure
- ISM, MMDS, WLAN, WIMAX
- Microwave Radio & VSAT
- Test Equipment and Sensors

Functional Diagram

Features

RoHS-Compliant Product 0.5 dB LSB Steps to 15.5 dB Single Positive Control Per Bit ± 0.2 dB Typical Bit Error Miniature 15 mm² Package: MSOP10

General Description

HMC306AMS10 & HMC306AMS10E are The general purpose broadband 5-bit positive control GaAs IC digital attenuators in 10 lead MSOP surface mount plastic packages. Covering 0.7 to 3.8 GHz, the insertion loss is typically less than 1.5 to 2.3 dB. These attenuators' bit values are 0.5 (LSB), 1, 2, 4 and 8 dB for a total attenuation of 15.5 dB. Attenuation accuracy is excellent at ± 0.2 dB typical with an IIP3 of up to +52 dBm. Five bit control voltage inputs, toggled between 0 and +3 to +5V, are used to select each attenuation state. A single Vdd bias of +3 to +5V applied through an external 5K Ohm resistor is required.

Electrical Specifications, $T_a = +25^{\circ}$ C, Vdd= +3V to +5V & VCTL= 0/Vdd (Unless Otherwise Stated)

Parameter		Frequency (GHz)	Min.	Typical	Max.	Units
Insertion Loss		0.7 - 1.4 1.4 - 2.3 2.3 - 2.7 2.7 - 3.8		1.3 1.5 1.8 2.3	1.6 2.0 2.5 2.7	dB dB dB dB
Attenuation Range				15.5		dB
Return Loss (RF1 & RF2, All Atten. States)		0.7 - 1.4 1.4 - 2.3 2.3 - 2.7 2.7 - 3.8	15 14 13 10	21 18 16 13		dB dB dB dB
Attenuation Accuracy: (Referenced to Insertion Loss) All Attenuation States 0.5 - 7.5 dB States 8.0 - 15.5 dB States All Attenuation States	Attenuation States $0.7 - 1.4$ $\pm (0.30 + 5\%)$ of A - 7.5 dB States $1.4 - 2.3$ $\pm (0.25 + 3\%)$ of A - 15.5 dB States $1.4 - 2.3$ $\pm (0.15 + 3\%)$ of A - 0.5 dB States $1.4 - 2.3$ $\pm (0.15 + 3\%)$ of A		3% of Atten. Se 3% of Atten. Se	of Atten. Setting) Max. of Atten. Setting) Max. of Atten. Setting) Max. of Atten. Setting) Max.		
Input Power for 0.1 dB Compression	Vdd = 5V Vdd = 3V	0.7 - 3.8		28 27		dBm dBm
Input Third Order Intercept Point (Two-tone Input Power = 10 dBm Each Tone)	Vdd = 5V Vdd = 3V	0.7 - 3.8		52 48		dBm dBm
Switching Characteristics						
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)		0.7 - 3.8		560 600		ns ns

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC306AMS10 / 306AMS10E

0.5 DB LSB GAAS MMIC 5-BIT DIGITAL

ATTENUATOR, 0.7 - 3.8 GHz

ROHS V

Insertion Loss

v00.1113

Normalized Attenuation

(Only Major States are Shown)

Absolute Bit Error vs. Frequency (Only Major States are Shown)

Return Loss RF1, RF2

(Only Major States are Shown)

Absolute Bit Error vs. Attenuation State

Relative Phase vs. Frequency

(Only Major States are Shown)

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

HMC306AMS10 / 306AMS10E

0.5 DB LSB GAAS MMIC 5-BIT DIGITAL

v00.1113

Truth Table

Control Voltage Input					Attenuation	
V1 8 dB	V2 4 dB	V3 2 dB	V4 1 dB	V5 0.5 dB	State RF1 - RF2	
High	High	High	High	High	Reference I.L.	
High	High	High	High	Low	0.5 dB	
High	High	High	Low	High	1 dB	
High	High	Low	High	High	2 dB	
High	Low	High	High	High	4 dB	
Low	High	High	High	High	8 dB	
Low	Low	Low	Low	Low	15.5 dB Max. Atten.	

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

Control & Bias Voltages

State	Bias Condition		
Low	0 to +0.2V @ 20 µA Max.		
High Vdd ± 0.2V @ 20 μA Max.			
Note: Vdd = $+3V$ to $5V \pm 0.2V$			

ATTENUATOR, 0.7 - 3.8 GHz

Absolute Maximum Ratings

Control Voltage (V1 - V5)	Vdd + 0.2 Vdc
Bias Voltage (Vdd)	+8 Vdc
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 7.8 mW/ °C above 85 °C)	0.506 W
Thermal Resistance (Channel to package bottom)	128.5 °C/w
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
RF Input Power (0.7 - 3.8 GHz)	+27 dBm
ESD Sensitivity (HBM)	Class 1A

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Nu	umber	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[3]
HMC306	AMS10	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H306A XXXX
HMC306A	AMS10E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	H306A XXXX

[1] Max peak reflow temperature of 235 °C

[3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

^[2] Max peak reflow temperature of 260 $^\circ\text{C}$

HMC306AMS10 / 306AMS10E

v00.1113

0.5 DB LSB GAAS MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

Application Circuit

Note:

DC Blocking Capacitors C1 & C2 are required on RF1 & RF2. Choose C1 = C2 = $100 \sim 300 \text{ pF}$ to allow lowest customer specific frequency to pass with minimal loss. R1= 5K Ohm is required to supply voltage to the circuit through either Pin 6 or Pin 10.

Evaluation Circuit Board

* R2 - R6= 100 Ohm. These resistors are optional and may be used to enhance decoupling of the RF path from the control inputs.

List of Materials for Evaluation PCB EVAL01 - HMC306AMS10 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3 - J8	DC Pin
R1	5 kOhm Resistor, 0402 Pkg.
R2 - R6	100 Ohm Resistor, 0402 Pkg.
C1 - C2	0402 Chip Capacitor, Select Value for Lowest Frequency
U1	HMC306AMS10 / 306AMS10E Digital Attenuators
PCB [2]	103391 Evaluation PCB 1.5" x 1.5"

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.