MOSFET – N-Channel, POWERTRENCH[®]

100 V, 12 A, 110 m Ω

FDMC3612, FDMC3612-L701

General Description

This N-Channel MOSFET is produced using ON Semiconductor's advanced POWERTRENCH process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Features

- Max $r_{DS(on)} = 110 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 3.3 \text{ A}$
- Max $r_{DS(on)} = 122 \text{ m}\Omega$ at $V_{GS} = 6 \text{ V}$, $I_D = 3.0 \text{ A}$
- Low Profile 1 mm Max in Power 33
- 100% UIL Tested
- These Devices are Pb-Free and are RoHS Compliant

Applications

- DC DC Conversion
- PSE Switch

ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

MOSFET MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)

Symbol		Rating	Unit		
V _{DS}	Drain to Source Voltage			100	V
V _{GS}	Gate to Source Voltage			±20	V
	Drain Current	Continuous (Package limited)	$T_{C} = 25^{\circ}C$	16	А
ID		Continuous (Silicon limited)	$T_{C} = 25^{\circ}C$	12	
		Continuous (Note 1a)	T _A = 25°C	3.3	
		Pulsed		15	
E _{AS}	Single Pulse Avalanche Energy (Note	2)		32	mJ
PD	Power Dissipation	T _C = 25°C		35	W
	Power Dissipation (Note 1a)		T _A = 25°C	2.3	
T _J , T _{STG}	Operating and Storage Junction Temp	erature Range	•	–55 to + 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Rating	Unit
Rejc	Thermal Resistance, Junction to Case		°C/W
RθJA	Thermal Resistance, Junction to Ambient (Note 1a)	53	

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a. 53°C/W when mounted on a 1 in² pad of 2 oz copper

b. 125°C/W when mounted on a minimum pad of 2 oz copper

2. Starting $T_J = 25^{\circ}C$; N-ch: L = 1 mH, $I_{AS} = 8$ A, $V_{DD} = 90$ V, $V_{GS} = 10$ V.

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu\text{A}, \ V_{GS} = 0 \ V$	100	-	_	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}/$	Breakdown Voltage Temperature Co- efficient	I_D = 250 $\mu A,$ referenced to 25°C	-	109	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 80 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	-	1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±100	nA

ON CHARACTERISTICS

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	2.0	2.5	4.0	V
${\Delta V_{GS(th)} \over \Delta T_J}$ /	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 $\mu A,$ referenced to 25°C	-	-7	-	mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V_{GS} = 10 V, I _D = 3.3 A	-	92	110	mΩ
		$V_{GS} = 6 \text{ V}, \text{ I}_{D} = 3.0 \text{ A}$	-	98	122	
		V_{GS} = 10 V, I_D = 3.3 A, T_J = 125°C	-	177	212	
9fs	Forward Transconductance	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 3.3 \text{ A}$	-	13	-	S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	V_{DS} = 50 V, V_{GS} = 0 V, f = 1 MHz	-	662	880	pF
Coss	Output Capacitance		-	40	55	pF
C _{rss}	Reverse Transfer Capacitance		-	23	35	pF
Rg	Gate Resistance		-	1.3	_	Ω

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn-On Delay Time	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 3.3 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$	-	7.4	15	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$	-	2.8	10	ns
t _{d(off)}	Turn-Off Delay Time		-	19	34	ns
t _f	Fall Time		-	2	10	ns
Q _{g(TOT)}	Total Gate Charge	V_{GS} = 0 V to 10 V, V_{DD} = 50 V, I_{D} = 3.3 A	-	14.4	21	nC
Q _{g(TOT)}	Total Gate Charge	V_{GS} = 0 V to 5 V, V_{DD} = 50 V, I_{D} = 3.3 A	-	7.9	12	nC
Q _{gs}	Total Gate Charge	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 3.3 \text{ A}$	-	2.3	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	3.7	-	nC

DRAIN-SOURCE DIODE CHARACTERISTICS

V _{SD}	Source to Drain Diode Forward	V_{GS} = 0 V, I_S = 3.3 A (Note 3)	-	0.88	1.2	V
	Voltage	V _{GS} = 0 V, I _S = 2 A (Note 3)	-	0.77	1.2	
t _{rr}	Reverse Recovery Time	I _F = 3.3 A, di/dt = 100 A/μs	-	34	55	ns
Q _{rr}	Reverse Recovery Charge		-	37	60	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Figure 7. Gate Charge Characteristics

Figure 9. Unclamped Inductive Switching Capability

Figure 8. Capacitance vs. Drain to Source Voltage

Figure 10. Maximum Continuous Drain Current vs. Case Temperature

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Figure 13. Junction-to-Ambient Transient Thermal Response Curve

ORDERING INFORMATION

Device	Device Marking	Package Type	Reel Size	Tape Width	Shipping [†]
FDMC3612	FDMC3612	WDFN8 3.3x3.3, 0.65P Power 33 (Pb–Free)	13"	12 mm	3000 / Tape & Reel
FDMC3612-L701	FDMC3612	WDFN8 3.3x3.3, 0.65P Power 33 (Pb–Free)	13"	12 mm	3000 / Tape & Reel

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

© Semiconductor Components Industries, LLC, 2019

WDFN8 3.3x3.3, 0.65P CASE 511DQ ISSUE 0

DATE 31 OCT 2016

- A. PACKAGE DOES NOT FULLY CONFORM TO
- JEDEC REGISTRATION MO-240.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN
- E. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. BURRS OR MOLD FLASH SHALL NOT EXCEED 0.10MM.

DOCUMENT NUMBER:	98AON13648G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	WDFN8 3.3X3.3, 0.65P	PAGE 2 OF 2					

ON Semiconductor and una are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the right of others.

MECHANICAL CASE OUTLINE

PACKAGE DIMENSIONS

© Semiconductor Components Industries, LLC, 2018

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative