

Silicon TVS Diodes

 ESD / transient protection of data and power lines in 3.3 V / 5 V applications according to:

IEC61000-4-2 (ESD): ± 30 kV (contact)

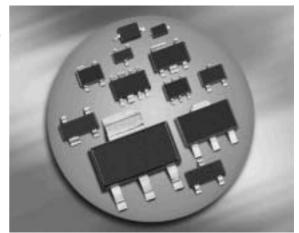
IEC61000-4-4 (EFT): 80 A (5/50 ns)

IEC61000-4-5 (surge): 40 A/600 W (8/20 μs)

- Max. working voltage: 5 V
- Low clamping voltage
- Low reverse current
- Pb-free (RoHS compliant) package
- Qualified according AEC Q101

Applications

- Uni or bi-directional operation possible (see application example page 5)
- Mobile communication
- Consumer products (STB, MP3, DVD, DSC...)
- LCD displays, camera
- Notebooks and desktop computers, peripherals


ESD5V0S1U-03W

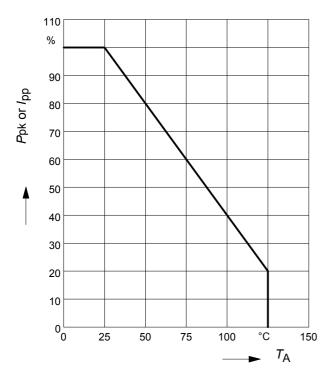
ESD5V0S2U-06

Туре	Package	Configuration	Marking
ESD5V0S1U-03W	SOD323	1 line, uni-directional	E/yellow
ESD5V0S2U-06	SOT23	2 lines, uni-directional	E5

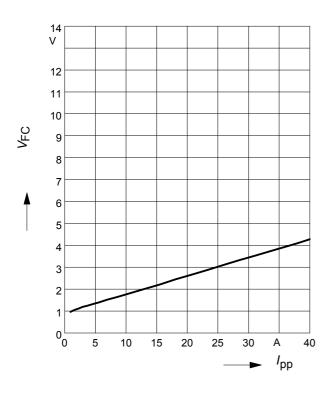
Maximum Ratings at $T_A = 25^{\circ}$ C, unless otherwise specified

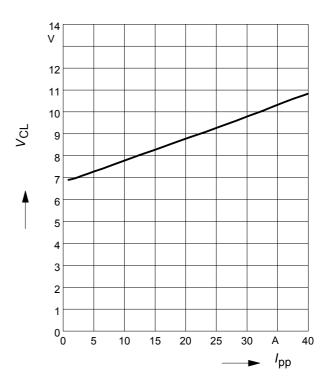
Parameter	Symbol	Value	Unit
ESD contact discharge ¹⁾	V_{ESD}	30	kV
Peak pulse current $(t_p = 8 / 20 \mu s)^2$	I _{pp}	40	А
Peak pulse power ($t_p = 8 / 20 \mu s)^2$)	P_{pk}	600	W
Operating temperature range	T_{op}	-55125	°C
Storage temperature	T _{stg}	-65150	

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

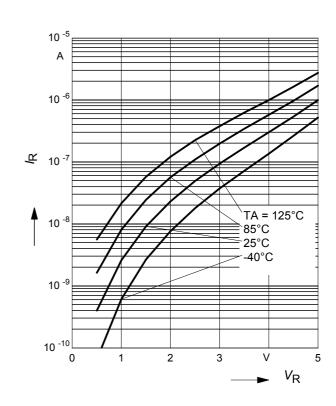

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Characteristics	•	•	•	•	•
Reverse working voltage	V_{RWM}	-	-	5	V
Breakdown voltage	$V_{(BR)}$	5.5	6.7	8	
$I_{(BR)} = 1 \text{ mA}$					
Reverse current	I_{R}				μA
$V_{R} = 3.3 \text{ V}$		-	-	5	
V_{R} = 5 V		-	-	20	
Clamping voltage (positive transient)	V _{CL}				V
$I_{PP} = 5 \text{ A}, t_p = 8/20 \ \mu\text{s}^{2}$		-	7.5	9.5	
$I_{PP} = 24 \text{ A}, t_p = 8/20 \ \mu\text{s}^{2}$		-	9	12	
$I_{PP} = 40 \text{ A}, t_p = 8/20 \mu\text{s}^2)$		-	11	14	
Forward clamping voltage (negative transients)	V _{FC}				
$I_{PP} = 5 \text{ A}, t_p = 8/20 \ \mu\text{s}^{2}$		-	1.5	3	
$I_{PP} = 24 \text{ A}, t_p = 8/20 \ \mu\text{s}^{2}$		_	3	5	
$I_{PP} = 40 \text{ A}, \ t_p = 8/20 \ \mu\text{s}^2)$		-	4	6	
Diode capacitance	C _T	-	430	500	pF
$V_{R} = 0 \text{ V}, f = 1 \text{ MHz}$					

 $^{^{1}}V_{\mbox{\footnotesize ESD}}$ according to IEC61000-4-2


 $^{^2}I_{\rm pp}$ according to IEC61000-4-5

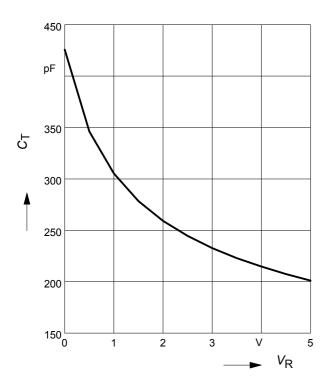

Power derating curve $P_{pk} = f(T_A)$

Forward clamping voltage V_{FC} = f (I_{PP}) t_p = 8 / 20 µs (negative transient)

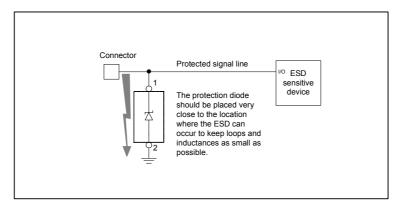


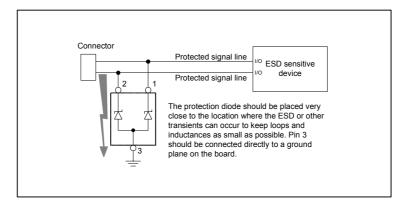
Clamping voltage $V_{cl} = f(I_{pp})$ $t_p = 8 / 20 \mu s$ (positive transients)

Reverse current $I_R = f(V_R)$

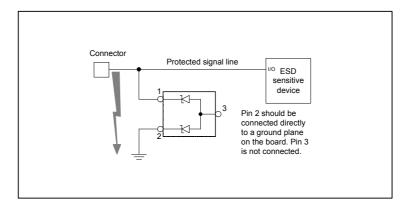

 T_A = Parameter

Diode capacitance $C_T = f(V_R)$


f = 1MHz

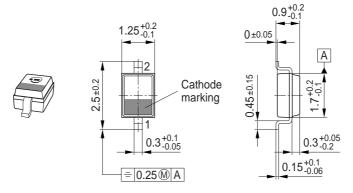

Application example ESD5V01U-03W

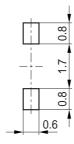
single channel, uni-directional

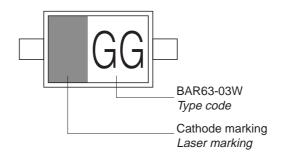

Application example ESD5V0S2U-06

dual channel, uni-directional

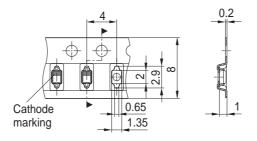
Application example ESD5V0S2U-06


single channel, bi-directional


5 2007-12-07

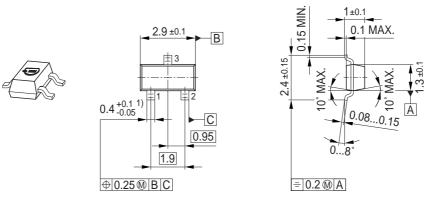

Package Outline

Foot Print

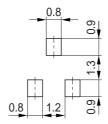


Marking Layout (Example)

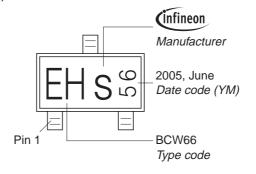
Standard Packing


Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

6

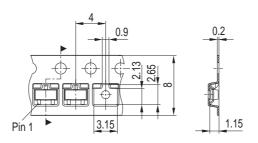


Package Outline



1) Lead width can be 0.6 max. in dambar area

Foot Print



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Edition 2006-02-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

8 2007-12-07