N-Channel Shielded Gate POWERTRENCH[®] MOSFET

150 V, 85 A, 8.8 mΩ

General Description

This N-Channel MV MOSFET is produced using ON Semiconductor's advanced PowerTrench process that incorporates Shielded Gate technology. This process has been optimized to minimize on-state resistance and yet maintain superior switching performance with best in class soft body diode.

Features

- Shielded Gate MOSFET Technology
- Max $r_{DS(on)} = 8.8 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 45 \text{ A}$
- Max $r_{DS(on)} = 9.4 \text{ m}\Omega$ at $V_{GS} = 8 \text{ V}$, $I_D = 22.5 \text{ A}$
- Low Qrr, Soft Recovery Body Diode
- Lowers Switching Noise/EMI
- MSL1 Robust Package Design
- 100% UIL Tested
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Primary DC–DC MOSFET
- Synchronous Rectifier in DC–DC and AC–DC
- Motor Drive
- Solar

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

1			
Symbol	Parameter	Value	Unit
V _{DS}	Drain-to-Source Voltage	150	V
V _{GS}	Gate-to-Source Voltage	±20	V
ID	Drain Current: Continuous, $T_C = 25^{\circ}C$ (Note 5) Continuous, $T_C = 100^{\circ}C$ (Note 5) Continuous, $T_A = 25^{\circ}C$ (Note 1a) Pulsed (Note 4)	85 54 12.2 340	A
E _{AS}	Single Pulse Avalanche Energy (Note 3)	102	mJ
PD	Power Dissipation: T _C = 25°C T _A = 25°C (Note 1a)	132 2.7	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

www.onsemi.com

V _{DS}	R _{DS(ON)} MAX	I _D MAX
150 V	8.8 mΩ @ 10 V	85 A
150 V	9.4 mΩ @ 8 V	A Co

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Value	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction-to-Case	0.95	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	46	

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
FF CHARA	ACTERISTICS	•	•	•	•	-
BV _{DSS}	Drain-to-Source Breakdown Voltage	$I_{D} = 250 \ \mu A, \ V_{GS} = 0 \ V$	150			V
$\Delta BV_{DSS} / \Delta T_J$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, referenced to $25^{\circ}C$		86		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 120 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
I _{GSS}	Gate-to-Source Leakage Current	$V_{GS} = \pm 20$ V, $V_{DS} = 0$ V			±100	nA
ON CHARA	CTERISTICS					
V _{GS(th)}	Gate-to-Source Threshold Voltage	V_{GS} = V_{DS} , I_D = 250 μ A	2.5	3.5	4.5	V
${\Delta V_{GS(th)} \over /\Delta T_J}$	Gate-to-Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, referenced to $25^{\circ}C$		-7.9		mV/°C
r _{DS(on)}	Static Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 45 A		7.0	8.8	mΩ
		V_{GS} = 8 V, I _D = 22.5 A		7.6	9.4	
		V_{GS} = 10 V, I _D = 45 A, T _J = 125°C		12.8	16.1	
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 45 A		120	216	S
OYNAMIC C	HARACTERISTICS					
C _{iss}	Input Capacitance	V_{DS} = 75 V, V_{GS} = 0 V, f = 1 MHz		3132	3600	pF
C _{oss}	Output Capacitance	7		927	1160	pF
C _{rss}	Reverse Transfer Capacitance	7		5.3	9.3	pF
Rg	Gate Resistance			0.73	1.2	Ω
WITCHING	CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 75 \text{ V}, \text{ I}_{D} = 45 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$		23	40	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$		19	38	ns
t _{d(off)}	Turn-Off Delay Time	7		30	49	ns
t _f	Fall Time	7		5	10	ns
Qg	Total Gate Charge	V_{GS} = 0 V to 10 V, V_{DD} = 75 V, I_{D} = 45 A		38	50	nC
Q _{gs}	Gate-to-Source Charge	V _{DD} = 75 V, I _D = 45 A		16.4		nC
Q _{gd}	Gate-to-Drain "Miller" Charge	V _{DD} = 75 V, I _D = 45 A		5.7		nC
Q _{oss}	Output Charge	V _{DD} = 75 V, V _{GS} = 0 V	1	101	1	nC

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit		
DRAIN-SOURCE DIODE CHARACTERISTICS								
V _{SD}	Source-to-Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.2 A (Note 2)		0.73	0.98	V		
		V _{GS} = 0 V, I _S = 45 A (Note 2)		0.88	1.0			
t _{rr}	Reverse Recovery Time	I _F = 45 A, di/dt = 100 A/µs		68	86	ns		
Q _{rr}	Reverse Recovery Charge]		108	172	nC		
t _{rr}	Reverse Recovery Time	I _F = 45 A, di/dt = 1000 A/µs		39	50	ns		
Q _{rr}	Reverse Recovery Charge]		495	748	nC		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. $R_{\theta CA}$ is determined by the user's board design.

a) 46°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 115°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. E_{AS} of 102 mJ is based on starting $T_J = 25^{\circ}$ C; N-ch: L = 0.1 mH, $I_{AS} = 45$ A, $V_{DD} = 150$ V, $V_{GS} = 10$ V. 100% tested at L = 0.1 mH, $I_{AS} = 45$ A. 4. Pulsed ld please refer to Figure 11 SOA graph for more details. (Note: the final number may change pending results on device characterization).
- 5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

PACKAGE MARKING AND ORDERING INFORMATION

Device	Marking	Package	Reel Size	Tape Width	Quantity
FDMS8D8N15C	FDMS8D8N15C	Power 56 (PQFN8) (Pb-Free / Halogen Free)	13″	12 mm	3000 units

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted.)

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted.)

TYPICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted.)

Figure 13. Junction-to-Case Transient Thermal Response Curve

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the right of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative