

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 Data Sheet

High-Performance, 16-bit Digital Signal Controllers

© 2009 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

High-Performance, 16-Bit Digital Signal Controllers

Operating Range:

- Up to 40 MIPS Operation (at 3.0-3.6V):
 - Industrial temperature range (-40°C to +85°C)
 - Extended temperature range (-40°C to +125°C)

High-Performance DSC CPU:

- · Modified Harvard Architecture
- C Compiler Optimized Instruction Set
- 16-Bit Wide Data Path
- 24-Bit Wide Instructions
- Linear Program Memory Addressing up to 4M Instruction Words
- · Linear Data Memory Addressing up to 64 Kbytes
- 83 Base Instructions: Mostly 1 Word/1 Cycle
- Two 40-Bit Accumulators with Rounding and Saturation Options
- Flexible and Powerful Addressing modes:
 - Indirect
 - Modulo
 - Bit-Reversed
- Software Stack
- 16 x 16 Fractional/Integer Multiply Operations
- · 32/16 and 16/16 Divide Operations
- Single-Cycle Multiply and Accumulate:
 - Accumulator write back for DSP operationsDual data fetch
- Up to ±16-Bit Shifts for up to 40-Bit Data

Digital I/O:

- · Peripheral Pin Select Functionality
- Up to 35 Programmable Digital I/O Pins
- Wake-up/Interrupt-on-Change for up to 30 Pins
- Output Pins can Drive Voltage from 3.0V to 3.6V
- Up to 5V Output with Open-Drain Configuration
- 5V Tolerant Digital Input Pins (except RB5)
- · 16 mA Source/Sink on All PWM pins

On-Chip Flash and SRAM:

- Flash Program Memory (up to 16 Kbytes)
- Data SRAM (up to 2 Kbytes)
- · Boot and General Security for Program Flash

Peripheral Features:

- Timer/Counters, up to Three 16-Bit Timers: - Can pair up to make one 32-bit timer
- Input Capture (up to two channels):
 - Capture on up, down or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
- Output Compare (up to two channels):
 - Single or Dual 16-Bit Compare mode
 - 16-Bit Glitchless PWM mode
- 4-Wire SPI:
- Framing supports I/O interface to simple codecs
- 1-deep FIFO Buffer.
- Supports 8-bit and 16-bit data
- Supports all serial clock formats and sampling modes
- I²C™:
 - Supports Full Multi-Master Slave mode
 - 7-bit and 10-bit addressing
 - Bus collision detection and arbitration
 - Integrated signal conditioning
 - Slave address masking
- UART:
 - Interrupt on address bit detect
 - Interrupt on UART error
 - Wake-up on Start bit from Sleep mode
 - 4-character TX and RX FIFO buffers
 - LIN bus support
 - IrDA[®] encoding and decoding in hardware
 - High-Speed Baud mode
 - Hardware Flow Control with CTS and RTS

Interrupt Controller:

- 5-Cycle Latency
- Up to 35 Available Interrupt Sources
- Up to Three External Interrupts
- · Seven Programmable Priority Levels
- Four Processor Exceptions

High-Speed PWM Module Features:

- Up to Four PWM Generators with Four to Eight Outputs
- Individual Time Base and Duty Cycle for each of the Eight PWM Outputs
- Dead Time for Rising and Falling Edges
- Duty Cycle Resolution of 1.04 ns
- Dead-Time Resolution of 1.04 ns
- Phase Shift Resolution of 1.04 ns
- Frequency Resolution of 1.04 ns
- PWM modes Supported:
 - Standard Edge-Aligned
 - True Independent Output
 - Complementary
 - Center-Aligned
 - Push-Pull
 - Multi-Phase
 - Variable Phase
 - Fixed Off-Time
 - Current Reset
 - Current-Limit
- Independent Fault/Current-Limit Inputs for 8 PWM Outputs
- Output Override Control
- Special Event Trigger
- PWM Capture Feature
- · Prescaler for Input Clock
- Dual Trigger from PWM to ADC
- PWMxL, PWMxH Output Pin Swapping
- PWM4H, PWM4L Pins Remappable
- On-the-Fly PWM Frequency, Duty Cycle and Phase Shift Changes
- · Disabling of Individual PWM Generators
- Leading-Edge Blanking (LEB) Functionality

High-Speed Analog Comparator

- Up to Four Analog Comparators:
 - 20 ns response time
 - 10-bit DAC for each analog comparator
 - DACOUT pin to provide DAC output
 - Programmable output polarity
 - Selectable input source
 - ADC sample and convert capability
- PWM Module Interface:
 - PWM duty cycle control
 - PWM period control
 - PWM Fault detect

High-Speed 10-Bit ADC

- 10-Bit Resolution
- Up to 12 Input Channels Grouped into Six Conversion Pairs
- Two Internal Reference Monitoring Inputs Grouped into a Pair
- Successive Approximation Register (SAR) Converters for Parallel Conversions of Analog Pairs:
 - 4 Msps for devices with two SARs
 - 2 Msps for devices with one SAR
- Dedicated Result Buffer for each Analog Channel
- Independent Trigger Source Section for each Analog Input Conversion Pair

Power Management:

- On-Chip 2.5V Voltage Regulator
- · Switch between Clock Sources in Real Time
- · Idle, Sleep, and Doze modes with Fast Wake-up

CMOS Flash Technology:

- · Low-Power, High-Speed Flash Technology
- · Fully Static Design
- 3.3V (±10%) Operating Voltage
- · Industrial and Extended Temperature
- Low-Power Consumption

System Management:

- · Flexible Clock Options:
 - External, crystal, resonator, internal RC
 - Phase-Locked Loop (PLL) with 120 MHz VCO
 - Primary Crystal Oscillator (OSC) in the range of 3 MHz to 40 MHz
 - Internal Low-Power RC (LPRC) oscillator at a frequency of 32 kHz
 - Internal Fast RC (FRC) oscillator at a frequency of 7.37 MHz
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- · Watchdog Timer with its RC Oscillator
- Fail-Safe Clock Monitor (FSCM)
- Reset by Multiple Sources
- In-Circuit Serial Programming[™] (ICSP[™])
- Reference Oscillator Output

Application Examples

- AC-to-DC Converters
- Automotive HID
- Battery Chargers
- DC-to-DC Converters
- Digital Lighting
- Induction Cooking
- LED Ballast
- Renewable Power/Pure Sine Wave Inverters
- Uninterruptible Power Supply (UPS)

Packaging:

- 18-Pin SOIC
- 28-Pin SPDIP/SOIC/QFN-S
- 44-Pin TQFP/QFN

Note:	See the dsPIC33FJ06GS101/X02 and										
	dsPIC33FJ16GSX02/X04 Controller										
	Families table for the exact peripheral										
	features per device.										

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed below. The following pages show their pinout diagrams.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 Controller Families

		es)				Rer	napp	able	Perip	herals						ADC			
Device	Pins	Program Flash Memory (Kbytes)	RAM (Bytes)	Remappable Pins	16-bit Timer	Input Capture	Output Compare	UART	SPI	PWM ⁽²⁾	Analog Comparator	External Interrupts ⁽³⁾	DAC Output	I ² C™	SARs	Sample and Hold (S&H) Circuit	Analog-to-Digital Inputs	I/O Pins	Packages
dsPIC33FJ06GS101	18	6	256	8	2	0	1	1	1	2x2 ⁽¹⁾	0	3	0	1	1	3	6	13	SOIC
dsPIC33FJ06GS102	28	6	256	16	2	0	1	1	1	2x2	0	3	0	1	1	3	6	21	SPDIP SOIC QFN-S
dsPIC33FJ06GS202	28	6	1K	16	2	1	1	1	1	2x2	2	3	1	1	1	3	6	21	SPDIP SOIC QFN-S
dsPIC33FJ16GS402	28	16	2K	16	3	2	2	1	1	3x2	0	3	0	1	1	4	8	21	SPDIP SOIC QFN-S
dsPIC33FJ16GS404	44	16	2K	30	3	2	2	1	1	3x2	0	3	0	1	1	4	8	35	QFN TQFP
dsPIC33FJ16GS502	28	16	2K	16	3	2	2	1	1	4x2 ⁽¹⁾	4	3	1	1	2	6	8	21	SPDIP SOIC QFN-S
dsPIC33FJ16GS504	44	16	2K	30	3	2	2	1	1	4x2 ⁽¹⁾	4	3	1	1	2	6	12	35	QFN TQFP

Note 1: The PWM4H:PWM4L pins are remappable.

2: The PWM Fault pins and PWM synchronization pins are remappable.

3: Only two out of three interrupts are remappable.

Pin Diagrams

Preliminary

© 2009 Microchip Technology Inc.

Table of Contents

dsPIC	33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 Product Families	4
1.0	Device Overview	15
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers	19
3.0	CPU	
4.0	Memory Organization	41
5.0	Flash Program Memory	81
6.0	Resets	87
7.0	Interrupt Controller	95
8.0	Oscillator Configuration	. 135
9.0	Power-Saving Features	. 147
10.0	I/O Ports	. 155
11.0	Timer1	. 183
12.0	Timer2/3 features	
13.0	Input Capture	. 191
14.0	Output Compare	. 193
15.0	High-Speed PWM	
	Serial Peripheral Interface (SPI)	
17.0	Inter-Integrated Circuit (I ² C [™])	
18.0	Universal Asynchronous Receiver Transmitter (UART)	
19.0	High-Speed 10-bit Analog-to-Digital Converter (ADC)	
20.0	High-Speed Analog Comparator	
21.0	Special Features	. 263
22.0	Instruction Set Summary	
23.0	Development Support	
24.0	Electrical Characteristics	
	Packaging Information	
	ndix A: Revision History	
	/icrochip Web Site	
	mer Change Notification Service	
	mer Support	
	er Response	
Produ	Ict Identification System	. 343

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33F Family Reference Manual" sections.

This document contains device-specific information for the following dsPIC33F Digital Signal Controller (DSC) devices:

- dsPIC33FJ06GS101
- dsPIC33FJ06GS102
- dsPIC33FJ06GS202
- dsPIC33FJ16GS402
- dsPIC33FJ16GS404
- dsPIC33FJ16GS502
- dsPIC33FJ16GS504

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

TABLE 1-1: PINOUT I/O DESCRIPTIONS								
Pin Name	Pin Type	Buffer Type	PPS Capable	Description				
AN0-AN11	I	Analog	No	Analog input channels				
CLKI	I	ST/CMOS	No	External clock source input. Always associated with OSC1 pin function.				
CLKO	0	_	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.				
OSC1	I	ST/CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.				
OSC2	I/O	_	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.				
CN0-CN29	I	ST	No	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.				
IC1-IC2	I	ST	Yes	Capture inputs 1/2				
OCFA	I	ST	Yes	Compare Fault A input (for Compare Channels 1 and 2)				
OC1-OC2	0		Yes	Compare Outputs 1 through 2				
INT0	I	ST	No	External Interrupt 0				
INT1		ST	Yes	External Interrupt 1				
INT2		ST	Yes	External Interrupt 2				
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port				
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port				
RC0-RC13	I/O	ST	No	PORTC is a bidirectional I/O port				
RP0-RP29	I/O	ST	No	Remappable I/O pins				
T1CK	I	ST	Yes	Timer1 external clock input				
T2CK	I	ST	Yes	Timer2 external clock input				
T3CK	I	ST	Yes	Timer3 external clock input				
U1CTS	I	ST	Yes	UART1 clear to send				
U1RTS	0		Yes	UART1 ready to send				
U1RX		ST	Yes	UART1 receive				
U1TX	0		Yes	UART1 transmit				
SCK1	I/O	ST	Yes	Synchronous serial clock input/output for SPI1				
SDI1		ST	Yes	SPI1 data in				
SDO1 SS1	0 I/O	ST	Yes Yes	SPI1 data out SPI1 slave synchronization or frame pulse I/O				
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1				
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1				
TMS	I	TTL	No	JTAG Test mode select pin				
TCK	I	TTL	No	JTAG test clock input pin				
TDI	1	TTL	No	JTAG test data input pin				
TDO	0	—	No	JTAG test data output pin				
Legend: CMO	S = CMOS	compatible	input or o	utput Analog = Analog input I = Input				

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-Transistor Logic

P = Power O = Output PPS = Peripheral Pin Select

Type I	Type Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog	Capable No No No No No No No No No No No No No	Comparator 1 Channel A Comparator 1 Channel B Comparator 1 Channel C Comparator 1 Channel D Comparator 2 Channel A Comparator 2 Channel B Comparator 2 Channel C Comparator 3 Channel D Comparator 3 Channel B Comparator 3 Channel B Comparator 3 Channel D Comparator 4 Channel A Comparator 4 Channel B Comparator 4 Channel B Comparator 4 Channel C Comparator 4 Channel D						
0 1	Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog	No No No No No No No No No No No	Comparator 1 Channel B Comparator 1 Channel C Comparator 2 Channel D Comparator 2 Channel A Comparator 2 Channel B Comparator 2 Channel C Comparator 3 Channel A Comparator 3 Channel B Comparator 3 Channel C Comparator 3 Channel D Comparator 4 Channel A Comparator 4 Channel B Comparator 4 Channel B Comparator 4 Channel C Comparator 4 Channel D						
0 1	Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog	No No No No No No No No No No	Comparator 1 Channel C Comparator 1 Channel D Comparator 2 Channel A Comparator 2 Channel B Comparator 2 Channel C Comparator 2 Channel D Comparator 3 Channel A Comparator 3 Channel B Comparator 3 Channel C Comparator 4 Channel A Comparator 4 Channel B Comparator 4 Channel B Comparator 4 Channel C Comparator 4 Channel D						
0 1	Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog	No No No No No No No No No	Comparator 1 Channel D Comparator 2 Channel A Comparator 2 Channel B Comparator 2 Channel C Comparator 2 Channel D Comparator 3 Channel A Comparator 3 Channel B Comparator 3 Channel D Comparator 4 Channel A Comparator 4 Channel B Comparator 4 Channel C Comparator 4 Channel D						
0 1	Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog	No No No No No No No No No	Comparator 2 Channel A Comparator 2 Channel B Comparator 2 Channel C Comparator 2 Channel D Comparator 3 Channel A Comparator 3 Channel B Comparator 3 Channel C Comparator 3 Channel A Comparator 4 Channel A Comparator 4 Channel B Comparator 4 Channel C Comparator 4 Channel D						
0 1	Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog	No No No No No No No No	Comparator 2 Channel B Comparator 2 Channel C Comparator 2 Channel D Comparator 3 Channel A Comparator 3 Channel B Comparator 3 Channel C Comparator 3 Channel A Comparator 4 Channel A Comparator 4 Channel B Comparator 4 Channel C Comparator 4 Channel D						
0 1	Analog Analog Analog Analog Analog Analog Analog Analog Analog	No No No No No No No No	Comparator 2 Channel C Comparator 2 Channel D Comparator 3 Channel A Comparator 3 Channel B Comparator 3 Channel C Comparator 3 Channel D Comparator 4 Channel A Comparator 4 Channel B Comparator 4 Channel C Comparator 4 Channel D						
0 1	Analog Analog Analog Analog Analog Analog Analog Analog	No No No No No No No	Comparator 2 Channel D Comparator 3 Channel A Comparator 3 Channel B Comparator 3 Channel C Comparator 3 Channel D Comparator 4 Channel A Comparator 4 Channel B Comparator 4 Channel C Comparator 4 Channel D						
0 1	Analog Analog Analog Analog Analog Analog Analog	No No No No No No No	Comparator 3 Channel A Comparator 3 Channel B Comparator 3 Channel C Comparator 3 Channel D Comparator 4 Channel A Comparator 4 Channel B Comparator 4 Channel C Comparator 4 Channel D						
0 1	Analog Analog Analog Analog Analog Analog	No No No No No No	Comparator 3 Channel B Comparator 3 Channel C Comparator 3 Channel D Comparator 4 Channel A Comparator 4 Channel B Comparator 4 Channel C Comparator 4 Channel D						
0 1	Analog Analog Analog Analog Analog	No No No No No	Comparator 3 Channel C Comparator 3 Channel D Comparator 4 Channel A Comparator 4 Channel B Comparator 4 Channel C Comparator 4 Channel D						
0 1	Analog Analog Analog Analog	No No No No	Comparator 3 Channel D Comparator 4 Channel A Comparator 4 Channel B Comparator 4 Channel C Comparator 4 Channel D						
0 1	Analog Analog Analog	No No No No	Comparator 4 Channel A Comparator 4 Channel B Comparator 4 Channel C Comparator 4 Channel D						
0 1	Analog Analog	No No No	Comparator 4 Channel B Comparator 4 Channel C Comparator 4 Channel D						
0 1	Analog	No No	Comparator 4 Channel C Comparator 4 Channel D						
0 1	•	No	Comparator 4 Channel D						
0 1	Analog — —								
0 1		No							
I	_		DAC output voltage						
		Yes	DAC trigger to PWM module						
0	Analog	No	External voltage reference input for the reference DACs						
-		Yes	REFCLKO output signal is a postscaled derivative of the system						
			clock						
I	ST	Yes	Fault Inputs to PWM module						
I	ST	Yes	External synchronization signal to PWM Master Time Base						
0	—	Yes	PWM master time base for external device synchronization						
0	—	No	PWM1 low output						
0	—	No	PWM1 high output						
0	—	No	PWM2 low output						
0	—	No	PWM2 high output						
0	_	No	PWM3 low output						
0	_	No	PWM3 high output						
0	_	Yes	PWM4 low output						
0	—	Yes	PWM4 high output						
I/O	ST	No	Data I/O pin for programming/debugging communication Channel						
I	ST	No	Clock input pin for programming/debugging communication						
			Channel 1						
I/O	ST	No	Data I/O pin for programming/debugging communication Channel						
I	ST	No	Clock input pin for programming/debugging communication						
			Channel 2						
I/O			Data I/O pin for programming/debugging communication Channel						
I	ST	No	Clock input pin for programming/debugging communication Channel 3						
I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the						
	01		device.						
Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.						
Р	Р	No	Ground reference for analog modules						
Р		No	Positive supply for peripheral logic and I/O pins						
Р		No	CPU logic filter capacitor connection						
Р		No	Ground reference for logic and I/O pins						
	I 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 I/O I I/O I I/O I I/P P P P P P S = CMOS S	I ST O O O O O O O O O O O O O O O O I/O ST P P P P P P P P	I ST Yes O No O Yes O No O Yes O Yes O No I/O ST No I/P ST No P P No P No P No P No P No P No						

TTL = Transistor-Transistor Logic

PPS = Peripheral Pin Select

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *dsPIC33F Family Reference Manual*, which is available from the Microchip website (www.microchip.com).

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family of 16-bit Digital Signal Controllers (DSC) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and VSS pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)
- (see Section 2.2 "Decoupling Capacitors")
 VCAP/VDDCORE
- (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSs is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP/VDDCORE pin, which is used to stabilize the voltage regulator output voltage. The VCAP/VDDCORE pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to **Section 24.0** "**Electrical Characteristics**" for additional information.

The placement of this capacitor should be close to the VCAP/VDDCORE. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to **Section 21.2** "**On-Chip Voltage Regulator**" for details.

2.4 Master Clear (MCLR) Pin

The MCLR pin provides for two specific device functions:

- Device Reset
- · Device programming and debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

2: $\underline{R1} \leq 470\Omega$ will limit any current flowing into \underline{MCLR} from the external capacitor C, in the event of \underline{MCLR} pin breakdown, due to Electrostatic Discharge (ESD) or <u>Electrical</u> Overstress (EOS). Ensure that the \underline{MCLR} pin VIH and VIL specifications are met.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 2, MPLAB[®] ICD 3, or MPLAB[®] REAL ICE[™].

For more information on ICD 2, ICD 3, and REAL ICE connection requirements, refer to the following documents that are available on the Microchip website.

- 'MPLAB[®] ICD 2 In-Circuit Debugger User's Guide" DS51331
- "Using MPLAB[®] ICD 2" (poster) DS51265
- "MPLAB[®] ICD 2 Design Advisory" DS51566
- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV, and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the ADPCFG register.

The bits in the registers that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG register during initialization of the ADC module.

When MPLAB ICD 2, ICD 3, or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG register. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor to Vss on unused pins and drive the output to logic low.

2.10 Typical Application Connection Examples

Examples of typical application connections are shown in Figure 2-4 through Figure 2-11.

© 2009 Microchip Technology Inc.

DS70318D-page 23

FIGURE 2-6: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER

© 2009 Microchip Technology Inc.

FIGURE 2-9: INTERLEAVED PFC

FIGURE 2-10: PHASE-SHIFTED FULL-BRIDGE CONVERTER

DS70318D-page 28

3.0 CPU

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "*dsPIC33F Family Reference Manual*", **Section 2.** "**CPU**" (DS70204), which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies from device to device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The sixteenth working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

There are two classes of instruction in the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data space mapping feature lets any instruction access program space as if it were data space.

3.2 DSP Engine Overview

The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits, right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal realtime performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.

3.3 Special MCU Features

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

3.4 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB ^(1,4)	DA	DC
bit 15		- -	• •		•	•	bit 8
R/W-0 ⁽²) R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
1011 0	IPL<2:0> ⁽²⁾	10000	RA	N	OV	Z	C
bit 7							bit C
Legend:							
C = Cleara	ble bit	R = Readable	e bit	U = Unimple	mented bit, read	as '0'	
S = Settabl	le bit	W = Writable	bit	-n = Value at	POR		
'1' = Bit is s	set	'0' = Bit is cle	ared	x = Bit is unk	nown		
bit 15	OA: Accumu	lator A Overflov	v Status bit				
		ator A overflow					
	0 = Accumul	ator A has not o	overflowed				
bit 14	OB: Accumu	lator B Overflov	v Status bit				
		ator B overflow ator B has not o					
bit 13		lator A Saturati		tuo hit(1)			
DIL 15		ator A is satura			t some time		
	- ///	ator A is not sa		aluraleu a	i some time		
bit 12	SB: Accumu	lator B Saturati	on 'Sticky' Sta	tus bit ⁽¹⁾			
	1 = Accumul	ator B is satura ator B is not sa	ted or has bee		t some time		
bit 11		OB Combined A		verflow Status	bit		
		ators A or B ha			, Dit		
		Accumulators A		erflowed			
bit 10	SAB: SA S	B Combined A	ccumulator 'St	icky' Status bi	t(1,4)		
	1 = Accumul		e saturated or	have been sat	urated at some	time in the pas	t
bit 9	DA: DO Loop						
	1 = DO loop i						
		not in progress					
bit 8	DC: MCU AL	U Half Carry/B	orrow bit				
	1 = A carry-0	out from the 4th	low-order bit (for byte-sized	data) or 8th low-	order bit (for wo	ord-sized data
		sult occurred	the low order l	it /far buta air	ad data) as Oth	low order hit (
	•	the result occur		bit (for byte-siz	zed data) or 8th	iow-order bit (1	ior word-sized
Note 1:	This bit can be re	ead or cleared (not set).				
	The IPL<2:0> bit	,	,	기 <3> hit (CO	RCON<3>) to fo	rm the CPU In	terrupt Priorit
۷.	Level (IPL). The IPL<3> = 1 .						
3:	The IPL<2:0> Sta	atus bits are rea	ad-only when I	NSTDIS = 1 (I	NTCON1<15>).		
				- (-	- /-		

4: Clearing this bit will clear SA and SB.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

hit 7 E	$ \mathbf{p} = 2 \cdot \mathbf{p}$ + CDI laters unt Drierity evel Statue hite(2)
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾ 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 002 = CPU Interrupt Priority Level is 1 (9)
L:1 4	000 = CPU Interrupt Priority Level is 0 (8)
bit 4	<pre>RA: REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress</pre>
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of a magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

- Note 1: This bit can be read or cleared (not set).
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).
 - 4: Clearing this bit will clear SA and SB.

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0					
		_	US	EDT ⁽¹⁾		DL<2:0>						
bit 15							bit					
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0					
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF					
bit 7							bit					
Legend:		C = Clearabl	e bit									
R = Readable	e bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set						
0' = Bit is clea	ared	ʻx = Bit is unl	known	U = Unimpler	mented bit, rea	d as '0'						
bit 15-13	Unimpleme	ented: Read as	' 0 '									
bit 12		ultiply Unsigned	-	ol bit								
		gine multiplies a gine multiplies a										
bit 11		DO Loop Termin	•	oit(1)								
	•	te executing DC			eration							
	0 = No effec	t g	·									
bit 10-8		O Loop Nesting	Level Status b	oits								
	111 = 7 DO	loops active										
	•											
	•											
	001 = 1 DO	•										
bit 7	000 = 0 DO	A Saturation Er	able hit									
		lator A saturatio										
	0 = Accumu	lator A saturation	on disabled									
bit 6	SATB: ACC	B Saturation Er	nable bit									
		lator B saturatio										
bit 5				nine Saturation	Enable hit							
	SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data space write saturation enabled											
		ace write satura										
bit 4	ACCSAT: A	ccumulator Sat	uration Mode S	Select bit								
		uration (super s										
L:1 0		uration (normal		-:+ o(2)								
bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7											
		errupt Priority L										
bit 2	PSV: Progra	am Space Visibi	lity in Data Spa	ace Enable bit								
	•	n space visible i										
	-	n space not visil	-	се								
bit 1		ding Mode Sele										
		(conventional) r ed (convergent)										
bit 0		or Fractional Mu	-									
		mode enabled f	or DSP multipl	y ops								

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.
3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "*dsPIC30F/33F Programmer's Reference Manual*" (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- · 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- · 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/ 16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.6 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (for example, ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed or unsigned DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

A block diagram of the DSP engine is shown in Figure 3-3.

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	A = (x - y)2	No
EDAC	A = A + (x - y)2	No
MAC	A = A + (x * y)	Yes
MAC	A = A + x2	No
MOVSAC	No change in A	Yes
MPY	A = x * y	No
МРҮ	A = x 2	No
MPY.N	A = -x * y	No
MSC	A = A - x * y	Yes

TABLE 3-1: DSP INSTRUCTIONS SUMMARY

FIGURE 3-3:	DSP ENGINE BLOCK DIAGRAM

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is
 -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits, 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits support saturation and overflow:

- · OA: ACCA overflowed into guard bits
- · OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation) or

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

 SB: ACCB saturated (bit 31 overflow and saturation) or

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to **Section 7.0** "Interrupt Controller"). This allows the user application to take immediate action, for example, to correct system gain.

The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user application. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). Programmers can check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This is useful for complex number arithmetic, which typically uses both accumulators.

The device supports three Saturation and Overflow modes:

- Bit 39 Overflow and Saturation: When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive
 9.31 (0x7FFFFFFFFF) or maximally negative
 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. This condition is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (such as gain calculations).
- Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFF) or maximally negative 1.31 value (0x0080000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. When this Saturation mode is in effect, the guard bits are not used, so the OA, OB or OAB bits are never set.
- Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user application. No saturation operation is performed, and the accumulator is allowed to overflow, destroying its sign. If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.6.3 ACCUMULATOR 'WRITE BACK'

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13] + = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.6.3.1 Round Logic

The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator).

- If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented.
- If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged.

A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined:

- If it is '1', ACCxH is incremented.
- If it is '0', ACCxH is not modified.

Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

3.6.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000.

The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 16 for left shifts.

NOTES:

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", Section 4. "Program Memory" (DS70202), which is available the Microchip from web site (www.microchip.com).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access to program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory maps for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices are shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAPS FOR dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 DEVICES

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (see Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during the code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.2 Data Address Space

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 CPU has a separate, 16-bitwide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps is shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data From Program Memory Using Program Space Visibility").

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices implement up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] that results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified.

A sign-extend instruction (SE) is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 2 Kbytes of the near data space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJ06GS101/102 DEVICES WITH 256 BYTES OF RAM

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJ16GS402/404/502/504 DEVICES WITH 2-Kbyte RAM

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Resets	0000	0000	0000	0000	0000	0000	0000		0000	0000	0000	0000	0000	0000	0000	0800	XXXX	XXXX	XXXX	ACCAU XXXX	XXXX	XXXX	ACCBU XXXXX	0000	Program Counter High Byte Register	Table Page Address Pointer Register	Program Memory Visibility Page Address Pointer Register	XXXX	XXXX	0 XXXXX	DOSTARTH<5:0> 00xxx	XXXXX 0	DOENDH 00xxx	IPL0 RA N OV Z C 0000	SATD ACCSAT IPL3 PSV RND IF 0020	
	Bit 7 Bit 6																									д.		Program Me							IPL2 IPL1	SATA SATB (-
	Bit 8	gister 0	sgister 1	sgister 2	sgister 3	sgister 4	sgister 5	¢qister 6	vrister 7	gister 8	eister 9	gister 10	gister 11	gister 12	gister 13	gister 14	gister 15	mit Register	٦٢	H	39> ACCA<39>	3L	Ж	39> ACCB<39>	w Word Register	Ι	Ι	Ι	unter Register	<15:0>	5:1>	Ι	<u>^</u>	1	БС	4	
	Bit 10 Bit 9	Working Register 0	Working Register 1	Working Register 2	Working Register 3	Working Register 4	Working Register 5	Working Register 6	Working Register 7	Working Register 8	Working Register 9	Working Register 10	Working Register 11	Working Register 12	Working Register 13	Working Register 14	Working Register 15	Stack Pointer Limit Register	ACCAL	ACCAH	ACCA<39> ACCA<39>	ACCBL	ACCBH	ACCB<39> ACCB<39>	Program Counter Low Word Register				Repeat Loop Counter Register	DCOUNT<15:0>	DOSTARTL<15:1>		DOENDL<15:1>		SAB DA	DL<2:0>	
	Bit 11 Bi																				ACCA<39> ACC			ACCB<39> ACC	Pri	1	1	1				I		1	OAB S	EDT	
д.	Bit 12																				ACCA<39>			ACCB<39>		1	1					Ι		1	SB	SN	
CPU CORE REGISTER MAP	Bit 13																				ACCA<39>			ACCB<39>		Ι	I	I				Ι		I	SA	I	
REGI	Bit 14																				ACCA<39>			ACCB<39>		Ι	I	I				Ι		I	BO	I	
CPU COI	Bit 15																				ACCA<39>			ACCB<39>		Ι	1	Ι						I	OA	I	
	SFR Addr	0000	0002	0004	9000	0008	000A	0000	DODE	0010	0012	0014	0016	0018	001A	001C	001E	0020	0022	0024	0026	0028	002A	002C	002E	0030	0032	0034	0036	0038	003A	1 003C	003E	0040	0042	0044	-
TABLE 4-1:	SFR Name	WREGO	WREG1	WREG2	WREG3	WREG4	WREG5	WREG6	WREG7	WREG8	WREG9	WREG10	WREG11	WREG12	WREG13	WREG14	WREG15	SPLIM	ACCAL	ACCAH	ACCAU	ACCBL	ACCBH	ACCBU	PCL	PCH	TBLPAG	PSVPAG	RCOUNT	DCOUNT	DOSTARTL	DOSTARTH	DOENDL	DOENDH	SR	CORCON	_

TARI F 4-1

DS70318D-page 48

	All Resets	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX		All Resets	0000	0000			All Resets	0000
	Bit 0	0	1	0	ч				Bit 0	CN0IE	CNOPUE		Ð	Bit 0	CNOIE
	Bit 1							_					02 AN	Bit 1	CN1IE
	Bit 2								Bit 1	CN1IE	CN1PUE		6GS4	B	
	Bit 3								Bit 2	CN2IE	CN2PUE		:33FJ1	Bit 2	CN2IE
	Bit 4								Bit 3	CN3IE	CN3PUE		STER MAP FOR dsPlC33FJ06GS102,	Bit 3	CN3IE
	Bit 5								4				S202	Bit 4	CN4IE
	Bit 6						ster		Bit 4	CN4IE	CN4PUE		090C-		
	Bit 7						inter Regi		Bit 5	CN5IE	CN5PUE		PIC33F	Bit 5	CN5IE
	Bit 8					4:0>	Disable Interrupts Counter Register	5	Bit 6	CN6IE	CN6PUE		102, ds	Bit 6	CN6IE
	Bit 9	5:1>	:1>	5:1>	:1>	XB<14:0>	Disable Inte		Bit 7	CN7IE (CN7PUE C	decimal.	JOGGS	Bit 7	CN7IE
		XS<15:1>	XE<15:1>	YS<15:1>	YE<15:1>					S.		n in hexa	IC33F,	Bit 8	CN8IE
	Bit 10								Bit 9 Bit 8		-	s are show	JR dsP	Bit 9	CN9IE
JED)	Bit 11										-	set values	IAP FO	Bit 10	CN10IE
ITINU									Bit 10			,0'. Res	ERM		
(CON	Bit 12								Bit 11	Ι	Ι	, read as		Bit 11	CN11IE
CPU CORE REGISTER MAP (CONTINUED)	Bit 13								Bit 12			\mathbf{x} = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	CHANGE NOTIFICATION REGI dsPIC33FJ16GS502	Bit 12	CN12IE
GISTE									Bit 13	Ι		— = unim	IFICAT 3S502	Bit 13	CN13IE
RERE	Bit 14						1		Bit 14	Ι	Ι	n Reset,	E NOT	Bit 14	CN14IE C
PU CO	Bit 15					BREN	Ι		Bit 15			vn value o	CHANGE NOTIFICA dsPIC33FJ16GS502		
	SFR Addr	0048	004A	004C	004E	0050	0052	Ę	SFK Addr	0060	0068	= unknov		Bit 15	CN15IE
: 4-1:													E 4-3:	SFR Addr	0900
TABLE 4-1:	SFR Name	XMODSRT	XMODEND	YMODSRT	YMODEND	XBREV	DISICNT		File Name	CNEN1	CNPU1	Legend:	TABLE 4-3:	File Name	CNEN1

CN22IE CN23IE CN24IE CN25IE CN26IE **CN27IE** CN28IE **CN29IE** 0062 **CNEN2**

CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ16GS404 AND dsPIC33FJ16GS504

— = unimplemented, read as '0'. Reset values are shown in hexadecimal

All Resets

Bit 0

0000

CN0PUE

CN1PUE

CN2PUE

CN3PUE

CN4PUE

CN5PUE

CN6PUE

CN7PUE

CN8PUE

CN9PUE

CN11PUE CN10PUE

CN12PUE

CN14PUE CN13PUE

CN15PUE

0068

CNPU1

x = unknown value on Reset,

-egend:

0000

Bit 1 CN1IE

Bit 2 CN2IE

Bit 3 CN3IE

Bit 5 CN5IE

CN6IE

CN7IE

Bit 8 CN8IE

CN9IE

CN10IE

Bit 11 CN11IE

Bit 12 CN12IE

CN13IE

Bit 14 CN14IE

Bit 13

Bit 15 CN15IE

SFR Addr 0060

File Name CNEN1

TABLE 4-4:

Bit 4

Bit 6

Bit 7

Bit 9

Bit 10

CN18IE CN2PUE

0000

CN0IE CN16IE CN0PUE CN16PUE

CN17IE CN1PUE CN17PUE

CN18PUE

CN19IE CN3PUE CN19PUE

CN4IE CN20IE CN4PUE CN20PUE

> CN21IE CN5PUE CN21PUE

CN6PUE CN22PUE

CN7PUE CN23PUE

CN25PUE CN24PUE

CN8PUE

CN9PUE

CN10PUE CN26PUE

CN11PUE CN27PUE

CN12PUE

CN13PUE

CN14PUE

CN15PUE

0068

CNPU1 CNPU2

006A

CN29PUE CN28PUE

T

egend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

TABLE 4-5:	4-5:	LNI	INTERRUPT CONTROLLER	- CONTR	OLLER	REGISTI	ER MA	P FOR	dsPIC	EGISTER MAP FOR dsPIC33FJ06GS101 DEVICES ONLY	S101 D	EVICE	S ONLY					
File Name	SFR Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIVOERR	I	MATHERR	ADDRERR	STKERR	OSCFAIL	Ι	0000
INTCON2	0082	ALTIVT	DISI	I	Ι	Ι	1	I		I	I	I	I	I	INT2EP	INT1EP	INTOEP	0000
IFS0	0084		Ι	ADIF	U1TXIF	U1RXIF	SP11IF	SPI1EIF		T2IF	I	I	I	T1IF	0C1IF	I	INTOIF	0000
IFS1	0086		Ι	INT2IF	Ι	I	I	I		I	I	I	INT1IF	CNIF	I	MI2C1IF	SI2C1IF	0000
IFS3	008A		Ι	Ι	Ι	Ι	Ι	PSEMIF		Ι	I		Ι	Ι	Ι	Ι	-	0000
IFS4	008C		Ι	I	Ι	Ι	1	I		I	I	I	I	I	I	U1EIF	I	0000
IFS5	008E		PWM1IF	Ι	-	Ι	I	I		Ι	I		Ι	Ι	Ι	Ι	-	0000
IFS6	0600	ADCP1IF	ADCP0IF	Ι	Ι	Ι	I	1		Ι	I		Ι	Ι	Ι	PWM4IF	-	0000
IFS7	0092		Ι	I	I	I	1	1	I	I	I	I	I	I	I	ADCP3IF	I	0000
IEC0	0094		Ι	ADIE	U1TXIE	U1RXIE	SPI1E	SP11EIE	I	T2IE	I	I	I	T1IE	OC1IE	I	INTOIE	0000
IEC1	9600		I	INT2IE	I	I	1	1	I	I	I	I	INT1IE	CNIE	I	MI2C1IE	SI2C1IE	0000
IEC2	0098		Ι	I	I	I	1	1		I	I	I	I	I	I	I	I	0000
IEC3	A600		Ι	Ι	Ι	Ι	I	PSEMIE		Ι	I		Ι	Ι	Ι	Ι	-	0000
IEC4	009C		Ι	Ι	Ι	Ι	I	1		Ι	I		Ι	Ι	Ι	U1EIE	-	0000
IEC5	009E		PWM1IE	Ι	Ι	Ι	Ι		Ι	Ι	Ι	Ι	-	Ι	Ι	Ι	-	0000
IEC6	00A0	ADCP1IE	ADCP0IE	Ι	Ι	Ι	I	1		Ι	I		Ι	Ι	Ι	PWM4IE	-	0000
IEC7	00A2			Ι	Ι	Ι	Ι			-	Ι	Ι	-	-	Ι	ADCP3IE	—	0000
IPC0	00A4			T1IP<2:0>		Ι	0	OC1IP<2:0>		Ι	I		Ι	Ι		INT0IP<2:0>		4404
IPC1	00A6			T2IP<2:0>		Ι	I	1		-	I		Ι	Ι	Ι	Ι	-	4000
IPC2	00A8		ſ	U1RXIP<2:0>		Ι	S	SP111P<2:0>		Ι	S	SPI1EIP<2:0>	>	Ι	Ι	Ι	-	4440
IPC3	00AA	Ι		Ι	Ι	Ι	Ι		Ι	-		ADIP<2:0>		Ι	1	U1TXIP<2:0>		0044
IPC4	00AC			CNIP<2:0>		Ι	Ι		Ι	Ι	M	MI2C1IP<2:0>	>	Ι	0	SI2C1IP<2:0>		4044
IPC5	00AE	Ι	Ι	Ι	Ι	Ι	Ι		Ι	Ι	Ι	Ι	-	Ι		INT1IP<2:0>		0004
IPC7	00B2			Ι	Ι	Ι	Ι	Ι	Ι	Ι	-	INT2IP<2:0>	~	Ι	Ι	Ι	—	0040
IPC14	0000		Ι			Ι			Ι		Å	SEMIP<2:0>	>			I	-	0040
IPC16	00C4	Ι		Ι	Ι	Ι	Ι	Ι	Ι	Ι	ן	U1EIP<2:0>	•	Ι	Ι	Ι	—	0400
IPC23	00D2			Ι	Ι	Ι	ΡV	PWM1IP<2:0>	٨	Ι	Ι	Ι	Ι	Ι	Ι	Ι	-	0040
IPC24	00D4			Ι	Ι	Ι	Ι		Ι	Ι	Ъ	PWM4IP<2:0>	>	Ι	Ι	Ι	Ι	4400
IPC27	00DA		A	ADCP1IP<2:0>	^	Ι	AD	ADCP0IP<2:0>	^	Ι	Ι		-	Ι	Ι	Ι	Ι	0040
IPC28	00DC			I		Ι					AL	ADCP3IP<2:0>	0>	Ι	I	Ι	Ι	0000
INTTREG	00E0			Ι	Ι		ILR<3:0>	Ģ.		Ι				VECNUM<6:0>	4			0000
Legend:	n = x	unknown va	\mathbf{x} = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	. — = unimple	smented, rea	d as '₀'. Res€	st values a	re shown ir	hexadec	simal.								

	All Resets	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	4404	4000	4440	0044	4044	0004	0040	0040	0040	4400	4400	0004	0000	
	Bit 0	I	INTOEP	INTOIF	SI2C1IF	I	Ι	Ι		ADCP2IF	INTOIE	SI2C1IE	I				ADCP2IE		I	I								Ι			
	Bit 1	OSCFAIL	INT1EP	I	MI2C1IF	Ι	U1EIF	-	I	Ι	I	MI2C1IE	Ι	U1EIE	I	I	I	INT0IP<2:0>	I	I	U1TXIP<2:0>	SI2C1IP<2:0>	INT1IP<2:0>	I	I	I		Ι	ADCP2IP<2:0>		
	Bit 2	STKERR	INT2EP	0C1IF	I	I	Ι		I	I	OC1IE	Ι	I	I	I	I	I	4	I	I	О	SI	4	I		I	1		AD		
	Bit 3	ADDRERR	I	T11F	CNIF	I	Ι	Ι	I	I	T1IE	CNIE	I	I	I	I	I	I	1	1	I	Ι	Ι	I		1	Ι	Ι	Ι	VECNUM<6:0>	
SONLY	Bit 4	MATHERR /	I	I	INT1IF	I	Ι	Ι	I	I	I	INT1IE	I	I	I	I	I	I	I				Ι				Ι			VE	
DEVICES	Bit 5		I	I	1	1			I	1	I		I	I	I	I	I	I	I	SPI1EIP<2:0>	ADIP<2:0>	MI2C1IP<2:0>		NT2IP<2:0>	PSEMIP<2:0>	U1EIP<2:0>	I				
3S102 D	Bit 6	DIVOERR	I	I	Ι	Ι	Ι	Ι	I	Ι	I	Ι	I	I	I	I	I	I	I	S		Μ	Ι	-	ď		Ι	Ι	Ι		
EGISTER MAP FOR dsPIC33FJ06GS102 DEVICES ONLY	Bit 7	SFTACERR	I	T2IF	1	I	Ι	Ι	I	I	T2IE	Ι	I	I	I	I	I	I	I	I		1	Ι	I	I	I	I	Ι	Ι	I	cimal.
R dsPIC	Bit 8	COVTE (I		1	Ι				Ι			I					_	1	_						I	^	<0	Ι		in hexade
AP FOI	Bit 9	OVBTE	I	SPI1EIF	Ι	PSEMIF	-	-	-	Ι	SPI1EIE	-	PSEMIE	-	-	-	-	0C1IP<2:0>	I	SPI1IP<2:0>	-	-	-	-		I	PWM1IP<2:0>	ADCP0IP<2:0>	Ι	3:0>	s are showr
TER M	Bit 10	OVATE	I	SPI1IF		Ι	-	-	Ι	Ι	SPI11E	-	I	Ι	Ι	Ι	Ι	0	Ι	0)	Ι	-	-	Ι		Ι	ē.	AL		ILR<3:0>	eset values
R	Bit 11	COVBERR	I	U1RXIF	Ι	Ι	Ι	Ι	Ι	Ι	U1RXIE	Ι	Ι	Ι	Ι	Ι	Ι	Ι	I	I	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι		ead as 'o'. R
ROLLER	Bit 12	COVAERR	I	U1TXIF	I	Ι	Ι	Ι	I	Ι	U1TXIE	Ι	I	I	I	I	I				I		Ι	I	I	I	_	^	Ι	I	lemented, re
INTERRUPT CONTROLLER	Bit 13	OVBERR	I	ADIF	INT2IF	I	Ι	Ι	I	I	ADIE	INT2IE	I	I	I	I	I	T1IP<2:0>	T2IP<2:0>	U1RXIP<2:0>	I	CNIP<2:0>	Ι	I	I	I	PWM2IP<2:0>	ADCP1IP<2:0>	Ι	I	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal
ERRUP ⁻	Bit 14	OVAERR	DISI	Ι	Ι	Ι	Ι	PWM1IF	ADCP0IF	Ι	Ι	Ι	Ι	Ι	PWM1IE	ADCP0IE	Ι				Ι		Ι	Ι	I	I	ш	A	Ι	I	lue on Rese
INT	Bit 15	NSTDIS	ALTIVT	Ι	Ι	Ι	Ι	PWM2IF	ADCP1IF	Ι	Ι	Ι	I	Ι	PWM2IE	ADCP1IE	Ι	Ι	I	I	Ι	Ι	Ι	Ι	I	I	Ι	Ι	Ι	I	nknown va
4-6:	SFR Addr.	0080	0082	0084	0086	008A	008C	008E	0600	0092	0094	9600	A000	009C	3600	0A00	00A2	00A4	00A6	00A8	00AA	00AC	00AE	00B2	0000	00C4	00D2	00DA	00DC	00E0	n=x
TABLE 4-6:	File Name	INTCON1	INTCON2	IFS0	IFS1	IFS3	IFS4	IFS5	IFS6	IFS7	IEC0	IEC1	IEC3	IEC4	IEC5	IEC6	IEC7	IPC0	IPC1	IPC2	IPC3	IPC4	IPC5	IPC7	IPC14	IPC16	IPC23	IPC27	IPC28	INTTREG	Legend:

	0 All Resets	0000	EP 0000	F 0000	IF 0000	0000	0000	0000	0000	2IF 0000	IE 0000	IE 0000	0000	0000	0000	0000	2IE 0000	4444	4000	4440	0044	4444	0004	0040	0040	0040	4400	4000	4400	0004	0004	0000	
	Bit 0		INTOEP	INTOIF	SI2C1IF		Ι			ADCP2IF	INTOIE	SI2C1IE					ADCP2IE	۸			4	4	^		Ι	Ι				<0	<0		
	Bit 1	OSCFAIL	INT1EP	IC1IF	MI2C1IF	Ι	U1EIF	Ι	Ι	Ι	IC1IE	MI2C1IE	Ι	U1EIE	Ι	Ι	Ι	INT0IP<2:0>	Ι	Ι	U1TXIP<2:0>	SI2C1IP<2:0>	INT1IP<2:0>	Ι		Ι	Ι	1	Ι	ADCP2IP<2:0>	ADCP6IP<2:0>		
	Bit 2	STKERR	INT2EP	0C1IF	AC1IF	Ι	I	Ι	Ι	Ι	OC1IE	AC1IE	Ι	Ι	Ι	Ι	Ι		Ι	Ι				Ι	I	Ι	Ι	I	Ι	4	A	<0	
	Bit 3	ADDRERR	Ι	T11F	CNIF	Ι	I	Ι	Ι	Ι	T1IE	CNIE	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι		Ι	Ι	I	Ι	Ι	Ι	VECNUM<6:0>	
ονιγ	Bit 4	MATHERR	Ι	Ι	INT1IF	I	I	I	I	ADCP6IF	Ι	INT1IE	I	Ι	Ι	Ι	ADCP6IE		I	4		~		~	<(~	Ι	I	Ι	Ι	Ι		
VICES	Bit 5		Ι	I	I	I	1	I	I	I	I	I	I	Ι	Ι	Ι	I	IC1IP<2:0>	I	SPI1EIP<2:0>	ADIP<2:0>	MI2C1IP<2:0>	Ι	INT2IP<2:0>	PSEMIP<2:0>	U1EIP<2:0>	I	1	I	Ι	Ι		
202 DE	Bit 6	DIVOERR	I				I							Ι	I	I		_		SF	1	IW	Ι	LI LI	Ъ	L		I		Ι	Ι		
EGISTER MAP FOR dsPIC33FJ06G202 DEVICES ONLY	Bit 7	SFTACERR	Ι	T2IF	Ι	Ι	I	Ι	AC2IF	Ι	T2IE	Ι	Ι	Ι	Ι	AC2IE	Ι	Ι	Ι	Ι		Ι	Ι	Ι		Ι	Ι	1	Ι	Ι	Ι	Ι	-
dsPIC	Bit 8	COVTE	I	I	Ι	Ι	I	Ι	I	Ι	I	Ι	Ι	Ι	I	Ι	Ι		Ι		Ι		Ι	Ι		Ι	^	I	4	Ι	Ι		
P FOR	Bit 9	OVBTE	I	SPI1EIF	I	PSEMIF	I	I	I	I	SP11EIE	I	PSEMIE	Ι	I	I	I	OC1IP<2:0>	I	SP11IP<2:0>	Ι	AC1IP<2:0>	Ι	Ι		Ι	PWM1IP<2:0>	I	ADCP0IP<2:0>	Ι		<0>	
ER MA	Bit 10	OVATE	Ι	SPI11F	Ι	Ι	I	Ι	Ι	Ι	SP11IE	Ι	Ι	-	Ι	Ι	Ι	0	Ι	S	-	4	-	-			Д	I	AL		Ι	ILR<3:0>	-
REGISI	Bit 11	COVBERR	I	U1RXIF	I	I	I	I	I	I	U1RXIE	I	I	Ι	I	I	I	I	I	I	Ι	I	Ι	Ι		Ι	I	I	I	Ι	Ι		
KOLLER	Bit 12	COVAERR	Ι	U1TXIF	I	I	I	I	I	I	U1TXIE	I	I	Ι	Ι	Ι	I				Ι		Ι	Ι	I	Ι	~		~	Ι	Ι	Ι	-
CONIF	Bit 13	OVBERR	Ι	ADIF	INT2IF	Ι	I	Ι	Ι	Ι	ADIE	INT2IE	Ι	Ι	Ι	Ι	Ι	T1IP<2:0>	T2IP<2:0>	U1RXIP<2:0>	Ι	CNIP<2:0>	Ι	Ι	I	Ι	PWM2IP<2:0>	AC2IP<2:0>	ADCP1IP<2:0>	Ι	Ι	Ι	•
INTERRUPT CONTROLLER	Bit 14	OVAERR	DISI	Ι	Ι	Ι	I	PWM1IF	ADCP0IF	Ι	Ι	I	Ι	Ι	PWM1IE	ADCP0IE	Ι			ر				Ι		Ι	Ľ.		A	Ι	Ι	Ι	
INTE	Bit 15	NSTDIS	ALTIVT	1	1	1	1	PWM2IF	ADCP1IF	1	1	1	1	Ι	PWM2IE	ADCP1IE	1	I	I	I		I		Ι	I		Ι	1	Ι		Ι		haan hataanalaanin — taaa 🗖 na anilan amaanilan —
4-7:	SFR Addr.	0080	0082	0084	0086	008A	008C	008E	0600	0092	0094	9600	A000	009C	009E	00A0	00A2	00A4	00A6	00A8	00AA	00AC	00AE	00B2	00C0	00C4	00D2	00D6	00DA	00DC	00DE	00E0	
TABLE	File Name	INTCON1	INTCON2	IFS0	IFS1	IFS3	IFS4	IFS5	IFS6	IFS7	IEC0	IEC1	IEC3	IEC4	IEC5	IEC6	IEC7	IPC0	IPC1	IPC2	IPC3	IPC4	IPC5	IPC7	IPC14	IPC16	IPC23	IPC25	IPC27	IPC28	IPC29	INTTREG	- and -

	All Resets	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	4444	4440	4444	0044	4044	0004	0040	0040	0040	4400	0004	4400	0044	0000	
	Bit 0	I	INTOEP	INTOIF	SI2C1IF	I	I	Ι	PWM3IF	ADCP2IF	INTOIE	SI2C1IE	I	I	I	PWM3IE	ADCP2IE		I					I	Ι	I	I		I			
	Bit 1	OSCFAIL	INT1EP	IC1IF	MI2C1IF	I	U1EIF	1	I	ADCP3IF	IC1IE	MI2C1IE	I	U1EIE	I	I	ADCP3IE	NT0IP<2:0>	I	T3IP<2:0>	U1TXIP<2:0>	SI2C1IP<2:0>	INT1IP<2:0>	I	I	I	I	PWM3IP<2:0>	I	ADCP2IP<2:0>		
	Bit 2	STKERR	INT2EP	OC1IF	I	I	I		I	I	OC1IE	I	I	I	I	I	I	~	I		О	SI	4	I	I	I	I	Ρ	I	AD		
ILY	Bit 3	ADDRERR	I	T1IF	CNIF	I	I	1	I	I	T1IE	CNIE	I	I	I	I	1	1	I	I	I	I	I	I	I	I	I	I	I	Ι	VECNUM<6:0>	
ICES ON	Bit 4	MATHERR /	I	I	INT1IF	I	I	Ι	I	I	I	INT1IE	I	I	I	I	I					_	I					I		^	N	
04 DEV	Bit 5	1	I	IC2IF	I	I	I	1	I	I	IC2IE	I	I	I	Ι	I	I	IC1IP<2:0>	IC2IP<2:0>	SPI1EIP<2:0>	ADIP<2:0>	MI2C1IP<2:0>	I	NT2IP<2:0>	PSEMIP<2:0>	U1EIP<2:0>	I	I	1	ADCP3IP<2:0>		
GS402/4	Bit 6	DIVOERR	I	0C2IF	I	I	I		I	I	0C2IE	I	I	I	I	I	I			S		Σ	I	_	Ч	_		I		AI		
EGISTER MAP FOR dsPIC33FJ16GS402/404 DEVICES ONLY	Bit 7	SFTACERR	I	T2IF	I	I	I	Ι	I	I	T2IE	I	I	I	Ι	I	I	I	I	I		I	I	I	I	I		I		Ι	I	
R dsPIC	Bit 8	COVTE	I	T3IF	I	I	I	Ι	I	I	T3IE	I	I	I	I	I	1	^	^	^	I	I	I	I		1	۵	I	6			
AP FOI	Bit 9	OVBTE	I	SP11EIF	I	PSEMIF	I	Ι	I	I	SP11EIE	I	PSEMIE	I	I	I	1	OC1IP<2:0>	0C2IP<2:0>	SPI1IP<2:0>	I	I	I	I	I	I	PWM1IP<2:0>	I	ADCP0IP<2:0>	Ι	3:0>	
FER M	Bit 10	OVATE		SP111F	I		I				SP111E				Ι	I				0,		I		I	I	1	ā.	I	AI		ILR<3:0>	
R	Bit 11	COVBERR	Ι	U1RXIF	I	I	I	Ι	Ι	Ι	U1RXIE	Ι	Ι	Ι	Ι	I	I	I	I	I	Ι	Ι	I	I	Ι	Ι	I	Ι	Ι	Ι		
ROLLER	Bit 12	COVAERR	Ι	U1TXIF	I	I	I	Ι	Ι	Ι	U1TXIE	Ι	Ι	Ι	Ι	I	I				Ι		I	I	Ι	I	_	I	_	Ι	Ι	
INTERRUPT CONTROLLER	Bit 13	OVBERR	Ι	ADIF	INT2IF	1	I		Ι	Ι	ADIE	INT2IE	Ι	Ι	Ι	I	1	T1IP<2:0>	T2IP<2:0>	U1RXIP<2:0>	Ι	CNIP<2:0>	I	I	Ι	I	PWM2IP<2:0>	Ι	ADCP1IP<2:0>	Ι	Ι	
ERRUPT	Bit 14	OVAERR	DISI	I	I	I	I	PWM1IF	ADCP0IF	I	I	I	I	I	PWM1IE	ADCP0IE	I				I		I	I	I	I	<u>а</u>	I	Ā	I	I	
INTE	Bit 15	NSTDIS	ALTIVT	I	I	I	I	PWM2IF	ADCP1IF	Ι	I	Ι	Ι	Ι	PWM2IE	ADCP1IE	1	I	I	I	Ι		I	I	Ι	I	I	I	Ι	Ι	I	
4-8:	SFR Addr.	0080	0082	0084	0086	008A	008C	008E	0600	0092	0094	9600	A000	009C	3600	00A0	00A2	00A4	00A6	00A8	00AA	00AC	00AE	00B2	0000	00C4	00D2	00D4	00DA	00DC	00E0	
TABLE 4-8:	File Name	INTCON1	INTCON2	IFS0	IFS1	IFS3	IFS4	IFS5	IFS6	IFS7	IEC0	IEC1	IEC3	IEC4	IEC5	IEC6	IEC7	IPC0	IPC1	IPC2	IPC3	IPC4	IPC5	IPC7	IPC14	IPC16	IPC23	IPC24	IPC27	IPC28	INTTREG	.

	it 3 Bit 2 Bit 1 Bit 0 All Resets	RERR STKERR OSCFAIL - 0000	- INT2EP INT1EP INT0EP 0000	1IF OC1IF IC1IF INTOIF 0000	NIF AC1IF MI2C1IF SI2C1IF 0000		1	U1EIF 00000		1			1IE OC1IE IC1IE INTOIE 0000	NIE AC1IE MI2C1IE SI2C1IE 0000		U1EIE 0000	-		- ADCP3IE ADCP2IE 0000		4440	T3IP<2:0> 4444	U1TXIP<2:0> 0044			0040		0040	4400		4000			4400	- - - 4400 - ADCP2IP<2:0> 0044	
Bit 4 Bit 3 AATHERR ADDRERR - T11F T11F -	MATHERR ADDRERR 	T1F T1F T1E INT1E <tr td=""></tr>	INT1IF INTIIF INTIIFIELII INTIIRI	INT1IF			ADCP6IF ADCP6IF INT1IE INT1IE ADCCP6IE ADCCP6IE	ADCP6IF	ADCP6IF ADCP6IF INT1IE 	ADCP6IF INT1IE INT1IE 	ADCP6IF INT1E -	INT1IE INT1IE ADCP6IE	INT1IE													- <0:		- <0		2:0>		- <0		1	5:0>	
Bit 6 Bit 5 DIVOERR 0.001F 1000 0.0020 1000 0.0020 1000 0.0020 1000 0.0020 1000 0.0020 1000 0.0020 1000 0.0020 1000 0.0020 1000 0.0020 1000 0.0020 1000 0.0020 1000 0.0020 1000 0.0020 1000 0.0020 <th></th> <td></td> <td>− − ADIP<2:0:</td> ∧ − − −													− − ADIP<2:0:	- - - -	- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ADIP<2:05	- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -		IC1IP<2:0> IC2IP<2:0> SP11EIP<2:0: ADIP<2:0> MI2C1IP<2:0	IC2IP<2:0> SP11EIP<2:0: ADIP<2:0> MI2C1IP<2:0>	SPI1EIP<2:0: ADIP<2:0> MI2C1IP<2:0:	ADIP<2:0> MI2C1IP<2:0:	MI2C1IP<2:0:			INT2IP<2:0>	PSEMIP<2:0>	U1EIP<2:0>		PWM4IP<2:0>			AC4IP<2:0>	AC4IP<2:0>	AC4IP<2:0> - ADCP3IP<2:0>	AC4IP<2:0> AC4IP<2:0> ADCP3IP<2:0
Bit 7 SFTACERR T2IF	SFTACERR T2IF T2IF AC2IF T2IE T2IE T2IE T2IE T2IE T2IE T2IE T2IE T2IE															AC2IE	AC2IE 		I			1		1									1 1			
Bit 8 E COVTE E COVTE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -																Ι		E AC3IE	Ι	<0;	-05	<0:		<0:	Ι	Ι	I	Ι	2:0>		1		1 1 1			
O Bit 9 E OVBTE F OVBTE F OVBTE F SP14EIF P SEMIE P SEMIE P SEMIE													BSEMI	PSEMI	1			AC4IE	Ι	OC1IP<2:0>	OC2IP<2:0>	SPI1IP<2:0>	Ι	AC1IP<2:0>		Ι		Ι	PWM1IP<2:0>					ADCP0IP<2:0>		
Bit 10 E P F SP11E F SP11E F SP11E																																				
Bit 14 U1RXIF 0 0 1 1 1 1						1 1 1 1		1 1 1	11	1 1	Ι		U1RXIE	Ι	1	1	Ι	1	Ι	Ι	Ι	Ι		Ι	Ι	Ι		Ι	Ι	Ι		Ι	1 1			
Bit 12 COVAERR U1TXIF U1TXIF U	COVAERR 	U1TXIF	U1TXIF				1 1 1	1 1 1	1 1	1 1	I		U1TXIE	Ι	I	I	Ι	I	Ι			•	Ι		Ι	Ι	I	Ι	^		I	I				
Bit 13 OVBERR ADIF ADIF INT2IF	OVBERR 	ADIF INT2IF INT2IF	ADIF INT2IF 	IN T2IF	1 1 1	1 1	I	I			I	I	ADIE	INT2IE	I	I	I	I	Ι	T1IP<2:0>	T2IP<2:0>	U1RXIP<2:0>	I	CNIP<2:0>	I	Ι		Ι	PWM2IP<2:0>		1		AC2IP<2:0>	AC2IP<2:0>	AC2IP<2:0>	AC2IP<2:0>
Bit 14 OVAERR DISI DISI	OVAERR DISI	DISI		1 1	1		1	1	PWM1IF	PWM1IF	ADCP0IF	I	I	I	I	I	PWM1IE	ADCP0IE				L	Ι		I		I	Ι	Ч		I	1				
Bit 15 NSTDIS ALTIVT	NSTDIS ALTIVT 	ALTIVT	1 1	Ι		I		Ι	PWM2IF	PWM2IF	ADCP1IF	I	I	I		I	PWM2IE	ADCP1IE					Ι	I	I						I	1 1				
				0084	0086	008A	0080	008C	-		0600	0092	0094	9600	A600	009C	3600	00A0 /	00A2	00A4	00A6	00A8	00AA	00AC	00AE	00B2	00C0	00C4	00D2		00D4	00D6	00D4 00D6 00D8	00D4 00D6 00D8 00DA	00DA 00DB 00DB 00DA 00DC	00014 00000000
File Name INTCON1 INTCON2	INTCON1 INTCON2	INTCON2	001	IFS0	IFS1	IFS3	IFS4	IFS4	IFS5	IFS5	IFS6	IFS7	IEC0	IEC1	IEC3	IEC4	IEC5	IEC6	IEC7	IPC0	IPC1	IPC2	IPC3	IPC4	IPC5	IPC7	IPC14	IPC16	IPC23)) 	IPC24	IPC24 IPC25	IPC24 IPC25 IPC26	IPC24 IPC25 IPC26 IPC26		

	All Resets	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	4444	4440	4444	0044	4444	0004	0040	0040	0040	4400	0044	4000	0440	4400	4444	0004	0000	
	Bit 0	1	INTOEP	INTOIF	SI2C1IF	I	I		PWM3IF	ADCP2IF	INTOIE	SI2C1IE	I	I	I	PWM3IE	ADCP2IE		I					I		I	1		1		I				
	Bit 1	OSCFAIL	INT1EP	IC1IF	MI2C1IF	I	U1EIF	Ι	PWM4IF	ADCP3IF	IC1E	MI2C1IE	I	U1EIE	I	PWM4IE	ADCP3IE	NT0IP<2:0>	I	T3IP<2:0>	U1TXIP<2:0>	SI2C1IP<2:0>	INT1IP<2:0>	I	I	I	I	PWM3IP<2:0>	I	AC3IP<2:0>	I	ADCP2IP<2:0>	ADCP6IP<2:0>		
	Bit 2	STKERR	INT2EP	OC1IF	AC1IF	I	I	1	Ι	ADCP4IF	OC1IE	AC1IE	I	I	I	I	ADCP4IE	_ ≤	I		Ď	S	4	I	I	I	1	ΡV	I	A	I	AD	AD	Δ	
	Bit 3	ADDRERR	I	T1IF	CNIF	I	I	Ι	Ι	ADCP5IF	T1IE	CNIE	I	I	I	I	ADCP5IE	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	Ι	VECNUM<6:0>	
S ONLY	Bit 4	MATHERR /	I	I	INT1IF	I	I	Ι	Ι	ADCP6IF	I	INT1IE	I	I	I	I	ADCP6IE						I	^	Δ		I		I		I	6	Ι	>	
EVICE(Bit 5	1	I	IC2IF	1	I	Ι			Ι	IC2IE	-	Ι	I	Ι	Ι	Ι	IC1IP<2:0>	IC2IP<2:0>	SPI1EIP<2:0>	ADIP<2:0>	MI2C1IP<2:0>	Ι	INT2IP<2:0>	PSEMIP<2:0>	U1EIP<2:0>	I	PWM4IP<2:0>	I	AC4IP<2:0>	Ι	ADCP3IP<2:0>	Ι		
3S504 D	Bit 6	DIVOERR	Ι	0C2IF	I	Ι	Ι	Ι	Ι	Ι	OC2IE	Ι	Ι	Ι	Ι	Ι	Ι			S		2	Ι	_	а.		Ι	4	Ι		Ι	A	Ι		
33FJ160	Bit 7	SFTACERR	I	T2IF	I	I	Ι	Ι	AC2IF	Ι	T2IE	Ι	I	I	Ι	AC2IE	I	I	I	I	ļ	I	Ι	Ι	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	Ι	Ι	
dsPIC	Bit 8	COVTE	I	T3IF	I	I			AC3IF		T3IE			I		AC3IE					I						Δ	I	1		4	4			o bowed a
VP FOR	Bit 9	OVBTE	I	SPI1EIF	I	PSEMIF	—	—	AC4IF	—	SPI1EIE	—	PSEMIE	I	—	AC4IE	-	OC1IP<2:0>	OC2IP<2:0>	SPI1IP<2:0>	I	AC1IP<2:0>	—	—	—	—	PWM1IP<2:0>	I	I	—	ADCP0IP<2:0>	ADCP4IP<2:0>	-	<0:	
rer m⊿	Bit 10	OVATE	I	SPI1IF	I	I	-	-	-	-	SPI1IE	-	-	I	-	-	-	0	0	S	I	4	-	-	-	-	Ы	I	Ι	-	AC	AC	-	ILR<3:0>	0010/00
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ16GS504 DEVICES ONLY	Bit 11	COVBERR	I	U1RXIF	I	I	Ι	Ι	Ι	Ι	U1RXIE	Ι	I	I	Ι	Ι	I	Ι	I	I	I	I	Ι	Ι	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	Ι		od ,o, oo po
ROLLER	Bit 12	COVAERR	I	U1TXIF	I	I		Ι	Ι		U1TXIE	Ι	I	I			I				I				I	I	_	I		I	^	^	Ι	1	lamontod ro
CONTF	Bit 13	OVBERR	I	ADIF	INT2IF	I	I	Ι	Ι	I	ADIE	INT2IE	I	I	I	I	I	T1IP<2:0>	T2IP<2:0>	U1RXIP<2:0>	I	CNIP<2:0>	I	I	I	Ι	PWM2IP<2:0>	I	AC2IP<2:0>	Ι	ADCP1IP<2:0>	ADCP5IP<2:0>	Ι		u - unbrown value on Deed unimplemented read as 'o' Deed values are shown in hevadacimal
ERRUPI	Bit 14	OVAERR	DISI		I	I		PWM1IF	ADCP0IF			-		I	PWM1IE	ADCP0IE					I				I		а.	I			A	A		Ι	Daed to ou
INTE	Bit 15	NSTDIS	ALTIVT	I	I	I	I	PWM2IF	ADCP1IF	I	I	Ι	I	I	PWM2IE	ADCP1IE	I	1			I	1	I	I	Ι	I	1	I	1	I	Ι	Ι	Ι	1	lev uwoude
4-10:	SFR Addr.	0080	0082	0084	0086	008A	008C	008E	0600	0092	0094	9600	A600	009C	3600	00A0	00A2	00A4	00A6	00A8	00AA	00AC	00AE	00B2	0000	00C4	00D2	00D4	00D6	00D8	AD00	00DC	00DE	00E0	;
TABLE 4-10:	File Name	INTCON1	INTCON2	IFS0	IFS1	IFS3	IFS4	IFS5	IFS6	IFS7	IEC0	IEC1	IEC3	IEC4	IEC5	IEC6	IEC7	IPC0	IPC1	IPC2	IPC3	IPC4	IPC5	IPC7	IPC14	IPC16	IPC23	IPC24	IPC25	IPC26	IPC27	IPC28	IPC29	INTTREG	-poord

Rule Bit1 Bit1 <th< th=""><th>Bit 15 Bit 14 Bit 15 Bit 15 Bit 14 Bit 15 Bit 15<</th><th></th><th>TABLE 4-11:</th><th>TIMER</th><th>REGISI</th><th>FER MA</th><th>P FOR c</th><th>TIMER REGISTER MAP FOR dsPIC33FJ06GS101 AND dsPIC33FJ06GSX02</th><th>FJ06GS</th><th>101 AN</th><th>D dsPIC</th><th>33FJ06</th><th>GSX02</th><th>-</th><th></th><th>-</th><th></th><th></th><th></th><th></th></th<>	Bit 15 Bit 14 Bit 15 Bit 15 Bit 14 Bit 15 Bit 15<		TABLE 4-11:	TIMER	REGISI	FER MA	P FOR c	TIMER REGISTER MAP FOR dsPIC33FJ06GS101 AND dsPIC33FJ06GSX02	FJ06GS	101 AN	D dsPIC	33FJ06	GSX02	-		-					
Inter Register Total R	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	ωĂ	FR ddr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
Interpretation Period Ragister 1 Interpretation Int	Image: contract of the	0	00								Timer1 Rt	egister								хххх	
	TON ISOL	0	102								Period Re(gister 1								FFF	
Image:Imag	Interd Register Titter Reg	0	104	TON	I	TSIDL	Ι	Ι	I	I		Ι	TGATE	TCKPS<	<1:0>		TSYNC	TCS	I	0000	
Income of the constraint	0 1	0	106								Timer2 R(egister								XXXX	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	IDN IDN <td>0</td> <td>010C</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Period Re</td> <td>gister 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>FFF</td>	0	010C								Period Re	gister 2								FFF	
Information on Reset, — = unimplemented, read as '0.' Reset values are shown in hexadecimal. TIMER REGISTER MAP FOR dsPIC33FJ16GSX02 AND dsPIC33FJ16GSX04 Inter Register Inter Register <th <="" colspa="6" td=""><td>Information on Reset,</td><td>0</td><td>0110</td><td>TON</td><td>I</td><td>TSIDL</td><td>I</td><td>Ι</td><td>I</td><td>I</td><td>1</td><td>I</td><td>TGATE</td><td>TCKPS<</td><td><1:0></td><td>1</td><td>I</td><td>TCS</td><td>Ι</td><td>0000</td></th>	<td>Information on Reset,</td> <td>0</td> <td>0110</td> <td>TON</td> <td>I</td> <td>TSIDL</td> <td>I</td> <td>Ι</td> <td>I</td> <td>I</td> <td>1</td> <td>I</td> <td>TGATE</td> <td>TCKPS<</td> <td><1:0></td> <td>1</td> <td>I</td> <td>TCS</td> <td>Ι</td> <td>0000</td>	Information on Reset,	0	0110	TON	I	TSIDL	I	Ι	I	I	1	I	TGATE	TCKPS<	<1:0>	1	I	TCS	Ι	0000
c Bit 15 Bit 14 Bit 13 Bit 15 Bit 14 Bit 15 Bit 13 Bit 13 Bit 13 Bit 13 Bit 14 Bit 15 Bit 13 Bit 14 Bit 13 Bit 13 Bit 13 Bit 14 Bit 13 Bit 13 Bit 13 Bit 13 Bit 13 Bit 14	Bit 15 Bit 14 Bit 13 Bit 15 Bit 14 Bit 15 Bit 13 Bit 15 Bit 13 Bit 13 Bit 13 Bit 14 Bit 13 Bit 13 Bit 14 Bit 13 Bit 13<	<u> </u>	uyur	TIMER	on Reset, - REGIS1	= unimple	mented, rea	ad as 'o'. Re ISPIC33I	set values : = J16GS	are shown ir X02 AN	n hexadecir D dsPIC	nal. 33FJ16	GSX04								
Image:	Interl Register Timerl Register 1 TON - TSIDL - TSVNC TCS - 1 TON - TSIDL - - TSVNC TCS - 1 TON - TSIDL - - - TSVNC TCS - 1 TON - TSIDL - - - TSVNC TCS - 1 State TCKPS -			Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
Reiod Register 1 Period Register 2	Include Include <t< td=""><td></td><td>0100</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Timer1 Rt</td><td>egister</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></t<>		0100								Timer1 Rt	egister								XXXX	
i TON i ISDL i i i TGKPS<1:0 ⁵ i TSNC TCS i i	i TON i ISIN i ISIN I ISIN I </td <td></td> <td>0102</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Period Re</td> <td>gister 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>FFF</td>		0102								Period Re	gister 1								FFF	
i Timet2 Register Timet2 Register i <t< td=""><td>InterC Register TimerC Register TimerC Register InterC Reg</td><td></td><td>0104</td><td>TON</td><td>Ι</td><td>TSIDL</td><td>Ι</td><td>Ι</td><td>Ι</td><td>Ι</td><td>I</td><td>Ι</td><td>TGATE</td><td>TCKPS<</td><td><1:0></td><td>I</td><td>TSYNC</td><td>TCS</td><td>Ι</td><td>0000</td></t<>	InterC Register TimerC Register TimerC Register InterC Reg		0104	TON	Ι	TSIDL	Ι	Ι	Ι	Ι	I	Ι	TGATE	TCKPS<	<1:0>	I	TSYNC	TCS	Ι	0000	
1 Timer3 Holding Register (for 32-bit timer operations only) 1 1 <	Image: Note:		0106								Timer2 Rt	egister								XXXX	
Imaci Register Imaci Register Imaci Register 2 Period Register 2 Imaci Register 2 Period Register 2 Imaci Register 2 Period Register 2 Imaci Register 2 Period Register 3 Imaci Register 2 Period Register 3 Imaci Register 3 Period Register 3 Imaci Register 4 Period Register 3 Period Register 3 Imaci Register 4 Period Register 3 Period Register 3 Period Register 3 Imaci Register 4 Period Register 3 Period Register 3 Period Register 3 Period Register 3 Imaci Register 4 Period Register 3 Peri	Normer: Timer:3 Register Feriod Register 2 Period Register 2 TON TSIDL Period Register 3 TON TSIDL Period Register 3 Rinown value on Reset, -= unimplemented, read as '0. Reset values are shown in hexadecimal. TGATE TCKPS<1:0> T32 TCS P Norwn value on Reset, -= unimplemented, read as '0. Reset values are shown in hexadecimal. TCKPS<1:0> T32 P TCS P Norwn value on Reset, -= unimplemented, read as '0. Reset values are shown in hexadecimal. TCKPS<1:0> T32 D TCS D Norwn value on Reset, -= unimplemented, read as '0. Reset values are shown in hexadecimal. TRM Bit 13 Bit 10 Bit 8 Bit 7 Bit 6 Bit 7 Bit 7 Bit 6 Bit 7		0108						Timer3	Holding Re	gister (for 3	2-bit timer c	operations o	nly)						XXXX	
C TON - TSIDL - - - - - 152 - TCS - - - - - 172 - 172 - - - - - - 172 172 - - - - 176 TCS - - - 172 172 - - - - 176 TCS - - - 176 TCS - - - 176 TCS - - - - 176 TCS - - - - - 176 TCS - - - - 176 176 176 176 176 176 176 1 1 1 1 1 1 1 1 1 1 <	Period Register 2 Period Register 2 Period Register 3 Period Register 3 Period Register 3 Period Register 3 Period Register 3 Period Register 3 Provid Perio		010A								Timer3 R6	egister								XXXX	
Image: Column Signation Period Register 3 TON TSIDL TGATE TCKPS<1:0> T32 TCS Now 1 1 TCS 1 TCS 1 TCS 1 TCS 1 TCS 1 1 TCS 1	Image: constraint of the		010C								Period Re(gister 2								FFF	
TON TSIDL TGATE TCKPS<1:0> T22 TCS ITON TSIDL TGATE TCKPS<1:0> T22 TCS TCS TCS TCS TCS TCS TCS TCS TCS TCS TCS TCS TCS TCS TCS TCS TCS TCS TCS <td>TON — TSIDL — — — — — TGATE TCKPS<1:0> T32 — TCS — It TON — TSIDL — — — — — — TCS … TCS … TCS … TCS … TCS … TCS IT It</td> <td></td> <td>010E</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Period Re(</td> <td>gister 3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>FFF</td>	TON — TSIDL — — — — — TGATE TCKPS<1:0> T32 — TCS — It TON — TSIDL — — — — — — TCS … TCS … TCS … TCS … TCS … TCS IT		010E								Period Re(gister 3								FFF	
Image: TON Image: TSIDL TSIDL Image: TSIDL TSIDL TSIDL Image: TSIDL TSIDL <td>Indication Indication Indicat</td> <td></td> <td>0110</td> <td>TON</td> <td>I</td> <td>TSIDL</td> <td>Ι</td> <td>Ι</td> <td>Ι</td> <td>I</td> <td> </td> <td>I</td> <td>TGATE</td> <td>TCKPS<</td> <td><1:0></td> <td>Т32</td> <td>I</td> <td>TCS</td> <td>l</td> <td>0000</td>	Indication Indicat		0110	TON	I	TSIDL	Ι	Ι	Ι	I		I	TGATE	TCKPS<	<1:0>	Т32	I	TCS	l	0000	
Inhomore on Reset, -= unimplemented, read as '0'. Reset values are shown in hexadecimal. INPUT CAPTURE REGISTER MAP FOR dsPIC33FJ06GS202 r Bit 15 Bit 13 Bit 12 Bit 10 Bit 9 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 1 Bit 0 0 Input Capture 1 Register Input Capture 1 Register Input Capture 1 Register Input Capture 1 Register ICMA2:00 ICMA2:00 ICMA2:00	Inhomonon labeled, read as '0'. Reset values are shown in hexadecimal. INPUT CAPTURE REGISTER MAP FOR dsPIC33FJ06GS202 1 Bit 15 Bit 13 Bit 12 Bit 10 Bit 9 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 1 Bit 0 1 Input CAPTURE REGISTER MAP FOR dsPIC33FJ06GS202 Input Capture 1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 7 Bit 6 Bit 7 Bit 6 Bit 7 Bit 7 Bit 6 Bit 7		0112	TON		TSIDL		Ι	Ι	Ι			TGATE	TCKPS<	<1:0>			TCS		0000	
Bit 15 Bit 14 Bit 13 Bit 11 Bit 10 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 1 Bit 3 Bit 3 Bit 1 Bit 1 Bit 0 - - - - - - - 10000 100	Bit 7 Bit 6 Bit 3 Bit 2 Bit 1 Bit 0 egister TMR ICI<1:0> ICOV ICBNE ICM<2:0>		nkr	INPUT (on Reset, -		mented, rea	ad as 'o'. Re MAP FOI	set values i R dsPIC	are shown in 33FJ06	n hexadecir GS202	nal.									
Input Capture 1 Register Input Capture 1 Register - - - - - - ICSIDL ICOV ICBNE ICM ICA ICM ICM <t< td=""><td>egister 5TMR ICI<1:0> ICOV ICBNE ICM<2:0></td><td></td><td>SFR Addr</td><td>Bit 15</td><td>Bit 14</td><td>Bit 13</td><td>Bit 12</td><td>Bit 11</td><td>Bit 10</td><td></td><td>Bit 8</td><td>Bit 7</td><td></td><td></td><td></td><td>3</td><td>Bit 2</td><td>Bit 1</td><td>Bit 0</td><td>All Resets</td></t<>	egister 5TMR ICI<1:0> ICOV ICBNE ICM<2:0>		SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10		Bit 8	Bit 7				3	Bit 2	Bit 1	Bit 0	All Resets	
	TMR ICI<1:0> ICOV ICBNE ICM<2:0>		0140							lnp	ut Capture	1 Register								хххх	
	x = unknown value on Reset, — = unimplemented, read as 'o'. Reset values are shown in hexadecimal.		0142	Ι	Ι	ICSIDL	Ι	I	Ι	I	Ι	ICTMR	ICI<1:0			ЧE	0	:M<2:0>		0000	

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5 Bi	Bit 4 Bit 3		Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140							Input (Input Capture 1 Register	tegister								хххх
IC1CON	0142	Ι	Ι	ICSIDL	Ι	Ι	Ι		-	ICTMR	ICI<1:0>		ICOV ICBNE	NE	ICN	ICM<2:0>		0000
IC2BUF	0144							Input (Input Capture 2 Register	egister								хххх
IC2CON	0146	1	Ι	ICSIDL	Ι	Ι	Ι		-	ICTMR	ICI<1:0>	_	ICOV ICBNE	ШN	ICN	ICM<2:0>		0000
Legend:	Inkr	x = unknown value on Reset, —	on Reset,		= unimplemented, read as		set values ar	o'. Reset values are shown in hexadecimal	exadecimal									
TABLE 4	4-15: (OUTPU	T COM	OUTPUT COMPARE REGISTER M	EGISTE		JsPIC33	AP dsPIC33FJ06GS101 AND dsPIC33FJ06GSX02	01 AND	dsPIC	:33FJ06	GSX02						
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Output Compare 1 Secondary Register	are 1 Secon	idary Regi	ster							XXXX
OC1R	0182							Output C	Output Compare 1 Register	Register								XXXX
OC1CON	0184	I	Ι	OCSIDL	Ι	Ι	I	I	I	I	I	Ι	OCFLT	OCTSEL		OCM<2:0>		0000
Legend: TABLE 4	x = unkno 4-16: (own value OUTPU	on Reset, T COM	 x = unknown value on Reset, — = unimplemented, read as 16: OUTPUT COMPARE REGISTER M 	:mented, re; EGISTE	ad as 'o'. Re R MAP (set values ar	o'. Reset values are shown in hexadecimal. AP dsPIC33FJ16GSX02 AND dsPIC33FJ06GSX04	exadecimal.) dsPIC	:33FJ06	GSX04						
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Output Compare 1 Secondary Register	are 1 Secon	idary Regi	ster							XXXX
OC1R	0182							Output (Output Compare 1 Register	Register								XXXX
OC1CON	0184		Ι	OCSIDL		Ι						Ι	OCFLT	OCTSEL		OCM<2:0>		0000
OC2RS	0186						0	Output Compare 2 Secondary Register	are 2 Secon	idary Regi	ster							XXXX
0C2R	0188							Output (Output Compare 2 Register	Register								XXXXX
OC2CON	018A		Ι	OCSIDL		Ι	I						OCFLT	OCTSEL		OCM<2:0>		0000
Legend: ×= TABLE 4-17:	unkr	<pre>x = unknown value on Reset, 17: HIGH-SPEED PV</pre>	on Reset,	iown value on Reset, — = unimplemented, read as HIGH-SPEED PWM REGISTER MA	= unimplemented, read as	ad as 'o'. Re MAP	set values ar	o'. Reset values are shown in hexadecimal (P	exadecimal									
File Name	Addr Offset	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		Bit 7 Bi	Bit 6 Bit 5	5 Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0400	PTEN		PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	L SYNCOEN		SYNCEN -	- SYNG	SYNCSRC<1:0>		SEVTF	SEVTPS<3:0>		0000
PTCON2	0402	Ι	Ι	I		Ι	Ι	Ι					Ι		PC	PCLKDIV<2:0>	4	0000
PTPER	0404							ц	PTPER<15:0>	6								FFF8
SEVTCMP	0406						SEVT	SEVTCMP<15:3>							I			0000
MDC	040A								MDC<15:0>	^								0000

File Name	Addr	Bit 15	Bit 14	Bit 15 Bit 14 Bit 13 Bit 12 E	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII
	Ottset																	Kesets
PWMCON1	0420	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<1:0>	4		Ι	Ι	CAM	XPRES	IUE	0000
IOCON1	0422	HNƏd	PENL	РОГН	POLL	PMOL	PMOD<1:0>	OVRENH	OVRENL	OVRDAT<1:0>	1:0>	FLTDAT<1:0>	T<1:0>	CLD,	CLDAT<1:0>	SWAP	OSYNC	0000
FCLCON1	0424	IFLTMOD			CLSRC<4:0>	~C		CLPOL	CLMOD		FLT	FLTSRC<4:0>	^		FLTPOL	FLTMOD<1:0>	<0:1>0	0000
PDC1	0426							PD	PDC1<15:0>									0000
PHASE1	0428							PHA	PHASE1<15:0>									0000
DTR1	042A	Ι	I						DTR	DTR1<13:0>								0000
ALTDTR1	042C	I	I						ALTDT	ALTDTR1<13:0>								0000
SDC1	042E							SD	SDC1<15:0>									0000
SPHASE1	0430							SPH,	SPHASE1<15:0>									0000
TRIG1	0432						TRGCN	TRGCMP<15:3>							1	I	I	0000
TRGCON1	0434		TRGDI	TRGDIV<3:0>		I	Ι	1	I	DTM	Ι			TRGS	TRGSTRT<5:0>			0000
STRIG1	0436						STRGC	STRGCMP<15:3>							1	I	I	0000
PWMCAP1	0438						PWMC [#]	PWMCAP1<15:3>								I	I	0000
LEBCON1	043A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN			LEB<9:3>	ê					I	I	0000
Legend: ×= TABLE 4-19:	x = unkı 19:	nown value HIGH-SI	on Reset, -	iown value on Reset, — = unimplemented, read a HIGH-SPEED PWM GENERATOR	nented, rea IERATO	d as 'o'. Resi R 2 REG	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal HIGH-SPEED PWM GENERATOR 2 REGISTER MAP FOR dsPIC3	shown in hex. AP FOR d	s '0'. Reset values are shown in hexadecimal. 2 REGISTER MAP FOR dsPIC33FJ06GS102/202 AND dsPIC33FJ16GSX02/X04 DEVICES ONLY	106GS102	2/202		sPIC33	3FJ16	GSX02/	X04 DE\	/ICES (ONLY
File Name	Addr Offset	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
PWMCON2	0440	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<1:0>	6	Ι	Ι	Ι	CAM	XPRES	ЭЛI	0000
IOCON2	0442	PENH	PENL	POLH	POLL	PMOE	PMOD<1:0>	OVRENH	OVRENL	OVRDAT<1:0>	1:0>	FLTDAT<1:0>	T<1:0>	CLD.	CLDAT<1:0>	SWAP	OSYNC	0000
FCLCON2	0444	IFLTMOD			CLSRC<4:0>	0>		CLPOL	CLMOD		FLT	FLTSRC<4:0>	٨		FLTPOL	FLTMOD<1:0>	><1:0>	0000
PDC2	0446							PC	PDC2<15:0>									0000
PHASE2	0448							AHA	PHASE2<15:0>									0000
DTR2	044A	Ι							DTR.	DTR2<13:0>								0000
ALTDTR2	044C	Ι							ALTDT	ALTDTR2<13:0>								0000
SDC2	044E							SC	SDC2<15:0>									0000
SPHASE2	0450							SPH,	SPHASE2<15:0>									0000
TRIG2	0452						TRGCN	TRGCMP<15:3>								Ι		0000
TRGCON2	0454		TRGDI	TRGDIV<3:0>		Ι	Ι	Ι	Ι	DTM				TRGS	TRGSTRT<5:0>			0000
	[1	1	1							1	1					

0456 0458

STRIG2

0000 0000

> 1 I

0000

1

I I I

T I I

LEB<9:3>

STRGCMP<15:3> PWMCAP2<15:3> --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FLTLEBEN CLLEBEN

PLF

PLR

PHF

PHR

045A

LEBCON2 PWMCAP2

Legend:

x = unknown value on Reset,

File Name	Addr Offset	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7 B	Bit 6 Bit	t 5 Bit 4	4 Bit 3	3 Bit 2	Bit 1	Bit 0	AII Resets
PWMCON3	0460	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<1:0>				- CAM	XPRES	Э	0000
IOCON3	0462	PENH	PENL	РОГН	POLL	PMOD<1:0>)<1:0>	OVRENH	OVRENL	OVRDAT<1:0>		FLTDAT<1:0>		CLDAT<1:0>	SWAP	OSYNC	0000
FCLCON3	0464	IFLTMOD			CLSRC<4:0>	<0		CLPOL	CLMOD		FLTSRC<4:0>	<4:0>		FLTPOL		FLTMOD<1:0>	0000
PDC3	0466							ΡC	PDC3<15:0>								0000
PHASE3	0468							⊿HA	PHASE3<15:0>								0000
DTR3	046C	I	I						DTR	DTR3<13:0>							0000
ALTDTR3	046C	I	1						ALTD1	ALTDTR3<13:0>							0000
SDC3	046E							SD	SDC3<15:0>								0000
SPHASE3	0470							SPH,	SPHASE3<15:0>								0000
TRIG3	0472						TRGCN	TRGCMP<15:3>						1	1	I	0000
TRGCON3	0474		TRGDI	TRGDIV<3:0>		Ι	Ι	Ι	I	DTM .			TR	TRGSTRT<5:0>	^	-	0000
STRIG3	0476						STRGC	STRGCMP<15:3>						I	I	I	0000
PWMCAP3	0478						PWMC/	PWMCAP3<15:3>						1	1	1	0000
LEBCON3	047A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN			LEB<9:3>				1	1	1	0000
Legend: ×= u TABLE 4-21:	Juk .	<pre>x = unknown value on Reset, 21: HIGH-SPEED PV</pre>	on Reset, - PEED P	<pre>nown value on Reset, — = unimplemented, read at HIGH-SPEED PWM GENERATOR</pre>	nented, rea	<i>v</i> • • •	et values are 3ISTER N	= unimplemented, read as '0'. Reset values are shown in hexadecimal. WM GENERATOR 4 REGISTER MAP FOR dsPIC	adecimal. AsPIC33	 '0'. Reset values are shown in hexadecimal. 4 REGISTER MAP FOR dsPIC33FJ06GS101 AND dsPIC33FJ16GS50X DEVICES ONLY 	1 AND	dsPIC3	3FJ1(6GS50X	DEVICE	S ONL	<u> </u>
File Name	Addr Offset	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7 B	Bit 6 Bit	t 5 Bit 4	4 Bit 3	3 Bit 2	Bit 1	Bit 0	All Resets
PWMCON4	0480	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<1:0>				- CAM	XPRES	IUE	0000
IOCON4	0482	PENH	PENL	POLH	POLL	PMOD<1:0>	><1:0>	OVRENH	OVRENL	OVRDAT<1:0>		FLTDAT<1:0>		CLDAT<1:0>	SWAP	OSYNC	0000
FCLCON4	0484	IFLTMOD			CLSRC<4:0>	<0		CLPOL	CLMOD		FLTSRC<4:0>	<4:0>		FLTPOL		FLTMOD<1:0>	0000
PDC4	0486							PC	PDC4<15:0>								0000
PHASE4	0488							⊿HA	PHASE4<15:0>								0000
DTR4	048A	I	I						DTR	DTR4<13:0>							0000
ALTDTR4	048A	I	1						ALTD1	ALTDTR4<13:0>							0000
SDC4	048E							SD	SDC4<15:0>								0000
SPHASE4	0490							SPH,	SPHASE4<15:0>								0000
TRIG4	0492						TRGCN	TRGCMP<15:3>						Ι	Ι	Ι	0000
TRGCON4	0494		TRGDI	TRGDIV<3:0>		Ι	Ι	I	I	DTM .			TR	TRGSTRT<5:0>	Δ		0000
STRIG4	0496						STRGC	STRGCMP<15:3>						Ι	Ι	Ι	0000
-		1	1		1							1	1				

© 2009 Microchip Technology Inc.

DS70318D-page 59

0000 0000

I

I I

LEB<9:3>

STRGCMP<15:3> PWMCAP4<15:3> $_{
m X}$ = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

CLLEBEN

FLTLEBEN

ΡГF

PLR

PHF

PHR

049A 0498

PWMCAP4 LEBCON4 Legend:

I I

I T I

TABLE 4-22 :	-22:	12C1 RI	12C1 REGISTER MAP	R MAP				·										
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	1	1	ļ		I	I	I	I				Receive Register	Register				0000
I2C1TRN	0202	I	1	1	1	1	I	I					Transmit Register	Register				00FF
I2C1BRG	0204	1	1	1	1	1	Ι	Ι				Baud Rate	Baud Rate Generator Register	. Register				0000
I2C1CON	0206	I2CEN	- F	I2CSIDL S	SCLREL 1	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208 4	ACKSTAT 1	TRSTAT				BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Ч	S	R_W	RBF	TBF	0000
I2C1ADD	020A					Ι						Address Register	Register					0000
I2C1MSK	020C					Ι	Ι					AMSK<9:0>	<0:6>					0000
Legend:	x = unk	\mathbf{x} = unknown value on Reset, — = unimplemented, read	on Reset, -	— = unimpl€	emented, r		Reset valı	as 'o'. Reset values are shown in hexadecimal	/n in hexac	decimal.								
TABLE 4-23:	-23:	UART1	REGIS	UART1 REGISTER MAP	٩													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	Ι	NSIDL	IREN	RTSMD	1	UEN1	UENO	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL<1:0>	<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL1 UTXINV UTXISEL0	Ι	UTXBRK	UTXE N	UTXBF	TRMT	URXISEL<1:0>	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	Ι	Ι	Ι	Ι	Ι	Ι	1				UART	UART Transmit Register	gister				хххх
U1RXREG	0226	Ι		Ι		Ι		I				UART	UART Receive Register	gister				0000
U1BRG	0228							Baı	ld Rate G€	Baud Rate Generator Prescaler	scaler							0000
Legend:	x = unk	$\mathbf{x} = unknown value on Reset, = unimplemented, read$	on Reset, -	= unimple	emented, r		Reset valı	as 'o'. Reset values are shown in hexadecimal	νn in hexaα	decimal.								
TABLE 4-24:	-24:	SPI1 RI	SPI1 REGISTER MAP	R MAP														
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	1	SPISIDL	1	1		Ι	Ι	Ι	SPIROV		I	Ι	1	SPITBF	SPIRBF	0000
SPI1CON1	0242	Ι	Ι	Ι	DISSCK	DISSDO	MODE16	6 SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>	٨	PPRE	PPRE<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL							Ι				I	FRMDLY		0000

0000

SPI1 Transmit and Receive Buffer Register

— = unimplemented, read as '0'. Reset values are shown in hexadecimal.

x = unknown value on Reset,

SPI1BUF Legend:

0248

DS70318D-page 60

Bit 1 Bit 0 Bit 1 Bit 0 CS<2:0> PIRDY PORDY	PCFG2 	PCFG3 F TRGSR 	The second secon	SEQSAMP 	PCFG6 02 DEV 02 DE		EIE O PCFG7 1 - 15:1> - - - - - - ata Buffer 0 - ata Buffer 2 - ata Buffer 3 - ata Buffer 7 -	FORM EIE O - PCFG7 1 - - - - ADC Data Buffer 1 - - ADC Data Buffer 1 - - - ADC Data Buffer 1 - - - ADC Data Buffer 2 ADC Data Buffer 2 - - ADC Data Buffer 3 ADC Data Buffer 6 - - ADC Data Buffer 7 wn in hexadecimal. - - Min in hexadecimal. Bitt 8 Bit 7 1 ADBASE<15:1> - - -	— FORM EIE O — — PCFG7 1 — — PCFG7 1 ADBASE<15:1> IRQENO 1 ADDAD ADBASE<15:1> — ADC Data Buffer 0 — — ADC Data Buffer 1 — ADC Data Buffer 2 ADC Data Buffer 2 ADC Data Buffer 3 ADC Data Buffer 7 S are shown in hexadecimal. OR dsPIC33FJ06GS10 PCM OR dsPIC33FJ06GS10 — — — ADBASE<15:1> — — —	GSWTRG — FORM EIE O — — — PCFG7 1 — — — PCFG7 1 — — — — PCFG7 1 SRC1 — — — — — — SRC1 — — — — — — — — SRC3 4:0> ADC Data Buffer 1 — _ <	Image: Construct of the state of t	SLOWCLK — GSWTRG — FORM EIE O — — — — — PCFG7 1 — — — — — PCFG7 1 — — — — — PCFG7 1 PCFG7 1 — … … … … … … …	ADSIDL SLUWCLN Common Lege	ADSIDL SLOWCLK GSWTRG PCFG7 I PCFG7 I PCFG7 I PCFG7 I I PEND1 SWTRG3 SWTRG3 SWTRG3 I <td< th=""><th>ADON ADSIDL SLOWCLK IRQEN1 PEND3 SWTRG3 IRQEN3 PEND3 SWTRG3 IRQEN4 Bit13 Bit13 Bit12 E ADON </th><th>ADON ADSIDL SLOWCLK IRQEN1 PEND1 SWTRG1 IRQEN3 PEND3 SWTRG3 iRQEN3 PEND3 SWTRG3 iRQEN3 PEND3 SWTRG3 iRQEN3 PEND3 SWTRG3 iRQEN4 PEND3 SWTRG3 iRQEN3 PEND3 SWTRG3 iRQEN4 PEND3 SWTRG3 ADON ADSIDL SIL0VCLK </th></td<>	ADON ADSIDL SLOWCLK IRQEN1 PEND3 SWTRG3 IRQEN3 PEND3 SWTRG3 IRQEN4 Bit13 Bit13 Bit12 E ADON	ADON ADSIDL SLOWCLK IRQEN1 PEND1 SWTRG1 IRQEN3 PEND3 SWTRG3 iRQEN3 PEND3 SWTRG3 iRQEN3 PEND3 SWTRG3 iRQEN3 PEND3 SWTRG3 iRQEN4 PEND3 SWTRG3 iRQEN3 PEND3 SWTRG3 iRQEN4 PEND3 SWTRG3 ADON ADSIDL SIL0VCLK
						15:1>	ADBASE<	1								
	P2RDY		Ι	Ι	Ι		Ι			Ι		1	1	1	1	
	PCFG2			PCFG5	Ι	Ι	Ι						 	 		0302
)CS<2:0>	AI	I	ASYNCSAMP	SEQSAMP	ORDER	EIE	FORM	Ι		GSWTRG	- GSWTRG	1	SLOWCLK —	SLOWCLK —	ADON – ADSIDL SLOWCLK –	ADON – ADSIDL SLOWCLK –
Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit 8	Bit 9		Bit 10		Bit 11	Bit 12 Bit 11	Bit 13 Bit 12 Bit 11	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11
			١٢٨	ICES ON	102 DEV	-J06GS	PIC33F	ds	OR	MAP FOR	GISTER MAP FOR	ADC REGISTER MAP FOR) 10-BIT ADC REGISTER MAP FOR	-SPEED 10-BIT ADC REGISTER MAP FOR	HIGH-SPEED 10-BIT ADC REGISTER MAP FOR	HIGH-SPEED 10-BIT ADC REGI
						ata Buffer 7	ADC D									032E
						ata Buffer 6	ADC D									032C
						ata Buffer 3	ADC D									0326
						ata Buffer 2	ADC D									0324
						ata Buffer 1	ADC D									0322
						ata Buffer 0	ADC D									0320
			I	I	Ι	Ι				SRC3<4:0>	TRGSRC3<4:0>	TRGSRC3<4:0>		PEND3 SWTRG3	IRQEN3 PEND3 SWTRG3	IRQEN3 PEND3 SWTRG3
	C0<4:0>	TRGSR		SWTRG0	PENDO	IRQEN0				SRC1<4:0>	TRGSRC1<4:0>	TRGSRC1<4:0>		SWTRG1	IRQEN1 PEND1 SWTRG1	IRQEN1 PEND1 SWTRG1
						15:1>	DBASE<	<1								
		3RDY	-	Ι	Ι	Ι			Ι							0306
-			-	Ι	PCFG6	PCFG7			Ι							0302
PCFG1 PCFG0		1			ORDER	EIE	FORM				GSWTRG	- GSWTRG		ADSIDL SLOWCLK - GSWTRG	- ADSIDL SLOWCLK - GSWTRG	ADON – ADSIDL SLOWCLK – GSWTRG
	AD		ASVNCSAMP			011.7		1							-	
Bit 0	Bit 1 Bit 0 Bit 1 Bit 0 DSS<2:0> PCFG1 PCFG0 P1RDY PORDY	Bit 1	Bit 2 Bit 1 Bit 2 Bit 1 ADCS<2:0 ADCS<2:0 SRC0<4:0> SRC0<4:0> SRC0<4:0> SRC0<4:0> SRC0<4:0>	Bit 4 Bit 3 Bit 2 Bit 1 CNCSAMP - - - YNCSAMP - ADCS<2:0	Bit 4 Bit 3 Bit 2 Bit 1 CNCSAMP - - - YNCSAMP - ADCS<2:0	Bit 4 Bit 3 Bit 2 Bit 1 CNCSAMP - - - YNCSAMP - ADCS<2:0	Bit 4 Bit 3 Bit 2 Bit 1 Freestored: 0> - - - NCSAMP - - - YNCSAMP - ADCSS<2:0	Bit 4 Bit 3 Bit 2 Bit 1 CNCSAMP - - - YNCSAMP - ADCS<2:0	Bit 4 Bit 3 Bit 2 Bit 1 CNCSAMP - - - YNCSAMP - ADCS<2:0	Bit 4 Bit 3 Bit 2 Bit 1 Freestored: 0> - - - NCSAMP - - - YNCSAMP - ADCSS<2:0	TRGSRC1<4:0> ADBASE<15:1> Conc. Conc. <td>TRGSRC1<4:0> ADBASE<15:1> Conc. Conc.<td>TRGSRC1<4:0> ADBASE<15:1> Conc. Conc.<td>TRGSRC1<4:0> ADBASE<15:1> Conc. Conc.<td>IROGENI FENDI SWITGGI TRGSRC1-44(D) IROGENO FENDIO SWITGGI TRGSRC0-44(D) TRGSRC0-44(D)<td>Norm Norm <th< td=""></th<></td></td></td></td></td>	TRGSRC1<4:0> ADBASE<15:1> Conc. Conc. <td>TRGSRC1<4:0> ADBASE<15:1> Conc. Conc.<td>TRGSRC1<4:0> ADBASE<15:1> Conc. Conc.<td>IROGENI FENDI SWITGGI TRGSRC1-44(D) IROGENO FENDIO SWITGGI TRGSRC0-44(D) TRGSRC0-44(D)<td>Norm Norm <th< td=""></th<></td></td></td></td>	TRGSRC1<4:0> ADBASE<15:1> Conc. Conc. <td>TRGSRC1<4:0> ADBASE<15:1> Conc. Conc.<td>IROGENI FENDI SWITGGI TRGSRC1-44(D) IROGENO FENDIO SWITGGI TRGSRC0-44(D) TRGSRC0-44(D)<td>Norm Norm <th< td=""></th<></td></td></td>	TRGSRC1<4:0> ADBASE<15:1> Conc. Conc. <td>IROGENI FENDI SWITGGI TRGSRC1-44(D) IROGENO FENDIO SWITGGI TRGSRC0-44(D) TRGSRC0-44(D)<td>Norm Norm <th< td=""></th<></td></td>	IROGENI FENDI SWITGGI TRGSRC1-44(D) IROGENO FENDIO SWITGGI TRGSRC0-44(D) TRGSRC0-44(D) <td>Norm Norm <th< td=""></th<></td>	Norm Norm <th< td=""></th<>

DS70318D-page 61

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

XXXX

XXXX

ADC Data Buffer 3 ADC Data Buffer 4 ADC Data Buffer 5

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

0326 0328

ADCBUF3 ADCBUF4 ADCBUF5 Legend:

032A

	SFR								0 					c i			0 	AII
SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Resets
ADCON	0300	ADON	1	ADSIDL	SLOWCLK	I	GSWTRG		FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	I	A	ADCS<2:0>		0003
ADPCFG	0302	Ι	I	I	I	Ι	Ι		I	I	Ι	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306		1		I	I	I		I	I	Р6RDY	I	1		P2RDY	P1RDY	PORDY	0000
ADBASE	0308							AL	ADBASE<15:1>	5:1>							I	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1		TRG	TRGSRC1<4:0>			IRQEN0	PEND0	SWTRG0		TRGSF	TRGSRC0<4:0>			0000
ADCPC1	030C		I	I	I	I	I	I	I	IRQEN2	PEND2	SWTRG2		TRGSF	TRGSRC2<4:0>			0000
ADCPC3	0310		1		I	Ι	I		I	IRQEN6	PEND6	SWTRG6		TRGSF	TRGSRC6<4:0>			0000
ADCBUF0	0320								ADC Da	ADC Data Buffer 0								XXXX
ADCBUF1	0322								ADC Da	ADC Data Buffer 1								XXXX
ADCBUF2	0324								ADC Da	ADC Data Buffer 2								XXXX
ADCBUF3	0326								ADC Da	ADC Data Buffer 3								XXXX
ADCBUF4	0328								ADC Da	ADC Data Buffer 4								XXXX
ADCBUF5	032A								ADC Da	ADC Data Buffer 5								XXXX
ADCBUF12	0338								ADC Dat	ADC Data Buffer 12								XXXX
ADCBUF13	033A								ADC Da	ADC Data Buffer13								XXXX
Legend:	un = ×	known valt	x = unknown value on Reset,	t, — = unim	= unimplemented, read as 'o'. Reset values are shown in hexadecimal.	ead as '0'. I	Reset values	are show	n in hexa	decimal.								
TABLE 4-28:	28:	HIGH-	-SPEED	10-BIT	HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ16GS402/404 DEVICES ONLY	GISTER	MAP FC	DR dsF	PIC33F	J16GS4	102/404	DEVICE	S ONLY					
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON		ADSIDL	SLOWCLK	I	GSWTRG	I	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	I	A	ADCS<2:0>		0003
ADPCFG	0302				Ι	1	1			PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306		Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι		P3RDY	P2RDY	P1RDY	PORDY	0000
ADBASE	0308							AL	ADBASE<15:1>	5:1>								0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1		TRC	TRGSRC1<4:0>			IRQEN0	PENDO	SWTRG0		TRGSF	TRGSRC0<4:0>			0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3		TRC	TRGSRC3<4:0>			IRQEN2	PEND2	SWTRG2		TRGSF	TRGSRC2<4:0>			0000
ADCBUF0	0320								ADC Da	ADC Data Buffer 0								XXXX
ADCBUF1	0322								ADC Da	ADC Data Buffer 1								XXXX

© 2009 Microchip	Technology Inc.
------------------	-----------------

0324 0326 0328 0328 032A 032C

ADCBUF5 ADCBUF6

ADCBUF7 Legend:

ADCBUF3 ADCBUF4

ADCBUF2

XXXX

XXXX

XXXX

ADC Data Buffer 3 ADC Data Buffer 4 ADC Data Buffer 5 ADC Data Buffer 6

ADC Data Buffer 7

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

ADC Data Buffer 2

XXXX

XXXX

TABLE 4-29:	-29:	HIGH-	SPEEL	0 10-BIT	HIGH-SPEED 10-BIT ADC REGI		RAP F	OR dsl	PIC33F	-J16GS	502 DEV	STER MAP FOR dsPIC33FJ16GS502 DEVICES ONLY	ILY					
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON	I	ADSIDL	SLOWCLK	I	GSWTRG	Ι	FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP	I	A	ADCS<2:0>		0003
ADPCFG	0302	I	I	Ι	I	I	I	I	I	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2 PCFG1	PCFG1	PCFG0	0000
ADSTAT	0306	-	Ι	Ι	Ι		Ι			-	Р6RDY	-	Ι	P3RDY	P2RDY	P1RDY	PORDY	0000
ADBASE	0308							A	ADBASE<15:1>	15:1>								0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1		TRG	TRGSRC1<4:0>			IRQEN0	PEND0	SWTRG0		TRGS	TRGSRC0<4:0>			0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3		TRG	TRGSRC3<4:0>			IRQEN2	PEND2	SWTRG2		TRGSF	TRGSRC2<4:0>			0000
ADCPC3	0310	-	Ι			-	Ι	-	-	IRQEN6	PEND6	SWTRG6		TRGS	TRGSRC6<4:0>			0000
ADCBUF0	0320								ADC D8	ADC Data Buffer 0								XXXX
ADCBUF1	0322								ADC Da	ADC Data Buffer 1								XXXX
ADCBUF2	0324								ADC Da	ADC Data Buffer 2								XXXX
ADCBUF3	0326								ADC Da	ADC Data Buffer 3								XXXX
ADCBUF4	0328								ADC D8	ADC Data Buffer 4								XXXX
ADCBUF5	032A								ADC Da	ADC Data Buffer 5								XXXX
ADCBUF6	032C								ADC D8	ADC Data Buffer 6								XXXX
ADCBUF7	032E								ADC Da	ADC Data Buffer 7								XXXX
ADCBUF12	0338								ADC Da	ADC Data Buffer 12								XXXX
ADCBUF13	033A								ADC Da	ADC Data Buffer 13								XXXX
Legend:	un = x	known valt	le on Res€	et, — = unin	\mathbf{x} = unknown value on Reset, — = unimplemented, read		as '0'. Reset values are shown in hexadecimal	s are show	/n in hexa	decimal.								

ב
NO
AP FOR dsPIC33FJ16GS502 DEVICES OI
VICE
Ш́О
502
3SE
160
3FJ
<u>8</u>
Is P
OR c
С Ц
~
R
ΠE
GIS
RE
Б
₹
.IB-0
PEED 1
H-SPEEI
Ŧ

TABLE 4-30:	-30:	HIGH-	SPEED	10-BIT	HIGH-SPEED 10-BIT ADC REG		MAP F(JR dsF	IC33F,	J16GS5	04 DEV	STER MAP FOR dsPIC33FJ16GS504 DEVICES ONLY	۲Y					
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADCON	0300	ADON		ADSIDL	SLOWCLK	Ι	GSWTRG		FORM	EIE	ORDER	SEQSAMP	ASYNCSAMP		AI	ADCS<2:0>		0003
ADPCFG	0302			Ι	Ι	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADSTAT	0306			-	-		Ι				Р6RDY	P5RDY	P4RDY	P3RDY	P2RDY	P1RDY	PORDY	0000
ADBASE	0308							AL	ADBASE<15:1>	5:1>							Ι	0000
ADCPC0	030A	IRQEN1	PEND1	SWTRG1		TRG	TRGSRC1<4:0>			IRQEN0	PEND0	SWTRG0		TRGSF	IRGSRC0<4:0>			0000
ADCPC1	030C	IRQEN3	PEND3	SWTRG3		TRG	TRGSRC3<4:0>			IRQEN2	PEND2	SWTRG2		TRGSF	TRGSRC2<4:0>			0000
ADCPC2	030E	IRQEN5	PEND5	SWTRG5		TRG	TRGSRC5<4:0>			IRQEN4	PEND4	SWTRG4		TRGSF	IRGSRC4<4:0>			0000
ADCPC3	0310		1	-	Ι		Ι			IRQEN6	PEND6	SWTRG6		TRGSF	TRGSRC6<4:0>			0000
ADCBUF0	0320								ADC Da	ADC Data Buffer 0								XXXX
ADCBUF1	0322								ADC Da	ADC Data Buffer 1								XXXX
ADCBUF2	0324								ADC Da	ADC Data Buffer 2								XXXX
ADCBUF3	0326								ADC Da	ADC Data Buffer 3								XXXX
ADCBUF4	0328								ADC Da	ADC Data Buffer 4								XXXX
ADCBUF5	032A								ADC Da	ADC Data Buffer 5								XXXX
ADCBUF6	032C								ADC Da	ADC Data Buffer 6								XXXX
ADCBUF7	032E								ADC Da	ADC Data Buffer 7								XXXX
ADCBUF8	0330								ADC Da	ADC Data Buffer 8								XXXX
ADCBUF9	0332								ADC Da	ADC Data Buffer 9								XXXX
ADCBUF10	0334								ADC Dat	ADC Data Buffer 10								XXXX
ADCBUF11	0336								ADC Dat	ADC Data Buffer 11								XXXX
ADCBUF12	0338								ADC Dat	ADC Data Buffer 12								XXXX
ADCBUF13	033A								ADC Dat	ADC Data Buffer 13								XXXX
Legend:	x = un	known valu	le on Rese	t, — = unim	\mathbf{x} = unknown value on Reset, — = unimplemented, read	ead as 'o'. F	l as 'o'. Reset values are shown in hexadecimal	are show	n in hexac	lecimal.								

Ž
s S
Ü
Ň
۵
504
ŝ
160
Ë
533
dsPIC33FJ10
g
P FOR
ш Д
MΑ
۲
STE
Ū
R
ğ
L AD
ΒİΤ
Ģ
ED 10-BIT ADC REGIS
Ш
S-H
Έ
T
-30:
4-30

RATOR CONTROL REGISTER MAP FOR dsPIC33FJ06GS202 DEVICES ONLY	
SICES	
202 DE	
JOGGS	
PIC33F	
OR ds	
RAP F	
EGISTEI	
ROL RI	
CONT	
ARATOR	
ALOG COMPARA	
ANALOC	
-31:	
TABLE 4-31	

All Resets	0 0 0	0000	000	0000	
Bit 0 Re	- CMPPOL RANGE 0000	0	- CMPPOL RANGE 0000	0	
	DL RAI		DL RAI		
Bit 1	CMPPC		CMPPC		
Bit 2					
Bit 3	CMPSTAT		- CMPSTAT		
Bit 4	1	CMREF<9:0>	I	<0:6>=	
Bit 7 Bit 6 Bit 5	DACOE INSEL<1:0> EXTREF	CMRE	DACOE INSEL<1:0> EXTREF	CMREF<9:0>	
Bit 6	<1:0>		-<1:0>		
Bit 7	INSEL		INSEL		
Bit 8	DACOE		DACOE		
Bit 9	I		Ι		
Bit 10	I	-	-	I	
Bit 11	I	-	-		
Bit 12	I	-	-	Ι	
Bit 13	CMPSIDL	Ι	CMPSIDL	I	
Bit 14	Ι	Ι	Ι	-	
File Name ADR Bit 15	CMPON		CMPON		
ADR	0540	0542	0544	0546	
File Name	CMPCON1 0540 CMPON	CMPDAC1 0542	CMPCON2 0544 CMPON	CMPDAC2 0546	

TABLE 4	-32:	ANALO	G COMP.	TABLE 4-32: ANALOG COMPARATOR CONT	CON	TROL R	EGISTE	FROL REGISTER MAP dsPIC33FJ16GS502/504 DEVICES ONLY	IsPIC33	FJ16G	S502/5	04 DEV	ICES	ONLY				
File Name	ADR	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMPCON1	0540	CMPON	I	CMPSIDL		1	1	I	DACOE	INSEL<1:0>		EXTREF	Ι	CMPSTAT	I	CMPPOL RANGE	RANGE	0000
CMPDAC1	0542			-		1						CMREF<9:0>	<0:6>					0000
CMPCON2	0544	CMPON	I	CMPSIDL		I	I	Ι	DACOE	INSEL<1:0>		EXTREF		CMPSTAT	I	CMPPOL RANGE	RANGE	0000
CMPDAC2	0546			-		1						CMREF<9:0>	<0:6>					0000
CMPCON3	0548	CMPON	I	CMPSIDL		I	I	Ι	DACOE	INSEL<1:0>	<1:0>	EXTREF		CMPSTAT	I	CMPPOL RANGE	RANGE	0000
CMPDAC3	054A		I			I	I					CMREF<9:0>	<0:6>					0000
CMPCON4	054C	CMPON		CMPSIDL		Ι	Ι	Ι	DACOE	INSEL<1:0>		EXTREF		CMPSTAT		CMPPOL RANGE	RANGE	0000
CMPDAC4	054E	-	Ι	I	I	I	I					CMREF<9:0>	<0:6>					0000

TABLE 4-33:	33:	PERIPH	HERAL	PERIPHERAL PIN SELECT INPUT REGISTER MAP	ECT IN	PUT RE	GISTER	MAP										
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	I				INT1R<5:0>	5:0>			I		I	1	I		I		3F00
RPINR1	0682	I	I	I	I	Ι	I	I	I	I	I			INT2R<5:0>	<5:0>			003F
RPINR2	0684	I	-			T1CKR<5:0>	:5:0>				I	I	I	I		-	I	0000
RPINR3	0686	I	I			T3CKR<5:0>	:5:0>			I	I			T2CKR<5:0>	<5:0>			3F3F
RPINR7	068E	I	I			IC2R<5:0>	<0:2			I	I			IC1R<5:0>	5:0>			3F3F
RPINR11	9690	I	I	I	I	Ι	I	I	I	I	I			OCFAR<5:0>	<2:0>			3F3F
RPINR18	06A4	Ι	-			U1CTSR<5:0>	<5:0>				Ι			U1RXR<5:0>	<5:0>			003F
RPINR20	06A8	Ι	-			SCK1R<5:0>	<5:0>				Ι			SDI1R<5:0>	<5:0>			3F3F
RPINR21	06AA	I	I	I	I	Ι	I	I	I	I	I			SS1R<5:0>	<5:0>			0000
RPINR29	06BA	Ι	-			FLT1R<5:0>	-2:0>				Ι	Ι		Ι	-	—	I	3F00
RPINR30	06BC	Ι	-			FLT3R<5:0>	-2:0>				Ι			FLT2R<5:0>	<2:0>			3F3F
RPINR31	06BE	Ι	-			FLT5R<5:0>	-2:0>				Ι			FLT4R<5:0>	<2:0>			3F3F
RPINR32	06C0	Ι	-			FLT7R<5:0>	5:0>			Ι	Ι			FLT6R<5:0>	<2:0>			3F3F
RPINR33	06C2	Ι	Ι			SYNCI1R<5:0>	<5:0>				Ι			FLT8R<5:0>	<2:0>			3 F 3 F
RPINR34	06C4	Ι	-	-	I	Ι	I	Ι	—	Ι	Ι			SYNCI2R<5:0>	₹<5:0>			3F3F
Legend:	x = unkn	own value	on Reset,	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	emented, re	ad as 'o'. R	teset values	are showr	in hexad	ecimal.								

PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ06GS101
PERIPHERAL P
TABLE 4-34:

									5									
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 13 Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
RPOR0	06D0	I				RP1F	RP1R<5:0>			I	I			RP0R<5:0>	<5:0>			0000
RPOR1	06D2	I				RP3F	RP3R<5:0>			I				RP2R<5:0>	<5:0>			0000
RPOR2	06D4	I				RP5F	RP5R<5:0>			I				RP4R<5:0>	<5:0>			0000
RPOR3	06D6	I				RP7F	RP7R<5:0>			I				RP6R<5:0>	<5:0>			0000
RPOR16	06F0	I				RP3:	RP33<5:0>			I				RP32<5:0>	<2:0>			0000
RPOR17	06F2	I				RP3(RP35<5:0>			I				RP34<5:0>	<2:0>			0000
Legend:	un = x	Legend: x = unknown value on Reset, — = unimplemented, read	ie on Resei	t, — = unim	plemented	, read as 'o'.	Reset value	as '0'. Reset values are shown in hexadecimal	in hexadeci.	mal.								

DS70318D-page 66

TABLE 4-35:	-35:	PERIPI AND d:	HERAL sPIC33	PERIPHERAL PIN SELECT OUT AND dsPIC33FJ16GS502	LECT \$502		PUT REGISTER MAP FOR dsPIC33FJ06GS102, dsPIC33FJ06GS202, dsPIC33FJ16GS402	TER MA	P FOR d	sPIC33	FJ06G5	3102, ds	PIC33F	JOGGS	202, dsł	PIC33F	J16GS	402
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
RPOR0	06D0	I	1			R	RP1R<5:0>			I	1			RPOR	RP0R<5:0>			0000
RPOR1	06D2	I	I			R	RP3R<5:0>			I	I			RP2R	RP2R<5:0>			0000
RPOR2	06D4	I	I			R	RP5R<5:0>			I	I			RP4R	RP4R<5:0>			0000
RPOR3	06D6	I	1			R	RP7R<5:0>				Ι			RP6R	RP6R<5:0>			0000
RPOR4	06D8	I	I			R	RP9R<5:0>				I			RP8R	RP8R<5:0>			0000
RPOR5	06DA	Ι	Ι			R	RP11R<5:0>			I	Ι			RP10F	RP10R<5:0>			0000
RPOR6	06DC	Ι	Ι			RF	RP13R<5:0>			Ι	Ι			RP12F	RP12R<5:0>			0000
RPOR7	06DE	I	Ι			RF	RP15R<5:0>				Ι			RP14F	RP14R<5:0>			0000
RPOR16	06F0	I	1			R	RP33<5:0>			1	1			RP32	RP32<5:0>			0000
RPOR17	06F2	I	Ι			R	RP35<5:0>				Ι			RP34-	RP34<5:0>			0000
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06D0					RP	RP1R<5:0>							RP0R<5:0>	<5:0>			0000
RPOR1	06D2	Ι	Ι			RP	RP3R<5:0>			Ι	Ι			RP2R<5:0>	<5:0>			0000
RPOR2	06D4	Ι				RP	RP5R<5:0>				Ι			RP4R<5:0>	<5:0>			0000
RPOR3	06D6	Ι				RP	RP7R<5:0>			Ι	Ι			RP6R<5:0>	<5:0>			0000
RPOR4	06D8	Ι	Ι			RP	RP9R<5:0>			Ι	Ι			RP8R<5:0>	<5:0>			0000
RPOR5	06DA	Ι				RP	RP11R<5:0>			Ι	Ι			RP10R<5:0>	<5:0>			0000
RPOR6	06DC	Ι	Ι			RP	RP13R<5:0>			Ι	Ι			RP12R<5:0>	<5:0>			0000
RPOR7	06DE	Ι	Ι			RP	RP15R<5:0>			Ι	Ι			RP14R<5:0>	<5:0>			0000
RPOR8	06E0	Ι	Ι			RP	RP17R<5:0>			Ι	Ι			RP16R<5:0>	<5:0>			0000
RPOR9	06E2	Ι				RP	RP19R<5:0>			I	Ι			RP18R<5:0>	<5:0>			0000
RPOR10	06E4	Ι				RP.	RP21R<5:0>				Ι			RP20R<5:0>	<5:0>			0000
RPOR11	06E6	Ι				RP.	RP23R<5:0>			I	I			RP22R<5:0>	<5:0>			0000
RPOR12	06E8	I				RP.	RP25R<5:0>							RP24R<5:0>	<5:0>			0000
RPOR13	06EA	I	I			RP.	RP27R<5:0>			I	Ι			RP26R<5:0>	<5:0>			0000
-	4																	

DS70318D-page 67

0000

RP32<5:0> RP34<5:0> RP28R<5:0>

> I Τ

I I T

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. RP33<5:0> RP35<5:0> RP29R<5:0>

x = unknown value on Reset,

Legend: **RPOR17**

Ι L I

Ι I

06EC 06F0 06F2

RPOR14 RPOR16

0000 0000

TABLE 4-37:	-37:	PORT	A REGI	PORTA REGISTER MAP	IAP													
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8 E	Bit 7 B	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0		1	Ι	I		1	1					TRISA4 T	TRISA3	TRISA2	TRISA1 T	TRISA0	001F
PORTA	02C2	I	I	I	1		Ι					I	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	Ι	Ι	Ι	Ι	Ι	Ι						LATA4 L	LATA3	LATA2	LATA1	LATA0	0000
ODCA	02C6	Ι			1							-	ODCA4 0	ODCA3	ODCA2 (ODCA1 0	ODCA0	0000
Legend:	x = unkr	ulav nwor	x = unknown value on Reset, —		= unimplemented, read	read as 'o'.	as 'o'. Reset values are shown in hexadecimal	es are shov	wn in hexad	ecimal.								
TABLE 4-38 :		PORT	B REGI	PORTB REGISTER MAP FOR d	IAP FOF	2 dsPIC:	sPIC33FJ06GS101	3S101										
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	I	Ι	Ι	Ι	Ι	Ι	Ι	F	TRISB7 TF	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	00FF
PORTB	02CA	I	Ι	Ι	1	I	I	I	I	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RBO	XXXX
LATB	02CC		Ι	Ι	1	Ι	Ι	1	-	LATB7 L	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000
ODCB	02CE	Ι	Ι	Ι	Ι	Ι	Ι	Ι	0	ODCB7 0	ODCB6 (ODCB5	ODCB4 (ODCB3	ODCB2	ODCB1	ODCB0	0000
TABLE 4-39:		PORT	B REGI 33FJ16	PORTB REGISTER MAP FOR dsPIC33FJ06GS102, dsPIC33FJ06GS202, dsPIC33FJ16GS402, dsPIC33FJ16GS404, dsPIC33FJ16GS502 AND dsPIC33FJ16GS504	IAP FOF AND dsł	t dsPIC: PIC33FJ	sPIC33FJ06GS 33FJ16GS504	GS102, 34	dsPIC3	3FJ06G	iS202, c	IsPIC33	FJ16GS.	402, dsl	PIC33FJ	J16GS40) 4,	
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB (02C8 TI	TRISB15	TRISB14	TRISB13	TRISB12	E TRISB11	1 TRISB10	0 TRISB9	9 TRISB8	3 TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFF
PORTB (02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
LATB 0	02CC L	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	D LATB9) LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000
ODCB (02CE O	ODCB15	ODCB14	ODCB13	ODCB12	CODCB11	1 ODCB10	0 ODCB9	9 ODCB8	3 ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
Legend:	x = unkr	ulav nvor	= unknown value on Reset,		— = unimplemented, read	read as 'o'.	as '0'. Reset values are shown in hexadecimal.	es are shov	wn in hexad	ecimal.								
TABLE 4-40:	-40:	PORT	C REGI	PORTC REGISTER MAP FOR dsPIC33FJ16GS404 AND dsPIC33FJ16GS504	IAP FOF	dsPIC:	33FJ16(3S404 /	AND ds	PIC33F.	J16GS5	04						
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0		1	TRISC13	TRISC12	TRISC11	TRISC10	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISCO	3 F F F
PORTC	02D2			RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX
LATC	02D4	Ι	Ι	LATC13	LATC12	LATC11	LATC10			LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	0000
ODCC	02D6	Ι		ODCC13	ODCC12	ODCC11	ODCC10	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCCO	0000
Legend:	× = unkr	nown valu	e on Rese	x = unknown value on Reset, — = unimplemented, read as 'o'. Reset values are shown in hexadecimal	plemented, I	read as 'o'.	Reset value	es are shov	vn in hexad	ecimal.								

All Resets	(1) XXXX	0300 (2)	3040	0030	0000	0000	0000		All Resets	0000(1)	0000		All Resets	0000	0000	0000	0000	0000		All Resets	0000	0000	0000	0000	0000
Bit 0	POR	OSWEN							Bit 0				Bit 0	ADCMD	OC1MD	I	I			Bit 0	ADCMD	OC1MD	1	1	1
Bit 1	BOR	I			I		Ι		Bit 1	<3:0>			Bit 1	I	OC2MD					Bit 1	Ι	OC2MD	I	I	I
Bit 2	IDLE	1	PLLPRE<4:0>			6			Bit 2	NVMOP<3:0>			Bit 2	1	Ι					Bit 2	I	1	1		1
Bit 3	SLEEP	CF	PLI			TUN<5:0>			Bit 3		2:0>	et.	Bit 3	SP11MD	Ι		REFOMD			Bit 3	SP11MD	I	1	REFOMD	
Bit 4	WDTO S			PLLDIV<8:0>					Bit 4		NVMKEY<7:0>	ne of Rese	Bit 4	Ι	Ι			Ι		Bit 4	Ι	1	1	I	I
	-	X		PLLDI								s at the tii	Bit 5	U1MD						Bit 5	U1MD	I	I	I	I
Bit 5	SWDTEN	LOCK	I		1		I		Bit 5	 		perations	Bit 6	I	Ι					Bit 6	Ι	Ι		I	I
Bit 6	SWR	IOLOCK	5T<1:0>		-		FRCSEL		Bit 6	ERASE		or erase o	Bit 7	I2C1MD	Ι	I		I		Bit 7	I2C1MD	I	Ι	I	
Bit 7	EXTR	CLKLOCK	PLLPOST<1:0>		I		ASRCSEL	idecimal. e of Reset.	Bit 7	1		is '0'. Reset values are shown in hexadecimal. states is dependent on the state of memory write or erase operations at the time of Reset. C33FJ06GS101 DEVICES ONLY	Bit 8	Ι	IC1MD	I	I	PWM1MD	idecimal. ONLY	Bit 8	Ι	IC1MD	I	Ι	PWM1MD
Bit 8	VREGS	< <u>0</u>	2:0>				<2:0>	is 'o'. Reset values are shown in hexadecimal. of Reset. e FOSC Configuration bits and on type of Rese	Bit 8	I	1	own in hexa e state of m EVICES	Bit 9	PWMMD	IC2MD				— = unimplemented, read as '0'. Reset values are shown in hexadecimal. ER MAP FOR dsPIC33FJ06GS102 DEVICES ONLY	Bit 9	PWMMD	IC2MD	I	I	PWM2MD
0 Bit 9	CM	NOSC<2:0>	FRCDIV<2:0>	1	RODIV<3:0>		APSTSCLR<2:0>	lues are sh juration bit	Bit 9		1	lues are sh ident on the S101 D	Bit 10		-	CMPMD		1	lues are sh S102 D	Bit 10		1	CMPMD		ā
Bit 10			z		RO		4	Reset va et. C Config	Bit 10	I	1	seset val is deper J06G	Bi			CM		-	Reset va :J06G	Bi			CM		
2 Bit 11		1	DOZEN	1	L L			ad as 'o'. I pe of Res n the FOS	Bit 11		1	ad as 'o'. F set states PIC33F	Bit 11	T1MD	Ι	I		PWM4MD	ad as '0'. I PIC33F	Bit 11	T1MD	I	I	I	I
Bit 12					ROSEL			ented, re dent on ty endent o	Bit 12	1		ented, read the other Read DR dS	Bit 12	T2MD	Ι				ented, re OR ds	Bit 12	T2MD	I			
Bit 13	Ι	COSC<2:0>	DOZE<2:0>	Ι	ROSIDL		SELACLK	= unimplemented, read a : are dependent on type o ues are dependent on thu MAP	Bit 13 B	WRERR	1	= unimplem ly. Value on MAP F(Bit 13 B						= unimplem MAP F(Bit 13 B					
Bit 14	IOPUWR			I	Ι		APLLCK	 x = unknown value on Reset, — = unimplemented, read as '0. Reset values are shown in hexadecimal. The RCON register Reset values are dependent on type of Reset. The OSCCON register Reset values are dependent on the FOSC Configuration bits and on type of Reset. 12: NVM REGISTER MAP 	Bit 14	WREN V	1	 x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory writes are shown in for POR and the states is dependent on the state of memory writes are value shown is for POR and the states is dependent on the state of memory writes are shown in the state of memory writes are shown in the state of memory writes are value shown is for POR and POR as a shown in the state of memory writes are value are shown in the state of memory writes are value shown in	Bit 14 Bi			1	1	1	iown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. PMD REGISTER MAP FOR dsPIC33FJ06GS102 DEVICES ONLY	Bit 14 Bi	1				
Bit 15	TRAPR		ROI		ROON		ENAPLL	n value or register R NN registe	Bit 15	WR		r value or shown is 1D RE(1	1	1	<pre>x = unknown value on Reset, 44: PMD REGISTE</pre>						
SFR Addr	0740	0742	0744	0746	074E	0748	0750 E	e RCON e OSCCC		0760	0766	inkn et va	. Bit 15						hkr	Bit 15					
	0							: x = 1: The 2: The E 4-42	ne Addr			4	SFR Addr	0770	0772	0774	0776	077A	: × = 5 4-44	SFR Addr	0770	0772	0774	0776	077A
SFR Name	RCON	OSCCON	CLKDIV	PLLFBD	REFOCON	OSCTUN	ACLKCON	Legend: x = 1 Note 1: The 2: The TABLE 4-42:	File Name	NVMCON	NVMKEY	Legend: Note 1: TABLE	SFR Name	PMD1	PMD2	PMD3	PMD4	PMD6	Legend: ×= 1 TABLE 4-44:	SFR Name	PMD1	PMD2	PMD3	PMD4	PMD6

© 2009 Microchip Technology Inc.

DS70318D-page 69

mb bit	SFR Bit	-																:
TIMD — PWMMD — IC1MD IC1MD IC1MD IC1MD IC1MD IC1 IC1MD IC1 IC1MD IC1 IC1MD IC1			Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
— = …			Ι	Ι	T2MD	T1MD	Ι	PWMMD		I2C1MD		U1MD		SP11MD			ADCMD	0000
				Ι	Ι	Ι	Ι	Ι	IC1MD				Ι	Ι		—	OC1MD	0000
<th< td=""><td></td><td>_</td><td>1</td><td>Ι</td><td>Ι</td><td>I</td><td>CMPMD</td><td>Ι</td><td>Ι</td><td>I</td><td> </td><td> </td><td>I</td><td>Ι</td><td>I</td><td></td><td>I</td><td>0000</td></th<>		_	1	Ι	Ι	I	CMPMD	Ι	Ι	I			I	Ι	I		I	0000
			I	I	1	I	I	Ι	Ι	1				REFOMD	I	I	I	0000
… CMP2MD CMP1MD ···· ··· ··· ··			I	I	1	I	I	PWM2MD	PWM1MD					I	I	l	1	0000
as 'o'. Reset values are shown in hexadecimal. C33FJ1GGS402 AND dsPIC33FJ1GGS404 D E/ICES ONLY Bit 1 Bit 10 Bit 3 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 TiMD PWMMD 12C1MD 12C1MD 240 C 240 OC1MD 12CMD 10 101MD 12C1MD 120 C 240 OC1MD 12CMD 10 101MD 120 C 120 C 240 OC1MD 120 001 001 001 001 00 C 240 C 240 OC1MD 120 001 001 001 001 00 C 240 C 240 OC1MD 120 001 001 001 001 00 C 240 C 240 OC1MD 120 001 001 001 001 001 001 001 001 001			I	Ι	1	I	Ι	CMP2MD	CMP1MD	1			I	I	I	I	Ι	0000
(13) Bit 12 Bit 11 Bit 10 Bit 3 Bit 1 Bit 10 3MD T2MD T1MD — PWMMD — PWMMD — ADCMD P — PWMMD — PC1MD — ADCMD — ADCMD — — — — — — — ADCMD — — — — — — — — ADCMD — — — — — — — — ADCMD — … … … … … <th>18 n</th> <th>wn value MD R</th> <th>on Reset.</th> <th>. — = unimp</th> <th>iemented, re FOR ds</th> <th>aad as 'o'. Rei PIC33FJ</th> <th>set values are 16GS402</th> <th>e shown in hey AND dsF</th> <th>vadecimal.</th> <th>6GS40</th> <th>4 DEV</th> <th></th> <th>2NLY</th> <th></th> <th></th> <th></th> <th></th> <th></th>	18 n	wn value MD R	on Reset.	. — = unimp	iemented, re FOR ds	aad as 'o'. Rei PIC33FJ	set values are 16GS402	e shown in hey AND dsF	vadecimal.	6GS40	4 DEV		2NLY					
SMD TZMD T1MD PVMMID IZC1MD SP11MD ADCMD ADCMD	÷.		Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
<td></td> <td></td> <td> </td> <td>T3MD</td> <td>T2MD</td> <td>T1MD</td> <td>I</td> <td>PWMMD</td> <td> </td> <td>I2C1MD</td> <td>Ι</td> <td>U1MD</td> <td> </td> <td>SPI1MD</td> <td> </td> <td> </td> <td>ADCMD</td> <td>0000</td>				T3MD	T2MD	T1MD	I	PWMMD		I2C1MD	Ι	U1MD		SPI1MD			ADCMD	0000
··· ···· ··· ··· ··· <td></td> <td>_</td> <td> </td> <td>Ι</td> <td>Ι</td> <td>1</td> <td>Ι</td> <td>IC2MD</td> <td>IC1MD</td> <td>1</td> <td> </td> <td> </td> <td> </td> <td>Ι</td> <td> </td> <td>OC2MD</td> <td>OC1MD</td> <td>0000</td>		_		Ι	Ι	1	Ι	IC2MD	IC1MD	1				Ι		OC2MD	OC1MD	0000
··· ··· <td></td> <td>_</td> <td>1</td> <td>Ι</td> <td>Ι</td> <td>I</td> <td>Ι</td> <td>Ι</td> <td>Ι</td> <td>Ι</td> <td> </td> <td>I</td> <td>I</td> <td>Ι</td> <td>I</td> <td></td> <td>Ι</td> <td>0000</td>		_	1	Ι	Ι	I	Ι	Ι	Ι	Ι		I	I	Ι	I		Ι	0000
u u			1	Ι		I	Ι	Ι	Ι	1			I	REFOMD	I		Ι	0000
			1	Ι		I	PWM3MD	PWM2MD	PWM1MD	1			I	Ι	Ι		Ι	0000
- Implemented, read as '0'. Reset values are shown in hexadecimal. MAP FOR dsPIC33FJ16GS502 AND dsPIC33FJ16GS504 DEVICES ONLY MAP FOR dsPIC33FJ16GS502 AND dsPIC33FJ16GS504 DEVICES ONLY It 13 Bit 12 Bit 11 Bit 10 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 3MD T2MD T1MD PWMMD I2C1MD V11MD ADCMD I2C1MD I2C1MD ADCMD I2C1MD I2C1MD ADCMD I2C1MD I I ADCMD I I I I I I I I I I I I I I I I I I I<		_	I	Ι	1	I	I	Ι	I	1				1	1		1	0000
Bit 14 Bit 13 Bit 12 Bit 10 Bit 3 Bit 3 Bit 4 Bit 3 Bit 3 Bit 3 Bit 4 Bit 3 Bit 4 Bit 3 Bit 3 Bit 4 Bit 3 Bit 3 Bit 4 Bit 4 Bit 3 Bit 4	Por La	MD R	e on Reset. EGISTI	. — = unimp	FOR ds		set values arc 16GS502	e shown in he	vadecimal.	6GS504	4 DEV	ICES (NLY					
T2MD T1MD PWMMD I2C1MD SP1MD ADCMD I2C1MD ADCMD IC2MD IC1MD ADCMD IC2MD IC1MD ADCMD IC2MD IC1MD ADCMD IC2MD IC1MD ADCMD ADCMD	3it		Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
- IC2MD IC1MD - - - OC2MD OC1MD				T3MD	T2MD	T1MD	I	PWMMD		I2C1MD	Ι	U1MD		SPI1MD	1		ADCMD	0000
CMPMD			I	Ι	1	I	I	IC2MD	IC1MD	1			I	I	I	OC2MD	OC1MD	0000
				Ι	Ι	Ι	CMPMD		-				Ι	Ι	Ι	—	Ι	0000
PWM3MD PWM2MD PWM1MD -				Ι	Ι	Ι	Ι	Ι	Ι	Ι			Ι	REFOMD	Ι	Ι	Ι	0000
CMP3MD CMP2MD CMP1MD					Ι	PWM4MD	PWM3MD	PWM2MD	PWM1MD				I	Ι				0000
		_		Ι	Ι	CMP4MD	CMP3MD	CMP2MD	CMP1MD				Ι	Ι	Ι		Ι	0000
4.2.6 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.

Note:	A PC push during exception processing
	concatenates the SRL register to the MSb
	of the PC prior to the push.

The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word-aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x1000 in RAM, initialize the SPLIM with the value 0x0FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.3 Instruction Addressing Modes

The addressing modes shown in Table 4-48 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function > Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-48: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (register offset) field is shared by both source and destination (but typically only used by one)
	one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- · Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- · Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4 Modulo Addressing

Modulo Addressing mode is a method used to provide an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that will operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

Byte Address		MOV MOV MOV	#0x1100, W0 W0, XMODSRT #0x1163, W0	;set modulo start address
0x1100		MOV MOV	W0, MODEND #0x8001, W0	;set modulo end address
		MOV	W0, MODCON	;enable W1, X AGU for modulo
		MOV	#0x0000, W0	;W0 holds buffer fill value
	♥ ()	MOV	#0x1110, W1	;point W1 to buffer
0x1163		DO	AGAIN, #0x31	;fill the 50 buffer locations
		MOV	W0, [W1++]	;fill the next location
		AGAIN:	INC W0, W0	; increment the fill value
E	tart Addr = $0x1100$ and Addr = $0x1163$ ength = $0x0032$ words			

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM bits (W register selection) in the MODCON register are any value other than 15 (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to appearate compatible (byte)
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing should not be enabled
	together. If an application attempts to do so,
	Bit-Reversed Addressing will assume
	priority when active for the X WAGU and X
	WAGU; Modulo Addressing will be dis-
	abled. However, Modulo Addressing will
	continue to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

TABLE 4-49: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

Normal Address							Bit-Rev	ersed Ac	Idress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ06GS101/ X02 and dsPIC33FJ16GSX02/X04 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. The application can only access the least significant word of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility Register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-50 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

TABLE 4-50 :	PROGRAM SPACE ADDRESS CONSTRUCTION

A	Access	Program Space Address						
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>		
Instruction Access	User	0 PC<22:1>				0		
(Code Execution)		0xx xxxx xxxx xxxx xxx0						
TBLRD/TBLWT	User	TBLPAG<7:0>			Data EA<15:0>			
(Byte/Word Read/Write)		0xxx xxxx xxxx xxxx xxxx						
	Configuration	TBLPAG<7:0>		Data EA<15:0>				
		1xxx xxxx xxxx			xxxx xxxx xxxx			
Program Space Visibility	User	0 PSVPAG<7		0 PSVPAG<7:0> Data EA<		Data EA<14:	:0>(1)	
(Block Remap/Read)		0	xxxx xxx	5	xxx xxxx xxxx xxxx			

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

Similarly, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 8000h and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction using PSV to access data, to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

NOTES:

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", Section 5. "Flash Programming" (DS70191), which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital

signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data, either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

5.2 RTSP Operation

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 24-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 24-20) and the value of the FRC Oscillator Tuning register (see Register 8-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time, and Word Write Cycle Time parameters (see Table 24-12).

EQUATION 5-1	: PROGRA	MMING TIME

For example, if the device is operating at +125°C, the FRC accuracy will be $\pm 5\%$. If the TUN<5:0> bits (see Register 8-4) are set to `bllllll, the Minimum Row Write Time is:

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 + 0.05) \times (1 - 0.00375)} = 1.435 ms$$

and, the Maximum Row Write Time is:

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.05) \times (1 - 0.00375)} = 1.586 ms$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3** "**Programming Operations**" for further details.

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0			
WR	WREN	WRERR	_	—	—	—	_			
bit 15	-	· ·					bit			
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾			
_	ERASE		_		NVMOF	P<3:0>(2)				
bit 7							bit			
Legend:		SO = Settab	le Onlv bit							
R = Readable	bit	W = Writable	•	U = Unimpler	mented bit, read	d as '0'				
-n = Value at I		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkr	nown			
bit 15	WR: Write Cor	ntrol bit								
				or erase operatio	on. The operati	on is self-timed	and the bit			
		/ hardware onc	-	l is complete.	<u>-</u>					
bit 14	WREN: Write I	-								
	1 = Enable Flash program/erase operations									
	0 = Inhibit Fla	sh program/era	ise operatio	ons						
bit 13	WRERR: Write Sequence Error Flag bit									
	1 = An improper program or erase sequence attempt or termination has occurred (bit is se automatically on any set attempt of the WR bit)									
				npleted normally	/					
bit 12-7	Unimplement	-		, ,						
bit 6	ERASE: Erase	e/Program Ena	ble bit							
				ed by NVMOP<3						
			-	cified by NVMOF	><3:0> on the n	ext WR comma	and			
bit 5-4	Unimplement			. (2)						
bit 3-0	NVMOP<3:0>: NVM Operation Select bits ⁽²⁾									
	If ERASE = 1: 1111 = Memory bulk erase operation									
	1101 = Erase general segment									
	0011 = No operation									
	0010 = Memory page erase operation									
	0001 = No operation 0000 = Erase a single Configuration register byte									
	If ERASE = 0: 1111 = No operation									
	1101 = No ope									
	0011 = Memor		m operation	1						
	0010 = No operation 0001 = Memory row program operation									
			operation							

2: All other combinations of NVMOP<3:0> are unimplemented.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	-	—	—	—	_	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	(EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow			nown				

REGISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register bits (write-only)

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

One row of program Flash memory can be programmed at a time. To achieve this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON for block erase	operation
MOV #0x4042, W0	;
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERAS	ED
MOV #tblpage(PROG_ADD)	R), WO ;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_A	DDR), W0 ; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts with priority <7
	; for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	;
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCO	N for row programming ope	rations
	MOV	#0x4001, W0	i
	MOV	W0, NVMCON	; Initialize NVMCON
;	Set up a poir	nter to the first program	memory location to be written
;	program memo:	ry selected, and writes e	nabled
	MOV	#0x0000, W0	i
	MOV	W0, TBLPAG	; Initialize PM Page Boundary SFR
			; An example program memory address
;	Perform the '	TBLWT instructions to wri	te the latches
;	0th_program_	word	
	MOV	#LOW_WORD_0, W2	i
	MOV	#HIGH_BYTE_0, W3	i
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
;	1st_program_	word	
	MOV	#LOW_WORD_1, W2	;
	MOV	#HIGH_BYTE_1, W3	;
	TBLWTL	W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
;	2nd_program	_word	
	MOV	#LOW_WORD_2, W2	i
		#HIGH_BYTE_2, W3	;
		W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
	•		
	•		
	•		
;	63rd_program		
	MOV	#LOW_WORD_31, W2	;
		#HIGH_BYTE_31, W3	
		W2, [W0]	; Write PM low word into program latch
	J.RTM.LH	W3, [W0++]	; Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	i
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

6.0 RESETS

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "*dsPIC33F Family Reference Manual*", Section 8. "Reset" (DS70192), which is available from the Microchip web site (www.microchip.com).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: Software RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

© 2009 Microchip Technology Inc.

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
TRAPR	IOPUWR	_		_		CM	VREGS		
bit 15							bit 8		
D 444 0		D 444.0	D 444 0	D 444 0	D 444 0	D 444 4			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1		
EXTR bit 7	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR bit (
							DIL		
Legend:									
R = Readable	e bit	W = Writable b	pit	U = Unimpler	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown		
bit 15	TRAPR: Trar	Reset Flag bit							
		onflict Reset has	s occurred						
		onflict Reset ha		d					
bit 14	IOPUWR: Ille	gal Opcode or l	Jninitialized	W Access Rese	et Flag bit				
	1 = An illegal opcode detection, an illegal address mode or uninitialized W register used as an								
		Pointer caused I opcode or unir		leset has not o	curred				
bit 13-10	-	ited: Read as 'c			curred				
-									
bit 9	CM: Configuration Mismatch Flag bit 1 = A Configuration Mismatch Reset has occurred								
 a Configuration Mismatch Reset has occurred a Configuration Mismatch Reset has NOT occurred 									
bit 8	VREGS: Volt	age Regulator S	Standby Durir	ng Sleep bit					
	1 = Voltage regulator is active during Sleep								
	0 = Voltage regulator goes into Standby mode during Sleep								
bit 7		nal Reset Pin (M	,						
		Clear (pin) Res Clear (pin) Res							
bit 6									
	SWR: Software Reset Flag (Instruction) bit 1 = A RESET instruction has been executed								
		instruction has							
bit 5	SWDTEN: So	oftware Enable/I	Disable of W	DT bit ⁽²⁾					
	1 = WDT is e								
	0 = WDT is d								
bit 4		hdog Timer Tim	-	t					
		e-out has occurr e-out has not oc							
bit 3		e-up from Sleep							
		as been in Sleep	-						
		as not been in S							
bit 2	IDLE: Wake-	up from Idle Fla	g bit						
		as in Idle mode							

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

cause a device Reset.

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred
 - 0 = A Brown-out Reset has not occurred
- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-up Reset has occurred
 - 0 = A Power-up Reset has not occurred
 - **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

6.1 System Reset

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 families of devices have two types of Reset:

- Cold Reset
- Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a cold Reset, the FNOSC Configuration bits in the FOSC Configuration register select the device clock source.

A warm Reset is the result of all the other Reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is detailed below and is shown in Figure 6-2.

1. **POR Reset:** A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed.

- 2. **BOR Reset:** The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses the VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures that the voltage regulator output becomes stable.
- 3. **PWRT Timer:** The programmable power-up timer continues to hold the processor in Reset for a specific period of time (TPWRT) after a BOR. The delay TPWRT ensures that the system power supplies have stabilized at the appropriate level for full-speed operation. After the delay, TPWRT, has elapsed, the SYSRST becomes inactive, which in turn enables the selected oscillator to start generating clock cycles.
- Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in Table 6-1. Refer to Section 8.0 "Oscillator Configuration" for more information.
- When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.
- The Fail-Safe Clock Monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay, TFSCM, elapsed.

Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd ⁽¹⁾	_		Toscd ⁽¹⁾
FRCPLL	Toscd ⁽¹⁾	—	ТLОСК ⁽³⁾	Toscd + Tlock ^(1,3)
XT	Toscd(1)	Tost(2)	—	Toscd + Tost ^(1,2)
HS	Toscd ⁽¹⁾	Tost ⁽²⁾	—	Toscd + Tost ^(1,2)
EC	—	—	—	—
XTPLL	Toscd(1)	Tost ⁽²⁾	Тьоск ⁽³⁾	Toscd + Tost + Tlock ^(1,2,3)
HSPLL	Toscd ⁽¹⁾	Tost ⁽²⁾	ТLOCК ⁽³⁾	Toscd + Tost + Tlock ^(1,2,3)
ECPLL	—	—	ТLОСК ⁽³⁾	Тьоск ⁽³⁾
LPRC	Toscd ⁽¹⁾	_	—	Toscd ⁽¹⁾

TABLE 6-1:OSCILLATOR DELAY

Note 1: ToscD = Oscillator start-up delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator start-up timer delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal) if PLL is enabled.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

© 2009 Microchip Technology Inc.

Symbol	Parameter	Value
VPOR	POR threshold	1.8V nominal
TPOR	POR extension time	30 μs maximum
VBOR	BOR threshold	2.5V nominal
TBOR	BOR extension time	100 μs maximum
TPWRT	Programmable power-up time delay	0-128 ms nominal
Тғѕсм	Fail-Safe Clock Monitor delay	900 μs maximum

TABLE 6-2:OSCILLATOR DELAY

Note: When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges; otherwise, the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get all operating parameters within specification.

6.2 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed. The delay, TPOR, ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 24.0 "Electrical Characteristics" for details.

The POR status (POR) bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

6.2.1 Brown-out Reset (BOR) and Power-up Timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses the VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output becomes stable.

The BOR status (BOR) bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select (FPWRT<2:0>) bits in the POR Configuration (FPOR<2:0>) register, which provides eight settings (from 0 ms to 128 ms). Refer to **Section 21.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

6.3 External Reset (EXTR)

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to **Section 24.0 "Electrical Characteristics"** for minimum pulse width specifications. The external Reset (MCLR) pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset.

6.3.0.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate Reset signals to reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to reset the device when the rest of system is reset.

6.3.0.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to reset the device, the external Reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external Reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

6.4 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to

the RESET instruction will remain. SYSRST is released at the next instruction cycle and the Reset vector fetch will commence.

The Software Reset (SWR) flag (instruction) in the Reset Control (RCON<6>) register is set to indicate the software Reset.

6.5 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog <u>time-out</u> occurs, the device will asynchronously assert <u>SYSRST</u>. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out (WDTO) flag in the Reset Control (RCON<4>) register is set to indicate the Watchdog Reset. Refer to **Section 21.4 "Watchdog Timer (WDT)**" for more information on Watchdog Reset.

6.6 Trap Conflict Reset

If a lower priority hard trap occurs while a higher priority trap is being processed, a hard Trap Conflict Reset occurs. The hard traps include exceptions of priority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset (TRAPR) flag in the Reset Control (RCON<15>) register is set to indicate the Trap Conflict Reset. Refer to **Section 7.0 "Interrupt Controller"** for more information on Trap Conflict Resets.

6.7 Configuration Mismatch Reset

To maintain the integrity of the Peripheral Pin Select Control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occur (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset occurs.

The Configuration Mismatch (CM) flag in the Reset Control (RCON<9>) register is set to indicate the Configuration Mismatch Reset. Refer to **Section 10.0 "I/O Ports"** for more information on the Configuration Mismatch Reset.

Note: The Configuration Mismatch Reset feature and associated Reset flag are not available on all devices.

6.8 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

The Illegal Opcode or Uninitialized W Access Reset (IOPUWR) flag in the Reset Control (RCON<14>) register is set to indicate the illegal condition device Reset.

6.8.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The Illegal Opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the Illegal Opcode Reset, use only the lower 16 bits of

each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

6.8.2 UNINITIALIZED W REGISTER RESET

Any attempt to use the uninitialized W register as an Address Pointer will Reset the device. The W register array (with the exception of W15) is cleared during all Resets and is considered uninitialized until written to.

6.8.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (boot and secure segment), that operation will cause a Security Reset.

The PFC occurs when the program counter is reloaded as a result of a call, jump, computed jump, return, return from subroutine or other form of branch instruction.

The VFC occurs when the program counter is reloaded with an interrupt or trap vector.

Refer to Section 21.8 "Code Protection and CodeGuard[™] Security" for more information on Security Reset.

6.9 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the Reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 6-3 provides a summary of the Reset flag bit operation.

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR,BOR
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR,BOR
CM (RCON<9>)	Configuration Mismatch	POR,BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR,BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR,BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR,BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR,BOR
BOR (RCON<1>)	POR, BOR	
POR (RCON<0>)	POR	

TABLE 6-3: RESET FLAG BIT OPERATION

Note: All Reset flag bits can be set or cleared by user software.

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", Section 41. "Interrupts (Part IV)" (DS70300), which is available on the Microchip web site (www.microchip.com).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 CPU. It has the following features:

- Up to eight processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- · Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors, consisting of eight nonmaskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices implement up to 35 unique interrupts and 4 non-maskable traps. These are summarized in Table 7-1.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

FIGURE 7-1: dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 INTERRUPT VECTOR TABLE

	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector	-	
	Math Error Trap Vector	-	
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1	1	
	~	1	
	~		
	~	_	
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
	Interrupt Vector 53	0x00007E	
lity	Interrupt Vector 54	0x000080	
rio	~		
	~		
de	~		
0	Interrupt Vector 116	0x0000FC	
rra	Interrupt Vector 117	0x0000FE	
Decreasing Natural Order Priority	Reserved	0x000100	
∠ 0	Reserved	0x000102	
sin	Reserved		
Lea	Oscillator Fail Trap Vector	_	
ec	Address Error Trap Vector	_	
	Stack Error Trap Vector	_	
	Math Error Trap Vector	_	
	Reserved		1
	Reserved	-	
	Reserved	0.000111	
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1	-	
	~	-	
	~	-	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~	-	
	~		
	Interrupt Vector 116	1 –	<u>.</u>
	Interrupt Vector 117	0x0001FE	
V	Start of Code	0x000200	
		_	
N			
Note 1: See	Table 7-1 for the list of impleme	ented interrupt v	rectors.

TABLE 7-1: INTERRUPT VECTORS								
Vector Number	Interrupt Request (IQR)	IVT Address	AIVT Address	Interrupt Source				
		High	est Natural Order Pr					
8	0	0x000014						
9	1	0x000016 0x000116 IC1 – Input Capture 1						
10	2	0x000018	0x000118 OC1 – Output Compare 1 0x00011A T1 – Timer1					
11	3	0x00001A	0x00011A	T1 – Timer1				
12	4	0x00001C	0x00011C	Reserved				
13	5	0x00001E	0x00011E	IC2 – Input Capture 2				
14	6	0x000020	0x000120	OC2 – Output Compare 2				
15	7	0x000022	0x000122	T2 – Timer2				
16	8	0x000024	0x000124	T3 – Timer3				
17	9	0x000026	0x000126	SPI1E – SPI1 Fault				
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done				
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver				
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter				
21	13	0x00002E	0x00012E	ADC – ADC Group Convert Done				
22	14	0x000030	0x000130	Reserved				
23	15	0x000032	0x000132	Reserved				
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Event				
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Event				
26	18	0x000038	0x000138	CMP1 – Analog Comparator 1 Interrupt				
27	19	0x00003A	0x00013A	CN – Input Change Notification Interrupt				
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1				
29	21	0x00003E	0x00013E	Reserved				
30	22	0x000040	0x000140	Reserved				
31	23	0x000042	0x000142	Reserved				
32	24	0x000044	0x000144	Reserved				
33	25	0x000046	0x000146	Reserved				
34	26	0x000048	0x000148	Reserved				
35	27	0x00004A	0x00014A	Reserved				
36	28	0x00004C	0x00014C	Reserved				
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2				
38-64	30-56			Reserved				
65	57	0x000086	0x000186	PWM PSEM Special Event Match				
66-72	58-64			Reserved				
73	65	0x000096	0x000196	U1E – UART1 Error Interrupt				
74-101	66-93			Reserved				
102	94	0x0000D0	0x0001D0	PWM1 – PWM1 Interrupt				
103	95	0x0000D2	0x0001D2	PWM2 – PWM2 Interrupt				
104	96	0x0000D4	0x0001D4	PWM3 – PWM3 Interrupt				
105	97	0x0000D6	0x0001D6	PWM4 – PWM4 Interrupt				
106	98	0x0000D8	0x0001D8	Reserved				
107	99	0x0000DA	0x0001DA	Reserved				
108	100	0x0000DC	0x0001DC	Reserved				
109	101	0x0000DE	0x0001DE	Reserved				
110	102	0x0000E0	0x0001E0	Reserved				
111	103	0x0000E2	0x00001E2	CMP2 – Analog Comparator 2				

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)							
Vector Number	Interrupt Request (IQR)	IVT Address	AIVT Address	Interrupt Source			
112	104	0x0000E4	0x0001E4	CMP3 – Analog Comparator 3			
113	105	0x0000E6	0x0001E6	CMP4 – Analog Comparator 4			
114	106	0x0000E8	0x0001E8	Reserved			
115	107	0x0000EA	0x0001EA	Reserved			
116	108	0x0000EC	0x0001EC	Reserved			
117	109	0x0000EE	0x0001EE	Reserved			
118	110	0x0000F0	0x0001F0	ADC Pair 0 Convert Done			
119	111	0x0000F2	0x0001F2	ADC Pair 1 Convert Done			
120	112	0x0000F4	0x0001F4	ADC Pair 2 Convert Done			
121	113	0x0000F6	0x0001F6	ADC Pair 3 Convert Done			
122	114	0x0000F8	0x0001F8	ADC Pair 4 Convert Done			
123	115	0x0000FA	0x0001FA	ADC Pair 5 Convert Done			
124	116	0x0000FC	0x0001FC	ADC Pair 6 Convert Done			
125	117	0x0000FE	0x0001FE	Reserved			
		Lowe	est Natural Order Pr	iority			

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

7.3 Interrupt Control and Status Registers

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices implement 27 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

7.3.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt priority Level, which are latched into the Vector Number (VECNUM<6:0>) and Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit is found in IEC0<0> and the INT0IP bits are found in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt Priority Level. The user can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-35 in the following pages.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

REGISTER 7-	-1: SR: C	PU STATUS I	REGISTER ⁽	1)			
R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0
Legend:							
C = Clearable	bit	R = Readable	bit	U = Unimpler	mented bit, read	as '0'	
S = Settable bi	t	W = Writable	bit	-n = Value at POR			
'1' = Bit is set '0' = Bit is cleared		x = Bit is unknown					
bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾							

111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> status bits are read-only when NSTDIS (INTCON1<15>) = 1.

U-0	U-0	U-0	U-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT		DL<2:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0
		<u> </u>					

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit			
R = Readable bit	W = Writable bit	-n = Value at POR	'1' = Bit is set	
0' = Bit is cleared	'x = Bit is unknown	U = Unimplemented bit,	read as '0'	

bit 3

IPL3: CPU Interrupt Priority Level Status bit 3(2)

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7	-3: INTCC	N1: INTERR		ROL REGISTE	ER 1						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE				
bit 15				· · ·			bit				
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
SFTACERR	DIVOERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_				
bit 7							bit				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'					
-n = Value at F	POR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unkn	iown				
bit 15	NSTDIS: Inte	errupt Nesting [)isable hit								
bit 15		nesting is disal									
	•	nesting is enab									
bit 14	OVAERR: Ac	cumulator A O	verflow Trap F	lag bit							
	1 = Trap was caused by overflow of Accumulator A										
	0 = Trap was not caused by overflow of Accumulator A										
bit 13	OVBERR: Accumulator B Overflow Trap Flag bit										
	 1 = Trap was caused by overflow of Accumulator B 0 = Trap was not caused by overflow of Accumulator B 										
bit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit										
	1 = Trap was caused by catastrophic overflow of Accumulator A										
	•	Trap was not caused by catastrophic overflow of Accumulator A									
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit 1 = Trap was caused by catastrophic overflow of Accumulator B										
				overflow of Accumu							
bit 10	OVATE: Accumulator A Overflow Trap Enable bit										
	 1 = Trap overflow of Accumulator A 0 = Trap disabled 										
bit 9	OVBTE: Accumulator B Overflow Trap Enable bit										
	1 = Trap over 0 = Trap disa	flow of Accum bled	ulator B								
bit 8	COVTE: Catastrophic Overflow Trap Enable bit										
	1 = Trap on c 0 = Trap disa		erflow of Accu	mulator A or B e	enabled						
bit 7	SFTACERR: Shift Accumulator Error Status bit										
		•	•	alid accumulator invalid accumu							
bit 6	DIV0ERR: Arithmetic Error Status bit										
		or trap was cau or trap was not									
bit 5	Unimplemen	ted: Read as '	0'	-							
bit 4	MATHERR: A	Arithmetic Erro	Status bit								
		or trap has occu									
		or trap has not									
bit 3		Address Error	-								
		error trap has c error trap has r									

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

 bit 2
 STKERR: Stack Error Trap Status bit

 1 = Stack error trap has occurred
 0 = Stack error trap has not occurred

 bit 1
 OSCFAIL: Oscillator Failure Trap Status bit

 1 = Oscillator failure trap has occurred
 0 = Oscillator failure trap has not occurred

 bit 0
 Unimplemented: Read as '0'

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0	
ALTIVT	DISI	_	_	_	—	—	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	—	INT2EP	INT1EP	INT0EP	
bit 7							bit 0	
Legend:						()		
R = Readable		W = Writable		•	mented bit, read			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 14	ALTIVT: Enable Alternate Interrupt Vector Table bit 1 = Use alternate vector table 0 = Use standard (default) vector table DISI: DISI Instruction Status bit 1 = DISI instruction is active 0 = DISI instruction is not active							
bit 13-3	Unimplemented: Read as '0'							
bit 2	INT2EP: External Interrupt 2 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge							
bit 1	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge							
bit 0	INTOEP: Extended at a second s	ernal Interrupt C on negative edg on positive edg	Edge Detect ge	Polarity Select	t bit			

REGISTER 7	-5: IFS0: I	NIERRUPI	FLAG STAT	US REGISTE	ER 0						
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	ADIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF ^(1,2)				
bit 15	·	•					bit				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
T2IF ^(1,2)	OC2IF ^(1,2)	IC2IF		T1IF	OC1IF	IC1IF ⁽¹⁾	INTOIF				
bit 7	0021	10211			0011	10111	bit				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own				
bit 15-14	-	ted: Read as '			Mat						
bit 13		•	•	Interrupt Flag S	status bit						
		equest has oc equest has no									
bit 12		-		a Status bit							
	U1TXIF: UART1 Transmitter Interrupt Flag Status bit 1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred										
bit 11	U1RXIF: UART1 Receiver Interrupt Flag Status bit										
	1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred										
bit 10	SPI1IF: SPI1 Event Interrupt Flag Status bit										
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
bit 9	SPI1EIF: SPI1 Fault Interrupt Flag Status bit										
	1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred										
bit 8	T3IF: Timer3 Interrupt Flag Status bit ^(1,2)										
	1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred										
bit 7	T2IF: Timer2 Interrupt Flag Status bit ^(1,2)										
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 										
bit 6	OC2IF: Output Compare Channel 2 Interrupt Flag Status bit ^(1,2)										
	1 = Interrupt request has occurred										
	0 = Interrupt request has not occurred										
bit 5	IC2IF: Input Capture Channel 2 Interrupt Flag Status bit										
	1 = Interrupt request has occurred										
		equest has no									
bit 4	-	ted: Read as '									
bit 3	T1IF: Timer1										
	 I = Interrupt request has occurred Interrupt request has not occurred 										
	0 = menupi i	equest has no	loccurred								

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

Note 1: This bit is not implemented in dsPIC33FJ06GS101/102 devices.

2: These bits are not implemented in dsPIC33FJ06GS202 devices.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit ⁽¹⁾ 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

Note 1: This bit is not implemented in dsPIC33FJ06GS101/102 devices.

2: These bits are not implemented in dsPIC33FJ06GS202 devices.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
—		INT2IF	_				—			
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	_	INT1IF	CNIF	AC1IF ⁽¹⁾	MI2C1IF	SI2C1IF			
bit 7							bit (
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13	INT2IF: External Interrupt 2 Flag Status bit									
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 12-5	0 = Interrupt request has not occurred Unimplemented: Read as '0'									
bit 4	INT1IF: External Interrupt 1 Flag Status bit									
	1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
bit 3	CNIF: Input Change Notification Interrupt Flag Status bit									
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 2	AC1IF: Analog Comparator 1 Interrupt Flag Status bit ⁽¹⁾									
	1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
bit 1	MI2C1IF: I2C1 Master Events Interrupt Flag Status bit									
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 0	•	SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit								
	1 = Interrupt request has occurred									
	0 = Interrupt	request has not	occurred							

Note 1: This bit is not implemented in dsPIC33FJ16GS402/404 and dsPIC33FJ06GS101/102 devices.
REGISTER 7-	7: IFS3: I	NTERRUPT I	FLAG STAT	US REGISTE	ER 3		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	_	—	_	—	—	PSEMIF	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	-	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				d as '0'			
-n = Value at P0	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-10	Unimplemented: Read as '0'
bit 9	PSEMIF: PWM Special Event Match Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 8-0	Unimplemented: Read as '0'

REGISTER 7-8: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	_			U1EIF	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2	Unimplemented: Read as '0'
bit 1	U1EIF: UART1 Error Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

© 2009 Microchip Technology Inc.

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
PWM2IF ⁽¹⁾	PWM1IF			—		—		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	-	-	_	-	_	-	_	
bit 7		1				-	bit C	
Legend:								
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, read	1 as '0'		
-n = Value at F	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15	PWM2IF · PW	M2 Interrupt Fl	ad Status hit	(1)				
	1 = Interrupt r	equest has occ equest has not	urred					
bit 14	PWM1IF: PW	M1 Interrupt Fl	ag Status bit					
	•	equest has occ equest has not						
bit 13-0	-	ted: Read as 'o						

Note 1: This bit is not implemented in dsPIC33FJ06GS101/102 devices.

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
ADCP1IF	ADCP0IF		_		—	AC4IF ^(1,2)	AC3IF ^(1,2)
bit 15							bit 8
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
AC2IF ⁽²⁾	—	—		_		PWM4IF ^(1,3)	PWM3IF ⁽⁴⁾
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 14	 0 = Interrupt ADCP0IF: AI 1 = Interrupt 	request has oc request has no DC Pair 0 Conv request has oc request has no	t occurred ersion Done curred	Interrupt Flag S	Status bit		
bit 13-10		ited: Read as '					
bit 9	-			ag Status bit ^{(1,2}	2)		
	1 = Interrupt	request has oc request has no	curred	-			
bit 8	AC3IF: Analo	og Comparator	3 Interrupt FI	ag Status bit ^{(1,2}	2)		
		request has oc request has no					
bit 7	AC2IF: Analo	og Comparator	2 Interrupt FI	ag Status bit ⁽²⁾			
		request has oc request has no					
bit 6-2	Unimplemen	ted: Read as '	0'				
bit 1	PWM4IF: PW	/M4 Interrupt F	lag Status bit	(1,3)			
		request has oc request has no					
bit 0	PWM3IF: PW	/M3 Interrupt F	lag Status bit	(4)			
		request has oc	curred t occurred				

Note 1: These bits are unimplemented in dsPIC33FJ06GS202 devices.

- 2: These bits are unimplemented in dsPIC33FJ06GS101 and dsPIC33FJ16GS502 devices.
- **3:** These bits are unimplemented in dsPIC33FJ16GS402/404/502 devices.
- 4: These bits are unimplemented in dsPIC33FJ06101/102/202 devices.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	—	—		_
bit 15							bit
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	ADCP6IF	ADCP5IF ⁽¹⁾	ADCP4IF ⁽¹⁾	ADCP3IF ⁽²⁾	ADCP2IF ⁽³⁾
bit 7						•	bit
Legend:							
R = Readabl	e bit	W = Writable	e bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is se	et	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 3	ADCP5IF: AI	request has n DC Pair 5 Con request has o request has n	version Done I ccurred	nterrupt Flag S	itatus bit ⁽¹⁾		
bit 2	1 = Interrupt	DC Pair 4 Con request has o request has n	ccurred	nterrupt Flag S	tatus bit ⁽¹⁾		
bit 1	1 = Interrupt	DC Pair 3 Con request has o request has n	ccurred	nterrupt Flag S	tatus bit ⁽²⁾		
bit 0	ADCP2IF: AI	•	version Done I ccurred	nterrupt Flag S	itatus bit ⁽³⁾		

- 2: This bit is not implemented in dsPIC33FJ06GS102/202 devices.
- **3:** This bit is not implemented in dsPIC33FJ06GS101 devices.

REGISTER	7-12: IEC0:	INTERRUPT	ENABLE C	ONTROL REC	SISTER 0					
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	ADIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE ^(1,2)			
bit 15							bit			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
T2IE	OC2IE ^(1,2)	IC2IE ^(1,2)		T1IE	OC1IE	IC1IE ⁽¹⁾	INT0IE			
bit 7							bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is clea		x = Bit is unkr	iown			
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13	-	Conversion Co		upt Enable bit						
		equest enable	•							
		equest not en								
bit 12	U1TXIE: UAR	RT1 Transmitte	r Interrupt Ena	able bit						
		equest enable								
	-	request not ena								
bit 11	U1RXIE: UART1 Receiver Interrupt Enable bit 1 = Interrupt request enabled									
		request enable request not ena								
bit 10	SPI1IE: SPI1 Event Interrupt Enable bit									
		equest enable								
	0 = Interrupt r	request not ena	abled							
bit 9	SPI1EIE: SPI1 Event Interrupt Enable bit									
		request enable								
	-	request not ena								
bit 8	T3IE: Timer3 Interrupt Enable bit ^(1,2)									
	 1 = Interrupt request enabled 0 = Interrupt request not enabled 									
bit 7		Interrupt Enab								
		request enable								
		equest not ena								
bit 6	OC2IE: Output Compare Channel 2 Interrupt Enable bit ^(1,2)									
		request enable								
	0 = Interrupt request not enabled									
bit 5	IC2IE: Input Capture Channel 2 Interrupt Enable bit ^(1,2)									
		request enable request not ena								
bit 4	-	ted: Read as '								
bit 3	-	Interrupt Enab								
	1 = Interrupt r	•								

REGISTER 7-12: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

2: These bits are unimplemented in dsPIC33FJ06GS202 devices.

REGISTER 7-12: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit ⁽¹⁾
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 0	INTOIE: External Interrupt 0 Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

Note 1: These bits are unimplemented in dsPIC33FJ06GS101/102 devices.

2: These bits are unimplemented in dsPIC33FJ06GS202 devices.

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	_	INT2IE	_	_	_	_	_
bit 15	·						bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—		INT1IE	CNIE	AC1IE ⁽¹⁾	MI2C1IE	SI2C1IE
bit 7							bit 0
Legend:							
R = Readab		W = Writable			nented bit, read		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimalomen	ted. Dood oo '	o'				
	-	ted: Read as '					
bit 13		rnal Interrupt 2 request enable					
		request enable					
bit 12-5	Unimplemen	ted: Read as '	0'				
bit 4	INT1IE: Exter	rnal Interrupt 1	Enable bit				
	1 = Interrupt	request enable	d				
		request not ena					
bit 3	-	Change Notifica	-	Enable bit			
		request enable request not ena					
bit 2		og Comparator		able bit(1)			
		request enable					
		request not ena					
bit 1	MI2C1IE: 120	1 Master Even	ts Interrupt Ei	nable bit			
		request enable					
		request not ena					
bit 0		1 Slave Events	•	able bit			
		request enable					
	0 = interrupt i	request not ena	Deide				

Note 1: This bit is not implemented in dsPIC33FJ06GS101/102 and dsPIC33FJ16GS402/404 devices.

REGISTER 7-1	4: IEC3:	INTERRUPT	ENABLE CO		GISTER 3		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	_	—	-	PSEMIE	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—			
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable I	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at PC	R	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own

bit 15-10	Unimplemented: Read as '0'
bit 9	PSEMIE: PWM Special Event Match Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 8-0	Unimplemented: Read as '0'

REGISTER 7-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
_	—	—	—	—	—	U1EIE	—
bit 7	·	•				•	bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-2	Unimplemen	ted: Read as '	o'				
bit 1	U1EIE: UART	1 Error Interru	pt Enable bit				
	•	equest enable equest not ena					
	•						

bit 0 Unimplemented: Read as '0'

REGISTER 7-	16: IEC5: I	NTERRUPT	ENABLE CO		GISTER 5			
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
PWM2IE ⁽¹⁾	PWM1IE	—	—	_	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
		_	_	_	_	_		
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15 bit 14	1 = Interrupt r 0 = Interrupt r PWM1IE: PW	M2 Interrupt E equest is enab equest is not e M1 Interrupt E equest is enab	led nabled nable bit					
	•	equest is not e						

Note 1: This bit is unimplemented in dsPIC33FJ06GS101/102 devices.

Unimplemented: Read as '0'

bit 13-0

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
ADCP1IE	ADCP0IE				_	AC4IE ^(1,2)	AC3IE ^(1,2)
bit 15							bit 8
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
AC2IE ⁽²⁾		—	—	<u> </u>	_	PWM4IE ^(1,3)	PWM3IE ⁽⁴⁾
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	own
bit 14	0 = Interrupt r ADCP0IE: AD	request is enal	enabled version Done I oled	nterrupt Enable	e bit		
bit 13-10	•	request is not on the second sec					
bit 9		og Comparator		ahla hit(1,2)			
	1 = Interrupt i	request is enal	oled				
bit 8	ו = Interrupt ו	og Comparator request is enal request is not o	bled	able bit ^(1,2)			
bit 7	ו = Interrupt ו	og Comparator request is enal request is not o	bled	able bit ⁽²⁾			
bit 6-2	Unimplemen	ted: Read as	ʻ0'				
bit 1	PWM4IE: PW	/M4 Interrupt E	Enable bit ^(1,3)				
		request is enal					
	•	request is not					
bit 0		/M3 Interrupt E request is enal					
	\perp = interrupt i	request is enal	Jied				

Note 1: These bits are unimplemented in dsPIC33FJ06GS202 devices.

- 2: These bits are unimplemented in dsPIC33FJ06GS101 and dsPIC33FJ16GS502 devices.
- **3:** These bits are unimplemented in dsPIC33FJ16GS402/404/502 devices.
- 4: These bits are unimplemented in dsPIC33FJ06101/102/202 devices.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_	_	ADCP6IE ⁽³⁾	ADCP5IE ⁽¹⁾	ADCP4IE ⁽¹⁾	ADCP3IE ⁽²⁾	ADCP2IE ⁽³⁾		
bit 7							bit C		
Legend:									
R = Readab	le bit	W = Writable	e bit	U = Unimplen	mented bit, read	1 as '0'			
	= Value at POR (1' = Bit is set (0' = Bit is clea								
				0 2000 000					
bit 15-5	Unimplemer	nted: Read as	· ' O '						
bit 4	-		version Done li	nterrupt Enable	e bit ⁽³⁾				
		request is ena							
	0 = Interrupt	request is not	enabled						
bit	ADCP5IE: A	DC Pair 5 Cor	nversion Done I	nterrupt Enable	e bit ⁽¹⁾				
		request is ena							
		request is not			(1)				
bit			version Done l	nterrupt Enable	e bit ⁽¹⁾				
		request is ena request is not							
bit			version Done li	oterrunt Enable	a hit(2)				
DIL		request is ena							
		request is not							
bit	•	•	version Done li	nterrupt Enable	e bit ⁽³⁾				
		request is ena							
	$\perp = interrupt$	iequest is end							

- Note 1: These bits are not implemented in dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/402/502 devices.
 - 2: This bit is not implemented in dsPIC33FJ06GS102/202 devices.
 - **3:** This bit is not implemented in dsPIC33FJ06GS101 devices.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T1IP<2:0>				OC1IP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		IC1IP<2:0> ⁽¹⁾		—		INT0IP<2:0>	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable b	it	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	own
bit 15	Unimpleme	ented: Read as '0	,				
bit 14-12	T1IP<2:0>:	Timer1 Interrupt F	Priority bits				
	111 = Inter	rupt is priority 7 (h	ighest priorit	y interrupt)			
	•						
	•						
	001 = Inter	rupt is priority 1					
	000 = Inter	rupt source is disa	bled				
bit 11	Unimpleme	ented: Read as 'o	,				
bit 10-8	OC1IP<2:0	>: Output Compar	e Channel 1	Interrupt Prior	ity bits		
	111 = Inter	rupt is priority 7 (h	ighest priorit	y interrupt)			
	•						
	•						
		rupt is priority 1					
	000 = Inter	rupt source is disa	bled				
bit 7	Unimpleme	ented: Read as '0	,				
bit 6-4		: Input Capture Cl			its ⁽¹⁾		
	111 = Inter	rupt is priority 7 (h	ighest priorit	y interrupt)			
	•						
	•						
		rupt is priority 1 rupt source is disa	bled				
bit 3		ented: Read as '0					
bit 2-0	-	>: External Interru		bits			
511 2 0		rupt is priority 7 (h					
	•		5 pon	,			
	•						
	•						
	001 - Into-	rupt is priority 1					

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T2IP<2:0>		_		OC2IP<2:0>(1)	
oit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		IC2IP<2:0>(1,2)		_	_		—
bit 7	•						bit
Legend:							
R = Readab	le bit	W = Writable b	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15	Unimplemen	ted: Read as 'o)'				
bit 14-12		ïmer2 Interrupt	-				
	111 = Interru	pt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
		pt source is disa	abled				
bit 11	Unimplemen	ted: Read as 'o)'				
bit 10-8	OC2IP<2:0>:	: Output Compa	re Channel 2	Interrupt Prior	rity bits ⁽¹⁾		
	111 = Interru	pt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
	• 001 = Interru	nt ic priority 1					
		pt source is disa	abled				
bit 7		ited: Read as 'o					
bit 6-4	-	Input Capture C		errunt Priority h	nits(1,2)		
		pt is priority 7 (h			10		
	•	prio priority / (i	iignest phone	y menupty			
	•						
	•						
	001 - Intorru						
		pt is priority 1 pt source is disa	abled				
bit 3-0	000 = Interru	pt is priority 1 pt source is disa nted: Read as 'o					

 $\label{eq:2.1} \textbf{2:} \quad \text{These bits are not implemented in } ds \text{PIC33FJ06GS102} \ \text{devices}.$

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		U1RXIP<2:0>				SPI1IP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		SPI1EIP<2:0>	1000 0			T3IP<2:0> ⁽¹⁾	10000
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable b	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own
bit 15	Unimplen	nented: Read as 'o)'				
bit 14-12	U1RXIP<	2:0>: UART1 Rece	iver Interrup	t Priority bits			
	111 = Inte	errupt is priority 7 (h	nighest priori	ity interrupt)			
	•						
	•						
	001 = Inte	errupt is priority 1					
		errupt source is disa	abled				
bit 11	Unimplen	nented: Read as 'o)'				
bit 10-8	SPI1IP<2:	:0>: SPI1 Event Int	errupt Priori	ty bits			
	111 = Inte	errupt is priority 7 (h	nighest priori	ty interrupt)			
	•						
	•						
	001 = Inte	errupt is priority 1					
	000 = Inte	errupt source is disa	abled				
bit 7	Unimplen	nented: Read as 'o)'				
bit 6-4	SPI1EIP<	2:0>: SPI1 Error In	terrupt Prior	ity bits			
	111 = Inte	errupt is priority 7 (h	nighest priori	ty interrupt)			
	•						
	•						
		errupt is priority 1					
		errupt source is disa					
bit 3	-	nented: Read as 'o		1)			
bit 2-0		-: Timer3 Interrupt					
	111 = Inte	errupt is priority 7 (h	nghest priori	ty interrupt)			
	•						
	•						
		errupt is priority 1					
	000 = Inter	errupt source is disa	hlad				

Note 1: These bits are not implemented in dsPIC33FJ06GS101/102/202 devices.

	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	_		_	—	_	_	_		
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
		ADIP<2:0>		—		U1TXIP<2:0>			
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	oit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is clea		x = Bit is unkn	own		
bit 6-4	111 = Interrup • • • • •	ADC1 Conversion pt is priority 7 (h pt is priority 1 pt source is disa	ighest priorit	•	y bits				

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		CNIP<2:0>				AC1IP<2:0>(1)	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		MI2C1IP<2:0>	10000			SI2C1IP<2:0>	1010 0
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable b	bit	U = Unimple	mented bit, re	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own
bit 15	Unimplen	nented: Read as 'o	'				
bit 14-12	CNIP<2:0	>: Change Notifica	tion Interrup	t Priority bits			
	111 = Inte	errupt is priority 7 (h	ighest priori	ty interrupt)			
	•						
	•						
	001 = Inte	errupt is priority 1					
	000 = Inte	errupt source is disa	abled				
bit 11	Unimplen	nented: Read as 'o	,				
bit 10-8	AC1IP<2:	0>: Analog Compa	rator 1 Interi	rupt Priority bits	_S (1)		
	111 = Inte	errupt is priority 7 (h	ighest priori	ty interrupt)			
	•						
	•						
	001 = Inte	errupt is priority 1					
		errupt source is disa	abled				
bit 7	Unimplen	nented: Read as 'o	,				
bit 6-4	MI2C1IP<	2:0>: I2C1 Master	Events Inter	rupt Priority bit	S		
	111 = Inte	errupt is priority 7 (h	ighest priori	ty interrupt)			
	•						
	•						
	001 = Inte	errupt is priority 1					
		errupt source is disa	abled				
bit 3	Unimplen	nented: Read as 'o	,				
bit 2-0	SI2C1IP<	2:0>: I2C1 Slave E	vents Interru	pt Priority bits			
	111 = Inte	errupt is priority 7 (h	ighest priori	ty interrupt)			
	•						
	•						
	001 = Inte	errupt is priority 1					
		errupt source is disa					

Note 1: These bits are not implemented in dsPIC33FJ06GS101/102 and dsPIC33FJ16GS402/404 devices.

REGISTER 7-24: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5 U-0 U-0											
U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	—	_	_	_	_	_					
			• •			bit 8					
U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0					
_	—	_	—	INT1IP<2:0>							
						bit 0					
	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'						
R	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own					
	_		U-0 U-0 W = Writable bit	- - - - U-0 U-0 U-0 U-0 - - - - W = Writable bit U = Unimpler	— — — — — U-0 U-0 U-0 R/W-1 — — — W = Writable bit U = Unimplemented bit, read	— — — — — — U-0 U-0 U-0 R/W-1 R/W-0 — — — — INT1IP<2:0> W = Writable bit U = Unimplemented bit, read as '0'					

bit 15-3	Unimplemented: Read as '0'
bit 2-0	INT1IP<2:0>: External Interrupt 1 Priority bits
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>
	•
	•
	•
	001 = Interrupt is priority 1 000 = Interrupt source is disabled

REGISTER 7-25: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	U-1	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		INT2IP<2:0>		—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-4	INT2IP<2:0>: External Interrupt 2 Priority bits
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>
	•
	•
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 3-0	Unimplemented: Read as '0'

© 2009 Microchip Technology Inc.

REGISTER	7-26: IPC14	I: INTERRUP	F PRIORITY		REGISTER 14	Ļ		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—					—	—	—	
bit 15						bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
		PSEMIP<2:0>				—		
bit 7							bit (
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow			nown	
bit 15-7	Unimpleme	nted: Read as '	0'					
bit 6-4	PSEMIP<2:0	>: PWM Specia	al Event Mato	h Interrupt Prior	rity bits			
	111 = Interru	upt is priority 7 (highest priori	ty interrupt)				
	•							
	•							
	•							
	001 = Interru 000 = Interru	upt source is dis	abled					

REGISTER 7-27: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

				•••••••			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	
bit 15				•			bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		U1EIP<2:0>			—	—	—
bit 7							bit C
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own
bit 15-7	Unimpleme	nted: Read as '	o'				
bit 6-4	U1EIP<2:0>	: UART1 Error I	nterrupt Prior	ity bits			
	111 = Interr	upt is priority 7 (I	highest priorit	y interrupt)			
	•		0 1	, ,			
	•						
	•						
	001 = Intern	int is priority 1					

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
_		PWM2IP ⁽¹⁾		_		PWM1IP<2:0>			
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
		—	_	_	—	—			
bit 7							bit (
Legend:									
R = Readab	le bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown		
bit 15	-	nted: Read as 'o							
bit 14-12	PWM2IP<2:0>: PWM2 Interrupt Priority bits ⁽¹⁾								
	<pre>111 = Interrupt is priority 7 (highest priority)</pre>								
	•								
	•								
	•								
		001 = Interrupt is priority 1							
		pt source is disa							
bit 11	-	nted: Read as 'o							
bit 10-8		>: PWM1 Interr							
	111 = Interru	pt is priority 7 (h	nighest priori	ty)					
	•								
	•								
	•								
		pt is priority 1	blad						
1:170		pt source is disa							
bit 7-0	Unimplemen	ted: Read as 'o)						

Note 1: These bits are not implemented in dsPIC33FJ06GS101/102 devices.

© 2009 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	-	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		PWM4IP ⁽¹⁾			F	WM3IP<2:0>(2)
bit 7	·						bit C
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 6-4	111 = Intern • • • 001 = Intern	0>: PWM4 Inter upt is priority 7 (upt is priority 1	highest priorit				
bit 3		upt source is dis nted: Read as '					
bit 2-0	PWM3IP<2: 111 = Intern	0>: PWM3 Inter upt is priority 7 (upt is priority 1 upt source is dis	rupt Priority b highest priorit				

Note 1: These bits are not implemented in dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices.

2: These bits are not implemented in dsPIC33FJ06101/102/202 devices.

REGISTER	7-30: IPC2	5: INTERRUP			REGISTER 2	25	
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	— AC2IP<2:0> ⁽¹⁾				_	_	_
bit 15				·			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—		—	—	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	=	nted: Read as '					
bit 14-12	AC2IP<2:0>	: Analog Compa	arator 2 Interr	upt Priority bits	(1)		
	111 = Interre	upt is priority 7 (highest priorif	y)			
	•						
	•						
	•						
		upt is priority 1 upt source is dis	abled				
bit 11-01	Unimpleme	nted: Read as '	0'				

Note 1: These bits are not implemented in dsPIC33FJ06GS101/102 and dsPIC33FJ16GS402/404 devices.

REGISTER	7-31: IPC26	: INTERRUPT		CONTROL	REGISTER 26						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	—	—	_	_	—	_				
interrupt is priority 1 0 R/W-1 0 R/W-0 0 R/W-1 R/W-1 <		bit									
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		AC4IP<2:0>(1)		—	l A	AC3IP<2:0>(1,2)				
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15-7	Unimplemer	nted: Read as '	0'								
bit 6-4	AC4IP<2:0>	AC4IP<2:0>: Analog Comparator 4 Interrupt Priority bits ⁽¹⁾									
	111 = Interru	<pre>111 = Interrupt is priority 7 (highest priority)</pre>									
	•	•									
	•	•									
	•	•									
			abled								
bit 3	Unimplemer	nted: Read as '	0'								
bit 2-0	AC3IP<2:0>	: Analog Compa	arator 3 Interru	upt Priority bits	₃ (1,2)						
	111 = Interru	111 = Interrupt is priority 7 (highest priority)									
	•	•									
	•										
	•										
		upt is priority 1 upt source is dis									

Note 1: These bits are not implemented in dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices.

2: These bits are not implemented in dsPIC33FJ06GS101/102 devices.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
_		ADCP1IP<2:0> — ADCP0IP<2:0>							
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
							_		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		
bit 14-12	111 = Interru • • 001 = Interru	: 0>: ADC Pair 1 upt is priority 7 (upt is priority 1 upt source is dis	highest priori	-					
bit 11	Unimpleme	nted: Read as '	0'						
bit 10-8	111 = Interru • • 001 = Interru	:0>: ADC Pair 0 upt is priority 7 (upt is priority 1 upt source is dis	highest priori	•	Priority bits ⁽¹⁾				
bit 7-0									
DIL /-U	Unimpleme	Unimplemented: Read as '0'							

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		ADCP5IP<2:0>(4)		—		ADCP4IP<2:0>(4)						
bit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		ADCP3IP<2:0>(2,3)		_		ADCP2IP<2:0>(1)						
bit 7							bit					
Legend:												
R = Readable	e bit	W = Writable bit		U = Unimpler	nented bit, re	ead as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own					
bit 15	Unimpler	nented: Read as '0'										
bit 14-12	ADCP5IP	<2:0>: ADC Pair 5 C	onversion I	Done Interrupt	Priority bits ⁽⁴)						
	111 = Inte	errupt is priority 7 (hig	hest priorit	y interrupt)								
	•											
	•											
	001 = Inte	errupt is priority 1										
	000 = Inte	errupt source is disab	led									
bit 11	Unimpler	mented: Read as '0'										
bit 10-8	ADCP4IP<2:0>: ADC Pair 4 Conversion Done Interrupt Priority bits ⁽⁴⁾											
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>											
	•											
	•											
		errupt is priority 1										
		errupt source is disab	led									
bit 7	-	mented: Read as '0'			(0	0)						
bit 6-4	ADCP3IP<2:0>: ADC Pair 3 Conversion Done Interrupt Priority bits ^(2,3) 111 = Interrupt is priority 7 (highest priority interrupt)											
	111 = Inte	errupt is priority 7 (hig	phest priorit	y interrupt)								
	•											
	•											
		errupt is priority 1										
L:4 0		errupt source is disab	lea									
bit 3	-	mented: Read as '0'			Dui auitu (hita(1)						
bit 2-0		<2:0>: ADC Pair 2 C errupt is priority 7 (higher the second se		-	Priority bits.							
	•		nest priorit	y interrupt)								
	•											
	•	annual in ant-start										
		errupt is priority 1 errupt source is disab	led									
Note 1: ⊤	hese bits are	e not implemented in	dsPIC33F.	06GS101 devi	ces.							

- 3: These bits are not implemented in dsPIC33FJ06GS202 devices.
- 4: These bits are implemented in dsPIC33FJ16GS504 devices only.

REGISTER 7	-34: IPC29:	INTERRUPT	PRIORITY	CONTROL F	REGISTER 29			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
	—		—	_	ADCP6IP<2:0> ⁽¹⁾			
bit 7							bit 0	
Legend:								
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at F	n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit			is unknown	
bit 15-3	Unimplement	ted: Read as 'o)'					
bit 2-0	ADCP6IP<2:0	>: ADC Pair 6	Conversion D	one Interrupt	1 Priority bits ⁽¹⁾			
	111 = Interrup	ot is priority 7 (I	nighest priority	interrupt)				

• • 001 = Interrupt is priority 1 000 = Interrupt source is disabled

Note 1: These bits are not implemented in dsPIC33FJ06GS202 devices.

© 2009 Microchip Technology Inc.

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
_		— — — ILR<3:0>						
bit 15							bit	
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
—				VECNUM<6:0	>			
bit 7							bit	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown	
bit 11-8	1111 = CPU • • 0001 = CPU	w CPU Interru Interrupt Priorit Interrupt Priorit Interrupt Priorit	ty Level is 15					
bit 7	Unimplemen	ted: Read as '	0'					
bit 6-0	0111111 = In • •	terrupt vector	pending is nu					

REGISTER 7-35: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

Complete the following steps to configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development toolsuite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, program will re-enter the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

The following steps outline the procedure to disable all user interrupts:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value EOh with SRL.

To enable user interrupts, the ${\tt POP}$ instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

NOTES:

8.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", Section 42. "Oscillator (Part IV)" (DS70307), which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 oscillator system provides:

 External and internal oscillator options as clock sources

- An on-chip Phase-Locked Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- · Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection.
- · Auxiliary PLL for ADC and PWM

A simplified diagram of the oscillator system is shown in Figure 8-1.

8.1 CPU Clocking System

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices provide six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- · Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator
- · FRC Oscillator with Postscaler

8.1.1 SYSTEM CLOCK SOURCES

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): The external clock signal is directly applied to the OSC1 pin.

The LPRC internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase-Locked Loop (PLL) to provide a wide range of

output frequencies for device operation. PLL configuration is described in **Section 8.1.3 "PLL Con-figuration"**.

The FRC frequency depends on the FRC accuracy (see Table 24-20) and the value of the FRC Oscillator Tuning register (see Register 8-4).

8.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 21.1 "Configuration Bits" for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits. POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 8-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected), Fosc, is divided by 2 to generate the device instruction clock (FcY) and the peripheral clock time base (FP). FcY defines the operating speed of the device and speeds up to 40 MHz are supported by the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 architecture.

Instruction execution speed or device operating frequency, FCY, is given by Equation 8-1.

EQUATION 8-1: DEVICE OPERATING FREQUENCY

FCY = FOSC/2

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Reserved	Reserved	xx	100	_
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	_
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	—
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	_
Primary Oscillator (XT)	Primary	01	010	—
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

8.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides significant flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 8-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected in the range of 0.8 MHz to 8 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor, 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4, or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS. For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by Equation 8-2.

EQUATION 8-2: Fosc CALCULATION

$$Fosc = Fin * \left(\frac{M}{N1*N2}\right)$$

For example, suppose a 10 MHz crystal is being used with the selected oscillator mode of XT with PLL (see Equation 8-3).

- If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz.
- If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.
- If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

EQUATION 8-3: XT WITH PLL MODE EXAMPLE

8.2 Auxiliary Clock Generation

The auxiliary clock generation is used for a peripherals that need to operate at a frequency unrelated to the system clock such as a PWM or ADC.

Note:	To achieve 1.04 ns PWM resolution, the								
	auxiliary clock must be set up for 120 MHz.								

The primary oscillator and internal FRC oscillator sources can be used with an auxiliary PLL to obtain the auxiliary clock. The auxiliary PLL has a fixed 16x multiplication factor.

Note: If the primary PLL is used as a source for the auxiliary clock, then the primary PLL should be configured up to a maximum operation of 30 MIPS or less.

8.3 Reference Clock Generation

The reference clock output logic provides the user with the ability to output a clock signal based on the system clock or the crystal oscillator on a device pin. The user application can specify a wide range of clock scaling prior to outputting the reference clock.

bit 7 Legend: R = Readable bit -n = Value at POR bit 15 Ur bit 14-12 CC 00 01 01 01 01 01 01 01 01 01	DSC < 2:0>: 0 = Fast R 1 = Fast R 0 = Primar 1 = Primar 0 = Reserv 1 = Low-Pe 0 = Fast R 1 = Fast R Dimplemen DSC < 2:0>:	W = Writable I '1' = Bit is set ited: Read as '0 Current Oscilla Coscillator (FR Coscillator (XT, y oscillator (XT, y oscillator (XT, ved ower RC oscilla Coscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR	bit ator Selection RC) RC) with PLL , HS, EC) , HS, EC) with ator (LPRC) RC) with divide RC) with divide o'	'0' = Bit is cle bits (read-only h PLL e-by-16	mented bit, rea	NOSC<2:0> ⁽²⁾ U-0 d as '0' x = Bit is unkr	R/W-0 OSWEN bit					
R/W-0 CLKLOCK pit 7 Legend: R = Readable bit on = Value at POR pit 15 Ur pit 14-12 CC 00 00 01 01 02 01 03 04 04 04 05 Ur 06 07 07 07 08 00 01 01 02 04 04 04 05 07 06 07 07 07 08 07 01 01 02 04 04 04 05 07 06 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 07 <	Dimplemen DSC<2:0>: 0 = Fast R 1 = Fast R 0 = Primar 0 = Reserv 1 = Low-Po 0 = Fast R 1 = Fast R	LOCK y = Value set f W = Writable I '1' = Bit is set ted: Read as '0 Current Oscilla Coscillator (FR Coscillator (KT, y oscillator (XT, y oscillator (XT, ved ower RC oscilla C oscillator (FR C oscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR	from Configu bit o' ator Selection RC) RC) with PLL , HS, EC) , HS, EC) with ator (LPRC) RC) with divide RC) with divide RC) with divide ator (2000)	CF ration bits on F U = Unimple '0' = Bit is cle bits (read-only h PLL e-by-16	POR mented bit, rea	 d as '0'	R/W-0 OSWEN bit					
CLKLOCK bit 7 Legend: R = Readable bit -n = Value at POR bit 15 Ur bit 14-12 CC 00 00 01 00 01 01 11 Ur bit 11 Ur bit 10-8 NC 01 01 01 01 11 Ur bit 10-8 NC 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 01 03 01 04 01 05 01 06 01 07 01 08 01 09 01	Dimplemen DSC<2:0>: 0 = Fast R 1 = Fast R 0 = Primar 0 = Reserv 1 = Low-Po 0 = Fast R 1 = Fast R	LOCK y = Value set f W = Writable I '1' = Bit is set ted: Read as '0 Current Oscilla Coscillator (FR Coscillator (KT, y oscillator (XT, y oscillator (XT, ved ower RC oscilla C oscillator (FR C oscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR	from Configu bit o' ator Selection RC) RC) with PLL , HS, EC) , HS, EC) with ator (LPRC) RC) with divide RC) with divide RC) with divide ator (2000)	CF ration bits on F U = Unimple '0' = Bit is cle bits (read-only h PLL e-by-16	POR mented bit, rea	 d as '0'	OSWEN					
CLKLOCK bit 7 Legend: R = Readable bit -n = Value at POR bit 15 Ur bit 15 Ur bit 14-12 CC 01 01 11 11 bit 11 Ur bit 11 Ur bit 11 Ur 11 11 bit 10-8 NC 01 01 11 11	Dimplemen DSC<2:0>: 0 = Fast R 1 = Fast R 0 = Primar 0 = Reserv 1 = Low-Po 0 = Fast R 1 = Fast R	LOCK y = Value set f W = Writable I '1' = Bit is set ted: Read as '0 Current Oscilla Coscillator (FR Coscillator (KT, y oscillator (XT, y oscillator (XT, ved ower RC oscilla C oscillator (FR C oscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR	from Configu bit o' ator Selection RC) RC) with PLL , HS, EC) , HS, EC) with ator (LPRC) RC) with divide RC) with divide RC) with divide ator (2000)	CF ration bits on F U = Unimple '0' = Bit is cle bits (read-only h PLL e-by-16	POR mented bit, rea	 d as '0'	OSWEN					
bit 7 Legend: R = Readable bit -n = Value at POR bit 15 Ur bit 14-12 CC 00 01 01 01 10 11 bit 11 Ur bit 10-8 NC 01 01 01 01 01 01 01 01 01 01	himplemen DSC<2:0>: 0 = Fast R 1 = Fast R 0 = Primar 0 = Reserv 1 = Low-Po 0 = Fast R 1 = Fast R 1 = Fast R himplemen DSC<2:0>:	y = Value set f W = Writable I '1' = Bit is set ted: Read as '0 Current Oscilla Coscillator (FR Coscillator (KT, y oscillator (XT, y oscillator (XT, ved ower RC oscilla C oscillator (FR Coscillator (FR Coscillator (FR	bit ator Selection RC) RC) with PLL , HS, EC) , HS, EC) with ator (LPRC) RC) with divide RC) with divide o'	ration bits on F U = Unimple '0' = Bit is cle bits (read-only h PLL e-by-16	mented bit, rea		bit					
Legend: R = Readable bit -n = Value at POR bit 15 Ur bit 14-12 CC 00 01 01 01 01 01 01 01 01 01	DSC < 2:0>: 0 = Fast R 1 = Fast R 0 = Primar 1 = Primar 0 = Reserv 1 = Low-Pe 0 = Fast R 1 = Fast R Dimplemen DSC < 2:0>:	W = Writable I '1' = Bit is set hted: Read as '0 Current Oscilla Coscillator (FR Coscillator (KT, y oscillator (XT, y oscillator (XT, ved ower RC oscilla Coscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR	bit ator Selection RC) RC) with PLL , HS, EC) , HS, EC) with ator (LPRC) RC) with divide RC) with divide o'	U = Unimple '0' = Bit is cle bits (read-only h PLL e-by-16	mented bit, rea							
R = Readable bit -n = Value at POR bit 15 Ur bit 14-12 CC 00 01 01 10 11 bit 11 Ur bit 10-8 NC 01 01 01 01 01 01 01 01 01 01	DSC < 2:0>: 0 = Fast R 1 = Fast R 0 = Primar 1 = Primar 0 = Reserv 1 = Low-Pe 0 = Fast R 1 = Fast R Dimplemen DSC < 2:0>:	W = Writable I '1' = Bit is set hted: Read as '0 Current Oscilla Coscillator (FR Coscillator (KT, y oscillator (XT, y oscillator (XT, ved ower RC oscilla Coscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR	bit ator Selection RC) RC) with PLL , HS, EC) , HS, EC) with ator (LPRC) RC) with divide RC) with divide o'	U = Unimple '0' = Bit is cle bits (read-only h PLL e-by-16	mented bit, rea		nown					
R = Readable bit -n = Value at POR bit 15 Ur bit 14-12 CC 00 01 01 10 11 bit 11 Ur bit 10-8 NC 01 01 01 01 01 01 01 01 01 01	DSC < 2:0>: 0 = Fast R 1 = Fast R 0 = Primar 1 = Primar 0 = Reserv 1 = Low-Pe 0 = Fast R 1 = Fast R Dimplemen DSC < 2:0>:	W = Writable I '1' = Bit is set hted: Read as '0 Current Oscilla Coscillator (FR Coscillator (KT, y oscillator (XT, y oscillator (XT, ved ower RC oscilla Coscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR	bit ator Selection RC) RC) with PLL , HS, EC) , HS, EC) with ator (LPRC) RC) with divide RC) with divide o'	U = Unimple '0' = Bit is cle bits (read-only h PLL e-by-16	mented bit, rea		nown					
-n = Value at POR bit 15 Ur bit 14-12 CC 00 01 01 01 01 01 01 01 01 01 01 01 01	DSC < 2:0>: 0 = Fast R 1 = Fast R 0 = Primar 1 = Primar 0 = Reserv 1 = Low-Pe 0 = Fast R 1 = Fast R Dimplemen DSC < 2:0>:	'1' = Bit is set ated: Read as '0 Current Oscilla Coscillator (FR Coscillator (FR y oscillator (XT, y oscillator (XT, y oscillator (CR Coscillator (FR Coscillator (FR Coscillator (FR Coscillator (FR	o' ator Selection RC) with PLL , HS, EC) , HS, EC) with ator (LPRC) RC) with divide RC) with divide o'	'0' = Bit is cle bits (read-only h PLL e-by-16	eared		nown					
bit 15 Ur bit 14-12 CC 00 01 01 10 10 11 bit 11 Ur bit 10-8 NC 01 01 01 01 01 01 01 01 01 01 01 01 01	DSC < 2:0>: 0 = Fast R 1 = Fast R 0 = Primar 1 = Primar 0 = Reserv 1 = Low-Pe 0 = Fast R 1 = Fast R Dimplemen DSC < 2:0>:	nted: Read as '(Current Oscilla Coscillator (FR Coscillator (FR y oscillator (XT, y oscillator (XT, ved ower RC oscillator (FR Coscillator (FR Coscillator (FR	o' ator Selection RC) with PLL , HS, EC) , HS, EC) with ator (LPRC) RC) with divide RC) with divide o'	bits (read-only h PLL e-by-16		x = Bit is unkr	nown					
bit 14-12 CC 00 01 01 01 01 01 01 10 11 11	DSC < 2:0>: 0 = Fast R 1 = Fast R 0 = Primar 1 = Primar 0 = Reserv 1 = Low-Pe 0 = Fast R 1 = Fast R himplemen DSC < 2:0>:	Current Oscilla Coscillator (FR Coscillator (FR y oscillator (XT, y oscillator (XT, ved ower RC oscilla Coscillator (FR Coscillator (FR ted: Read as '0	ator Selection RC) RC) with PLL , HS, EC) , HS, EC) with ator (LPRC) RC) with divide RC) with divide o'	h PLL e-by-16	()							
bit 14-12 CC 00 01 01 01 01 01 01 10 11 11	DSC < 2:0>: 0 = Fast R 1 = Fast R 0 = Primar 1 = Primar 0 = Reserv 1 = Low-Pe 0 = Fast R 1 = Fast R himplemen DSC < 2:0>:	Current Oscilla Coscillator (FR Coscillator (FR y oscillator (XT, y oscillator (XT, ved ower RC oscilla Coscillator (FR Coscillator (FR ted: Read as '0	ator Selection RC) RC) with PLL , HS, EC) , HS, EC) with ator (LPRC) RC) with divide RC) with divide o'	h PLL e-by-16	/)							
000 001 01 01 100 11 11 11 11 11 11 11 1	0 = Fast R 1 = Fast R 0 = Primar 1 = Primar 0 = Reserv 1 = Low-Pe 0 = Fast R 1 = Fast R himplemen DSC<2:0>:	C oscillator (FR C oscillator (FR y oscillator (XT, y oscillator (XT, ved ower RC oscilla C oscillator (FR C oscillator (FR	RC) With PLL , HS, EC) , HS, EC) with Ator (LPRC) RC) with divide RC) with divide 0'	h PLL e-by-16	()							
000 01 01 10 10 11 11 11 bit 11 Ur bit 10-8 NC 00 00 01 01 10 10 10 11	1 = Fast R 0 = Primar 1 = Primar 0 = Reserv 1 = Low-Pe 0 = Fast R 1 = Fast R himplemen	C oscillator (FR y oscillator (XT, y oscillator (XT, ved ower RC oscillator C oscillator (FR C oscillator (FR ted: Read as '0	RC) with PLL , HS, EC) , HS, EC) with ator (LPRC) RC) with divide RC) with divide o'	e-by-16								
01 01 10 10 11 11 11 11 11 11 11 11 11 1	.0 = Primar .1 = Primar 0 = Reserv 1 = Low-Pe .0 = Fast R .1 = Fast R himplemen DSC<2:0>:	y oscillator (XT, y oscillator (XT, ved ower RC oscilla C oscillator (FR C oscillator (FR ted: Read as '0	, HS, EC) , HS, EC) with ator (LPRC) RC) with divide RC) with divide o'	e-by-16								
01 10 10 11 11 bit 11 Ur bit 10-8 NC 00 01 01 10 10 10 11	1 = Primar 0 = Reserv 1 = Low-Pe 0 = Fast R 1 = Fast R himplemen DSC<2:0>:	y oscillator (XT, ved ower RC oscilla C oscillator (FR C oscillator (FR hted: Read as '0	, HS, EC) with ator (LPRC) RC) with divide RC) with divide 0'	e-by-16								
10 10 11 11 11 11 11 11 11 11	00 = Reserv 1 = Low-Pe 0 = Fast R 1 = Fast R himplemen DSC<2:0>:	ved ower RC oscilla C oscillator (FR C oscillator (FR nted: Read as '0	ator (LPRC) RC) with divide RC) with divide	e-by-16								
10 11 11 11 11 11 11 11 11 11	1 = Low-Pe 0 = Fast R 1 = Fast R himplemen	ower RC oscilla C oscillator (FR C oscillator (FR nted: Read as 'o	RC) with divide RC) with divide	-								
11 bit 11 Ur bit 10-8 NG 00 01 01 10 10 11	.0 = Fast R .1 = Fast R himplemen DSC<2:0>:	C oscillator (FR C oscillator (FR nted: Read as 'o	RC) with divide RC) with divide	-								
bit 11 Ur bit 10-8 NG 00 01 01 10 10 10 11	nimplemen DSC<2:0>:	nted: Read as 'o	0'	e-by-n								
bit 10-8 NG 00 01 01 10 10 10 11	DSC<2:0>:											
000 01 01 10 10 11		New Oscillator	Calastian hit									
00 01 01 10 10 11	+ -	NOSC<2:0>: New Oscillator Selection bits ⁽²⁾										
01 01 10 10	000 = Fast RC oscillator (FRC)											
01 10 10 11	1 = Fast R	C oscillator (FR	RC) with PLL									
10 10 11	010 = Primary oscillator (XT, HS, EC)											
10 11	011 = Primary oscillator (XT, HS, EC) with PLL											
11	100 = Reserved											
	101 = Low-Power RC oscillator (LPRC)											
L T	110 = Fast RC oscillator (FRC) with divide-by-16 111 = Fast RC oscillator (FRC) with divide-by-n											
bit 7 CL		· ·	,	с-ру-п								
	CLKLOCK: Clock Lock Enable bit If clock switching is enabled and FSCM is disabled, (FOSC <fcksm> = 0b01):</fcksm>											
<u></u> 1 :	1 = Clock switching is enabled, system clock source is locked											
	 0 = Clock switching is enabled, system clock source can be modified by clock switching 											
bit 6 IO	IOLOCK: Peripheral Pin Select Lock bit											
	 1 = Peripherial pin select is locked, write to Peripheral Pin Select registers not allowed 											
0 :	 Peripheri 	ial pin select is	not locked, w	rite to Periphe	ral Pin Select re	egisters allowed						
		_ock Status bit (• •									
		s that PLL is in less that PLL is out				L is disabled						
bit 4 Ur	nimplemen	nted: Read as 'o	0'									

in the "dsPIC33F Family Reference Manual" (available from the Microchip website) for details. 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.

This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 3 **CF:** Clock Fail Detect bit (read/clear by application)
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
 - **Note 1:** Writes to this register require an unlock sequence. Refer to **Section 42. "Oscillator (Part IV)"** (DS70307) in the *"dsPIC33F Family Reference Manual"* (available from the Microchip website) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>		DOZEN ⁽¹⁾		FRCDIV<2:0>	
bit 15	I						bit
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	OST<1:0>	—			PLLPRE<4:)>	
bit 7							bit
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplem	ented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	own
bit 15	1 = Interrupt	r on Interrupt bi s will clear the I s have no effec	DOZEN bit a		clock/periph	eral clock ratio is	set to 1:1
bit 14-12	DOZE<2:0>: 000 = FCY/1 001 = FCY/2 010 = FCY/4 011 = FCY/8 100 = FCY/16 101 = FCY/32 110 = FCY/64 111 = FCY/12	5 2 4	k Reduction	Select bits			
bit 11	1 = DOZE<2	e Mode Enable ::0> field specifi or clock/periphe	es the ratio b		oheral clocks	and the processo	or clocks
bit 10-8		ivide by 1 (defa ivide by 2 ivide by 4 ivide by 8 ivide by 16 ivide by 32 ivide by 64		or Postscaler bits			
bit 7-6	PLLPOST<1 00 = Output/2 01 = Output/4 10 = Reserve 11 = Output/8	2 4 (default) ed	Output Divide	er Select bits (als	o denoted as	s 'N2', PLL postsc	aler)
bit 5	Unimplemen	ted: Read as '	o'				
bit 4-0	PLLPRE<4:0 00000 = Inpu 00001 = Inpu	ut/2 (default)	Detector Inpu	ut Divider bits (als	so denoted a	s 'N1', PLL presca	aler)
	•						
	• 11111 = Inpu						

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

REGISTER	8-3: PLLFI	BD: PLL FEE	DBACK DIV	ISOR REGIS	STER					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
_	_	—	—	—	—	_	PLLDIV<8>			
bit 15	it 15						bit 8			
5444.0		D A A A	D 444 4	D111	D11 (0)	D 444 0	5444.0			
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0			
			PLLDI	V<7:0>						
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unk			known			
h# 45 0		(ad. Daad as (- ¹							
bit 15-9	-	ted: Read as '								
bit 8-0	PLLDIV<8:0>	: PLL Feedbad	ck Divisor bits	(also denoted	as 'M', PLL mul	tiplier)				
	000000000 =	00000000 = 2								
	000000001 =	= 3								
	00000010 =	= 4								
	•									

111111111 **= 513**

© 2009 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	_	—	—	_	—	_	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_			TUN	<5:0> ⁽¹⁾			
bit 7							bit (
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at	n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-6	•	nted: Read as 'o						
bit 5-0	TUN<5:0>: F	RC Oscillator T	uning bits ⁽¹⁾					
		enter frequency enter frequency						
	•							
	•							
	•							
	000001 = Ce	enter frequency	+ 0.375% (7.4	40 MHz)				
	000000 = C e	enter frequency	(7.37 MHz nd	,				
	000000 = C e		(7.37 MHz nd	,				
	000000 = C e	enter frequency	(7.37 MHz nd	,				
	000000 = C e	enter frequency	(7.37 MHz nd	,				
	000000 = Ce 111111 = Ce	enter frequency	(7.37 MHz nc -0.375% (7.3	45 MHz)				

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested
R/W-0	R-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
ENAPLL	APLLCK	SELACLK	_	_	A	PSTSCLR<2:0	>			
bit 15				4	•		bit 0			
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0			
ASRCSEL	FRCSEL	_	—	—	—	—				
bit 7										
Legend:	- L:1		:.			L = = (Q)				
R = Readable		W = Writable b	IL	•	mented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown			
L:1 1 F		william (DLL Ench	la hit							
bit 15	1 = APLL: AU	uxiliary PLL Enab	ie bit							
	1 = APLL is 0 = APLL is	0.10.0.00								
bit 14		PLL Locked Statu	is bit (read-o	nlv)						
	1 = Indicates that auxiliary PLL is in lock									
	0 = Indicates that auxiliary PLL is not in lock									
bit 13	SELACLK: Select Auxiliary Clock Source for Auxiliary Clock Divider bit									
	1 = Auxiliary Oscillators provides the source clock for auxiliary clock divider									
	-	PLL (Fvco) provi		ce clock for au	ixiliary clock div	ider				
bit 12-11	Unimpleme	nted: Read as '0	,							
bit 10-8	APSTSCLR<2:0>: Auxiliary Clock Output Divider bits									
	111 = Divided by 1									
	110 = Divided by 2 101 = Divided by 4									
	100 = Divide									
	011 = Divide									
	010 = Divided by 32									
	001 = Divide									
bit 7	000 = Divided by 256 ASRCSEL: Select Reference Clock Source for Auxiliary Clock bit									
					CIUCK DI					
 1 = Primary oscillator is the clock source 0 = No clock input is selected 										
bit 6	FRCSEL: Se	elect Reference C	lock Source	for Auxiliary P	LL bit					
		RC clock for auxi								
	0 = Input clo	ck source is dete	rmined by A	SRCSEL hit se	ettina					
					Julig					

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ROON		ROSIDL	ROSEL		RODIV	/<3:0>(1)					
bit 15			1	1			bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—	—	_	—	—	—					
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15		ence Oscillato									
		1 = Reference oscillator output enabled on REFCLK0 ⁽²⁾ pin									
		e oscillator out	•								
bit 14	-	ted: Read as									
bit 13	ROSIDL: Reference Oscillator Run in Sleep bit										
	 1 = Reference oscillator output continues to run in Sleep 0 = Reference oscillator output is disabled in Sleep 										
bit 12		erence Oscillat	•	•							
		crystal used a									
		lock used as th									
bit 11-8	-	Reference Os									
		ence clock div									
	1110 = Reference clock divided by 16,384										
		ence clock div									
		ence clock div ence clock div									
		ence clock div									
	1001 = Refer	ence clock div	ided by 512								
		1000 = Reference clock divided by 256									
	0111 = Reference clock divided by 128										
	0110 = Reference clock divided by 64 0101 = Reference clock divided by 32										
	0100 = Reference clock divided by 16										
		ence clock div									
	0010 = Refer										
		ence clock div									

Note 1: The reference oscillator output must be disabled (ROON = 0) before writing to these bits.

2: This pin is remappable. Refer to Section 10.4 "Peripheral Pin Select" for more information.

8.4 Clock Switching Operation

Applications are free to switch among any of the four clock sources (primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices have a safeguard lock built into the switch process.

Note: Primary oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from primary oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

8.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 21.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

8.4.2 OSCILLATOR SWITCHING SEQUENCE

To perform a clock switch, the following basic sequence is required:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to Section 42. "Oscillator (Part IV)" (DS70307) in the "dsPIC33F Family Reference Manual" for details.

8.5 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then, the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

^{© 2009} Microchip Technology Inc.

NOTES:

9.0 POWER-SAVING FEATURES

This data sheet summarizes the features Note: of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Manual", Section Reference "Watchdog Timer and Power-Saving Modes" (DS70196), which is available from the Microchip web site (www.microchip.com).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices can manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0** "**Oscillator Configuration**".

9.2 Instruction-Based Power-Saving Modes

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

9.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate. This includes the items such as the input change notification on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device will wake-up from Sleep mode on any of these events:

- · Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#SLEEP_MODE; Put the device into SLEEP modePWRSAV#IDLE_MODE; Put the device into IDLE mode

9.2.2 IDLE MODE

The following occur in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake-up from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

9.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this may not be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the CAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the CAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

9.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
_	_	T3MD	T2MD	T1MD	_	PWMMD	_
bit 15		·		· · ·			bit
R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0
I2C1MD	—	U1MD	—	SPI1MD	_	—	ADCMD
bit 7							bit
Legend:							
R = Readabl	e hit	W = Writable	bit	U = Unimpleme	ented hit rea	ad as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clear		x = Bit is unkn	own
		i Dicio dec			64		0
bit 15-14	Unimpleme	ented: Read as '	o'				
bit 13	T3MD: Time	er3 Module Disab	ole bit				
		module is disable					
		module is enable	-				
bit 12		er2 Module Disat					
		module is disable module is enable					
bit 11	• • • • • • • • • • • • •	er1 Module Disab	-				
		module is disable					
	-	module is enable					
bit 10	Unimpleme	ented: Read as '	o'				
bit 9	PWMMD: P	WM Module Disa	able bit				
		odule is disabled					
		odule is enabled					
bit 8	-	ented: Read as '					
bit 7	-	C1 Module Disat	ole bit				
		odule is disabled					
bit 6		ented: Read as '	o'				
bit 5	-	RT1 Module Disa					
	1 = UART1	module is disable	ed				
	0 = UART1	module is enable	ed				
bit 4	Unimpleme	ented: Read as '	o'				
bit 3	SPI1MD: SPI1 Module Disable bit						
		odule is disabled					
hit 0 1		odule is enabled	~'				
bit 2-1	-	ented: Read as '					
bit 0		DC Module Disat odule is disabled	DIE DIE				

U-0 U-0 U-0 U-0 U-0 R/W- — — — — — IC2M bit 15 — — — — — IC2M					
bit 15	ID IC1MD				
	bit 8				
U-0 U-0 U-0 U-0 U-0 R/W-	-0 R/W-0				
bit 7	bit 0				
Legend:					
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is	'0' = Bit is cleared x = Bit is unknown				
bit 15-10 Unimplemented: Read as '0'					
bit 9 IC2MD: Input Capture 2 Module Disable bit					
1 = Input Capture 2 module is disabled					
0 = Input Capture 2 module is enabled					
bit 8 IC1MD: Input Capture 1 Module Disable bit					
 1 = Input Capture 1 module is disabled 0 = Input Capture 1 module is enabled 					
bit 7-2 Unimplemented: Read as '0'					
bit 1 OC2MD: Output Compare 2 Module Disable bit					
1 = Output Compare 2 module is disabled					
0 = Output Compare 2 module is enabled					
bit 0 OC1MD: Output Compare 1 Module Disable bit					
1 = Output Compare 1 module is disabled					
0 = Output Compare 1 module is enabled					

MODULE DIGADLE CONTROL DE

REGISTER 9	REGISTER 9-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3						
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
—	—	—	_	—	CMPMD	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—		—		—	_
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			d as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown				iown			

bit 15-11	Unimplemented: Read as '0'
bit 10	CMPMD : Analog Comparator Module Disable bit

- 1 = Analog comparator module is disabled
- 0 = Analog comparator module is enabled

bit 9-0 Unimplemented: Read as '0'

REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	—	REFOMD	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3 **REFOMD**: Reference Clock Generator Module Disable bit 1 = Reference clock generator module is disabled 0 = Reference clock generator module is enabled

bit 2-0 Unimplemented: Read as '0'

© 2009 Microchip Technology Inc.

— bit 15			U-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15		—	_	PWM4MD	PWM3MD	PWM2MD	PWM1MD
							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	
bit 7							bit 0
							
Legend:							
R = Readable		W = Writable b	oit		ented bit, read		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-12	Unimplomon	ted: Read as 'o	,				
bit 11	•	WM Generator 4		bla bit			
		nerator 4 module					
		nerator 4 module					
bit 10	PWM3MD: PV	VM Generator 3	B Module Disa	able bit			
	1 = PWM Ger	nerator 3 module	e is disabled				
	0 = PWM Ger	nerator 3 module	e is enabled				
bit 9	PWM2MD: PV	VM Generator 2	2 Module Disa	able bit			
	1 = PWM Generator 2 module is disabled						
	0 = PWM Ger	nerator 2 module	e is enabled				
bit 8	PWM1MD: PV	VM Generator 1	Module Disa	able bit			
		nerator 1 module nerator 1 module					

bit 7-0 Unimplemented: Read as '0'

REGISTER	9-6: PMD	7: PERIPHER	AL MODULE	DISABLE C	ONTROL RE	GISTER 7	
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD
bit 15							bit 8
							11.0
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	_	—	—	—
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimplemer	ted: Read as 'o)'				
bit 11	CMP4MD: Ar	nalog Comparat	or 4 Module D	isable bit			
		comparator 4 mc					
bit 10	CMP3MD: Ar	nalog Comparat	or 3 Module D	isable bit			
	 1 = Analog Comparator 3 module is disabled 0 = Analog Comparator 3 module is enabled 						
bit 9	CMP2MD: Ar	nalog Comparat	or 2 Module Di	isable bit			
	1 = Analog Comparator 2 module is disabled						

- 0 = Analog Comparator 2 module is enabled
- bit 8 **CMP1MD**: Analog Comparator 1 Module Disable bit 1 = Analog Comparator 1 module is disabled
 - 0 = Analog Comparator 1 module is enabled
- bit 7-0 Unimplemented: Read as '0'

NOTES:

10.0 I/O PORTS

Note:	This data sheet summarizes the features
	of the dsPIC33FJ06GS101/X02 and
	dsPIC33FJ16GSX02/X04 families of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to the "dsPIC33F Family
	Reference Manual", Section 10. "I/O
	Ports" (DS70193), which is available on
	Microchip web site (www.microchip.com).

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a

peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

10.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, some digital-only port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (for example, 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to **"Pin Diagrams"** for the available pins and their functionality.

10.2 Configuring Analog Port Pins

The ADPCFG and TRIS registers control the operation of the Analog-to-Digital (A/D) port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The ADPCFG register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

10.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP. An example is shown in Example 10-1.

10.3 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices to generate interrupt requests to the processor in response to a Change-Of-State (COS) on selected input pins. This feature can detect input Change-Of-States even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 30 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a Change-Of-State.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when the push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

EQUATION 10-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	; Configure PORTB<15:8> as inputs	
MOV	W0, TRISBB	; and PORTB<7:0> as outputs	
NOP		; Delay 1 cycle	
BTSS	PORTB, #13	; Next Instruction	

10.4 Peripheral Pin Select

Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

10.4.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 30 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.4.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of Special Function Registers: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

10.4.2.1 Input Mapping

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-14). Each register contains sets of 6-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 10-2 Illustrates remappable pin selection for U1RX input.

Note: For input mapping only, the Peripheral Pin Select (PPS) functionality does not have priority over the TRISx settings. Therefore, when configuring the RPx pin for input, the corresponding bit in the TRISx register must also be configured for input (i.e., set to '1').

FIGURE 10-2: REMAPPABLE MUX INPUT FOR U1RX

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<5:0>
External Interrupt 2	INT2	RPINR1	INT2R<5:0>
Timer1 External Clock	T1CK	RPINR2	T1CKR<5:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<5:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<5:0>
Input Capture 1	IC1	RPINR7	IC1R<5:0>
Input Capture 2	IC2	RPINR7	IC2R<5:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<5:0>
UART1 Receive	U1RX	RPINR18	U1RXR<5:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<5:0>
SPI Data Input 1	SDI1	RPINR20	SDI1R<5:0>
SPI Clock Input 1	SCK1	RPINR20	SCK1R<5:0>
SPI Slave Select Input 1	SS1	RPINR21	SS1R<5:0>
PWM Fault Input PWM1	FLT1	RPINR29	FLT1R<5:0>
PWM Fault Input PWM2	FLT2	RPINR30	FLT2R<5:0>
PWM Fault Input PWM3	FLT3	RPINR30	FLT3R<5:0>
PWM Fault Input PWM4	FLT4	RPINR31	FLT4R<5:0>
PWM Fault Input PWM5	FLT5	RPINR31	FLT5R<5:0>
PWM Fault Input PWM6	FLT6	RPINR32	FLT6R<5:0>
PWM Fault Input PWM7	FLT7	RPINR32	FLT7R<5:0>
PWM Fault Input PWM8	FLT8	RPINR33	FLT8R<5:0>
External Synchronization signal to PWM Master Time Base	SYNCI1	RPINR33	SYNCI1R<5:0>
External Synchronization signal to PWM Master Time Base	SYNCI2	RPINR34	SYNCI2R<5:0>

TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

10.4.2.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 10-15 through Register 10-31). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 10-2 and Figure 10-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

FIGURE 10-3: MULTIPLEXING OF **REMAPPABLE OUTPUT** FOR RPn RPORn<5:0> Default 0 U1TX Output Enable 3 **U1RTS** Output Enable 4 **Output Enable** • • . OC2 Output Enable 19 PWM4L Output Enable 45 Default 0 U1TX Output 3 **U1RTS** Output 4 RPn Output Data • \mathbf{X} • . OC2 Output 19 PWM4L Output 45

TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

Function	RPORn<5:0>	Output Name
NULL	000000	RPn tied to default port pin
U1TX	000011	RPn tied to UART1 transmit
U1RTS	000100	RPn tied to UART1 ready to send
SDO1	000111	RPn tied to SPI1 data output
SCK1	001000	RPn tied to SPI1 clock output
SS1	001001	RPn tied to SPI1 slave select output
OC1	010010	RPn tied to Output Compare 1
OC2	010011	RPn tied to Output Compare 2
SYNCO1	100101	RPn tied to external device synchronization signal via PWM master time base
REFCLKO	100110	REFCLK output signal
ACMP1	100111	RPn tied to Analog Comparator Output 1
ACMP2	101000	RPn tied to Analog Comparator Output 2
ACMP3	101001	RPn tied to Analog Comparator Output 3
ACMP4	101010	RPn tied to Analog Comparator Output 4
PWM4H	101100	RPn tied to PWM output pins associated with PWM Generator 4
PWM4L	101101	RPn tied to PWM output pins associated with PWM Generator 4

© 2009 Microchip Technology Inc.

10.4.2.3 Virtual Pins

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices support four virtual RPn pins (RP32, RP33, RP34 and RP35), which are identical in functionality to all other RPn pins, with the exception of pinouts. These four pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP32 and the PWM Fault input can be configured for RP32 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

10.4.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33F devices include three features to prevent alterations to the peripheral map:

- · Control register lock sequence
- Continuous state monitoring
- Configuration bit pin select lock

10.4.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)
	See MPLAB C30 Help files for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.4.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.4.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<5>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

10.5 Peripheral Pin Select Registers

ThedsPIC33FJ06GS101/X02anddsPIC33FJ16GSX02/X04 families of devices implement34 registers for remappable peripheral configuration:

- 15 Input Remappable Peripheral Registers
- 19 Output Remappable Peripheral Registers

Note:	Input and output register values can only be changed if OSCCON <iolock> = 0.</iolock>
	See Section 10.4.3.1 "Control Register
	Lock" for a specific command sequence.

Not all output remappable peripheral registers are implemented on all devices. See the register description of the specific register for further details.

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—			INT1	R<5:0>		
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8

bit 7-0

INT1R<5:0>: Assign External Interrupt 1 (INTR1) to the Corresponding RPn Pin bits

111111 = Input tied to Vss 100011 = Input tied to RP35 100010 = Input tied to RP34 100001 = Input tied to RP33 100000 = Input tied to RP32 • • • • 00000 = Input tied to RP0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	_	—	—	—	—			
bit 15							bit 8			
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	—			INT2	R<5:0>					
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-6	Unimplemen	ted: Read as 'o)'							
bit 5-0	INT2R<5:0>: Assign External Interrupt 2 (INTR2) to the Corresponding RPn Pin bits									
	111111 = Input tied to Vss									
	100011 = Inp	out tied to RP35	5							
	100010 = Input tied to RP34									
	100001 = Input tied to RP33									
	100000 = Input tied to RP32									
	•									
	•									
	•									
	00000 = Inpu	t tied to RP0								

REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
	_			T3CK	R<5:0>								
bit 15	·						bit						
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
				T2CK	R<5:0>								
bit 7							bit						
Legend:													
R = Readabl	le bit	W = Writable I	bit	U = Unimplen	nented bit, read	d as '0'							
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown						
bit 15-14	Unimplemen	ted: Read as 'o	כ'										
bit 13-8	T3CKR<5:0>: Assign Timer3 External Clock (T3CK) to the Corresponding RPn Pin bits												
				111111 = Input tied to Vss									
	111111 = Inp 100011 = Inp	out tied to Vss out tied to RP35	5										
	111111 = Inp 100011 = Inp 100010 = Inp	out tied to Vss out tied to RP35 out tied to RP34	5										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	but tied to Vss but tied to RP35 but tied to RP34 but tied to RP33	; ; ;										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	out tied to Vss out tied to RP35 out tied to RP34	; ; ;										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	but tied to Vss but tied to RP35 but tied to RP34 but tied to RP33	; ; ;										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	but tied to Vss but tied to RP35 but tied to RP34 but tied to RP33	; ; ;										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	but tied to Vss but tied to RP35 but tied to RP34 but tied to RP33	; ; ;										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp	but tied to Vss but tied to RP35 but tied to RP34 but tied to RP33 but tied to RP32	; ; ;										
	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp	but tied to Vss but tied to RP35 but tied to RP34 but tied to RP33 but tied to RP32											
bit 7-6 bit 5-0	111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp 100000 = Inp • • • • • • • • • • • • • • • • • • •	but tied to Vss but tied to RP35 but tied to RP34 but tied to RP33 but tied to RP32 ut tied to RP30 ut tied to RP0 hted: Read as '0	5 5 2	ck (T2CK) to th	ne Correspond	ing RPn Pin bit	5						
bit 7-6	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 000000 = Inpu Unimplemen T2CKR<5:0>	but tied to Vss but tied to RP35 but tied to RP34 but tied to RP33 but tied to RP32 ut tied to RP0 hted: Read as '0 c: Assign Timer2	5 5 2	ck (T2CK) to th	ne Correspond	ing RPn Pin bits	5						
bit 7-6	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu Unimplemen T2CKR<5:0> 111111 = Inp	but tied to Vss but tied to RP35 but tied to RP34 but tied to RP33 but tied to RP32 ut tied to RP0 ited: Read as '0 :: Assign Timer2 but tied to Vss	o' 2 External Clo	ck (T2CK) to th	ne Correspond	ing RPn Pin bits	5						
bit 7-6	111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 00000 = Inpu Unimplemen T2CKR<5:0> 111111 = Inp 100011 = Inp	but tied to Vss but tied to RP35 but tied to RP34 but tied to RP33 but tied to RP32 ut tied to RP0 hted: Read as '0 c: Assign Timer2) 2 2 External Clo	ck (T2CK) to th	ne Correspond	ing RPn Pin bits	5						
bit 7-6	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 000000 = Inpu Unimplemen T2CKR<5:0> 111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp</pre>	but tied to Vss but tied to RP35 but tied to RP33 but tied to RP33 but tied to RP32 ut tied to RP32 ut tied to RP0 hted: Read as '0 c: Assign Timer2 but tied to Vss but tied to RP35 but tied to RP34 but tied to RP33) 2 2 External Clo	ck (T2CK) to th	ne Correspond	ing RPn Pin bits	5						
bit 7-6	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 000000 = Inpu Unimplemen T2CKR<5:0> 111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp</pre>	but tied to Vss but tied to RP35 but tied to RP33 but tied to RP33 but tied to RP32 ut tied to RP32 ut tied to RP0 nted: Read as '0 :: Assign Timer2 but tied to Vss but tied to RP35 but tied to RP34) 2 2 External Clo	ck (T2CK) to th	ne Correspond	ing RPn Pin bits	5						
bit 7-6	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 000000 = Inpu Unimplemen T2CKR<5:0> 111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp</pre>	but tied to Vss but tied to RP35 but tied to RP33 but tied to RP33 but tied to RP32 ut tied to RP32 ut tied to RP0 hted: Read as '0 c: Assign Timer2 but tied to Vss but tied to RP35 but tied to RP34 but tied to RP33) 2 2 External Clo	ck (T2CK) to th	ne Correspond	ing RPn Pin bit	5						
bit 7-6	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 000000 = Inpu Unimplemen T2CKR<5:0> 111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp</pre>	but tied to Vss but tied to RP35 but tied to RP33 but tied to RP33 but tied to RP32 ut tied to RP32 ut tied to RP0 hted: Read as '0 c: Assign Timer2 but tied to Vss but tied to RP35 but tied to RP34 but tied to RP33) 2 2 External Clo	ck (T2CK) to th	ne Correspond	ing RPn Pin bits	5						
bit 7-6	<pre>111111 = Inp 100011 = Inp 100010 = Inp 100000 = Inp 000000 = Inpu Unimplemen T2CKR<5:0> 111111 = Inp 100011 = Inp 100010 = Inp 100001 = Inp</pre>	but tied to Vss but tied to RP35 but tied to RP33 but tied to RP33 but tied to RP32 ut tied to RP32 ut tied to RP0 hted: Read as '0 c: Assign Timer2 but tied to Vss but tied to RP35 but tied to RP34 but tied to RP33) 2 2 External Clo	ck (T2CK) to th	ne Correspond	ing RPn Pin bits	5						

REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
_	_			IC2F	₹<5:0>						
bit 15							bit				
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
_	—			IC1F	R<5:0>						
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-14	Unimplemen	ted: Read as '	0'								
bit 13-8	IC2R<5:0>: /	Assign Input Ca	pture 2 (IC2)	to the Correspo	onding RPn Pi	n bits					
	111111 = Input tied to Vss										
	100011 = Input tied to RP35										
	100010 = Input tied to RP34										
	100001 = Input tied to RP33										
	100000 = Input tied to RP32										
	•										
	•										
	00000 = Input tied to RP0										
bit 7-6	Unimplemen	ted: Read as '	0'								
bit 5-0	IC1R<5:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn Pin bits										
	111111 = Input tied to Vss										
	100011 = Input tied to V35										
	100011 = Input tied to RP34										
	100001 = Input tied to RP33										
	100000 = In	out tied to RP32	2								
	•										
	•										
	•										
	00000 = 1000	it tied to RP0									
	00000 = Inp u	ut tied to RP0									

REGISTER 10-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

REGISTER 10-5: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	_	—		—	_			
bit 15							bit 8			
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
—	—			OCFA	AR<5:0>					
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'				
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cleared		x = Bit is unknown				
bit 15-6	Unimpleme	nted: Read as '	0'							
bit 5-0	OCFAR<5:0>: Assign Output Capture A (OCFA) to the Corresponding RPn Pin bits									
	111111 = Input tied to Vss									
	100011 = Input tied to RP35									
	100010 = Input tied to RP34									
		, put tied to RP3								
		put tied to RP3								
	•									

•

00000 = Input tied to RP0

© 2009 Microchip Technology Inc.

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
_				U1CTS	SR<5:0>							
bit 15							bit					
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
_				U1RX	R<5:0>							
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkı	nown					
bit 15-14	Unimpleme	nted: Read as '	0'									
bit 13-8	U1CTSR<5:0>: Assign UART1 Clear to Send ($\overline{U1CTS}$) to the Corresponding RPn Pin bits						bits					
DIL 13-0	U1C1SR<5:	: 0>: Assign UAR	T I Clear to Se	111111 = Input tied to Vss								
DIL 13-0		•	TT Clear to Se									
DIL 13-0	111111 = lr 100011 = lr	nput tied to Vss nput tied to RP35	5									
Dit 13-0	111111 = lr 100011 = lr 100010 = lr	nput tied to Vss nput tied to RP35 nput tied to RP34	5									
Dit 13-0	111111 = lr 100011 = lr 100010 = lr 100001 = lr	nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33	5 4 3									
DIL 13-0	111111 = lr 100011 = lr 100010 = lr 100001 = lr	nput tied to Vss nput tied to RP35 nput tied to RP34	5 4 3									
DIL 13-0	111111 = lr 100011 = lr 100010 = lr 100001 = lr	nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33	5 4 3									
DIL 13-0	111111 = lr 100011 = lr 100010 = lr 100001 = lr	nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33	5 4 3									
ыг 13-6	111111 = lr 100011 = lr 100010 = lr 100001 = lr	nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33	5 4 3									
DIL 13-0	111111 = Ir 100011 = Ir 100010 = Ir 100001 = Ir 100000 = Ir	nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33	5 4 3									
bit 7-6	111111 = Ir 100011 = Ir 100010 = Ir 100000 = Ir	nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP33	5									
	111111 = Ir 100011 = Ir 100010 = Ir 100000 = Ir 000000 = Ir 000000 = Irp Unimpleme	nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 out tied to RP0 nted: Read as '	5 4 3 2									
bit 7-6	111111 = Ir 100011 = Ir 100010 = Ir 100000 = Ir	nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 out tied to RP0 nted: Read as '0	5 4 3 2									
bit 7-6	111111 = Ir 100011 = Ir 100010 = Ir 100000 = Ir 100000 = Ir 00000 = Irp Unimpleme U1RXR<5:0 111111 = Ir	nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 out tied to RP0 nted: Read as 'o >: Assign UART nput tied to Vss	5 3 2 0' 1 Receive (U'									
bit 7-6	111111 = Ir 100011 = Ir 100010 = Ir 100000 = Ir 100000 = Ir	nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 out tied to RP0 nted: Read as '0	5 3 2 0' 1 Receive (U ⁷									
bit 7-6	111111 = Ir 100011 = Ir 100010 = Ir 100000 = Ir 000000 = Ir 000000 = Irp Unimpleme U1RXR<5:0 11111 = Ir 100011 = Ir 100010 = Ir	put tied to Vss aput tied to RP35 aput tied to RP33 aput tied to RP33 aput tied to RP32 but tied to RP0 anted: Read as 'o >: Assign UART aput tied to Vss aput tied to RP35	5 3 2 1 Receive (U ⁷ 5									
bit 7-6	111111 = Ir 100011 = Ir 100010 = Ir 100000 = Ir 100000 = Ir 000000 = Inp Unimpleme U1RXR<5:0 11111 = Ir 100011 = Ir 100010 = Ir 100001 = Ir	put tied to Vss nput tied to RP35 nput tied to RP33 nput tied to RP33 nput tied to RP32 put tied to RP32 nput tied to RP34 nput tied to Vss nput tied to RP35 nput tied to RP34	5 3 2 1 Receive (U ⁷ 5									
bit 7-6	111111 = Ir 100011 = Ir 100010 = Ir 100000 = Ir 100000 = Ir 000000 = Inp Unimpleme U1RXR<5:0 11111 = Ir 100011 = Ir 100010 = Ir 100001 = Ir	put tied to Vss nput tied to RP35 nput tied to RP33 nput tied to RP33 nput tied to RP32 put tied to RP32 nput tied to RP33 nput tied to Vss nput tied to RP33 nput tied to RP33	5 3 2 1 Receive (U ⁷ 5									
bit 7-6	111111 = Ir 100011 = Ir 100010 = Ir 100000 = Ir 100000 = Ir 000000 = Inp Unimpleme U1RXR<5:0 11111 = Ir 100011 = Ir 100010 = Ir 100001 = Ir	put tied to Vss nput tied to RP35 nput tied to RP33 nput tied to RP33 nput tied to RP32 put tied to RP32 nput tied to RP33 nput tied to Vss nput tied to RP33 nput tied to RP33	5 3 2 1 Receive (U ⁷ 5									
bit 7-6	111111 = Ir 100011 = Ir 100010 = Ir 100000 = Ir 100000 = Ir 000000 = Inp Unimpleme U1RXR<5:0 11111 = Ir 100011 = Ir 100010 = Ir 100001 = Ir	put tied to Vss nput tied to RP35 nput tied to RP33 nput tied to RP33 nput tied to RP32 put tied to RP32 nput tied to RP33 nput tied to Vss nput tied to RP33 nput tied to RP33	5 3 2 1 Receive (U ⁷ 5									

REGISTER 10-6: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_				SCK1	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_			SDI1	R<5:0>		
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable b	oit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 13-8	111111 = lr 100011 = lr 100010 = lr 100001 = lr	: Assign SPI1 C nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33			Conesponding		
	• • •	uput tied to RP32					
bit 7-6	• • • • 00000 = Inp	nput tied to RP32 out tied to RP0 nted: Read as '0					

REGISTER 10-7: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_		—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—			SS1	R<5:0>		
bit 7							bit C
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-6	Unimplemen	ted: Read as '	0'				
bit 5-0	SS1R<5:0>:	Assign SPI1 SI	ave Select In	put (SS1IN) to	the Correspond	ing RPn Pin bit	s
		out tied to Vss					
		out tied to RP3					
		out tied to RP34					
		out tied to RP33					
	100000 = Inp	out tied to RP32	2				
	•						
	•						
	•						
	00000 = Inp u	ut tied to RP0					

REGISTER 10-8: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

REGISTER	10-9: RPIN	R29: PERIPHI	ERAL PIN S	SELECT INPL	JT REGISTER	R 29	
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—			FLT1	1R<5:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		<u> </u>	—				—
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as '	0'				
bit 13-8	FLT1R<5:0>	: Assign PWM I	Fault Input 1	(FLT1) to the C	orresponding F	RPn Pin bits	
	111111 = In	put tied to Vss					
	100011 = In	put tied to RP3	5				
	100010 = In	put tied to RP34	1				
	100001 = In	put tied to RP33	3				
	100000 = In	put tied to RP32	2				
	•						
	•						

- 00000 = Input tied to RP0
- bit 7-0 Unimplemented: Read as '0'

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	_			FLT3	R<5:0>			
bit 15							bit	
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	—			FLT2	R<5:0>			
bit 7							bit	
Legend:								
R = Readab	le bit	W = Writable I	bit	U = Unimplen	nented bit, rea	ad as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown	
bit 15-14	Unimpleme	ented: Read as 'o)'					
bit 13-8	FLT3R<5:0	>: Assign PWM F	ault Input 3 ((FLT3) to the Co	orresponding	RPn Pin bits		
	111111 = Input tied to Vss							
	111111 = l i	nput tied to Vss						
	100011 = 	nput tied to RP35						
	100011 = 100010 =	nput tied to RP35 nput tied to RP34						
	100011 = 100010 = 100001 =	nput tied to RP35 nput tied to RP34 nput tied to RP33						
	100011 = 100010 = 100001 =	nput tied to RP35 nput tied to RP34						
	100011 = 100010 = 100001 =	nput tied to RP35 nput tied to RP34 nput tied to RP33						
	100011 = 100010 = 100001 =	nput tied to RP35 nput tied to RP34 nput tied to RP33						
	100011 = 100010 = 100001 = 100000 = •	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32						
	100011 = 100010 = 100001 = 100000 = • • • •	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 put tied to RP32						
bit 7-6	100011 = 100010 = 100001 = 100000 = • • • •	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32						
bit 7-6 bit 5-0	100011 = h 100010 = h 100000 = h	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 put tied to RP32		(FLT2) to the Co	prresponding	RPn Pin bits		
	100011 = li 100010 = li 100000 = li	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 put tied to RP30 ented: Read as '0		(FLT2) to the Co	prresponding	RPn Pin bits		
	100011 = li 100010 = li 100000 = li 100000 = li	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 put tied to RP0 ented: Read as '0 >: Assign PWM F nput tied to Vss nput tied to RP35)' Fault Input 2 (FLT2) to the Co	orresponding	RPn Pin bits		
	100011 = 100010 = 100000 = 100000 = 000000 = n Unimplement FLT2R<5:00 11111 = 100011 = 100010 =	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 out tied to RP0 ented: Read as '0 >: Assign PWM F nput tied to Vss nput tied to RP35 nput tied to RP34	o' Fault Input 2 (FLT2) to the Co	orresponding	RPn Pin bits		
	100011 = 100010 = 100000 = 100000 =	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 out tied to RP0 ented: Read as '0 >: Assign PWM F nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33	o' Fault Input 2 ((FLT2) to the Co	prresponding	RPn Pin bits		
	100011 = 100010 = 100000 = 100000 =	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 out tied to RP0 ented: Read as '0 >: Assign PWM F nput tied to Vss nput tied to RP35 nput tied to RP34	o' Fault Input 2 (FLT2) to the Co	orresponding	RPn Pin bits		
	100011 = 100010 = 100000 = 100000 =	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 out tied to RP0 ented: Read as '0 >: Assign PWM F nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33	o' Fault Input 2 (FLT2) to the Co	prresponding	RPn Pin bits		
	100011 = 100010 = 100000 = 100000 =	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 out tied to RP0 ented: Read as '0 >: Assign PWM F nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33	o' Fault Input 2 (FLT2) to the Co	prresponding	RPn Pin bits		
	100011 = 100010 = 100000 = 100000 = 000000 = Unimplement FLT2R<5:02 11111 = 100011 = 100010 = 100000 =	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 out tied to RP0 ented: Read as '0 >: Assign PWM F nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33	o' Fault Input 2 ((FLT2) to the Co	prresponding	RPn Pin bits		

DDINDOG DEDIDUEDAL DIN CELECT INDUT DECISTED 20

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	_			FLT5	R<5:0>			
bit 15	•						bit	
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	_			FLT4I	R<5:0>			
bit 7							bit	
Legend:								
R = Readab	le bit	W = Writable I	bit	U = Unimplen	nented bit, rea	id as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
			.,					
bit 15-14	-	ented: Read as 'o						
bit 13-8		>: Assign PWM F	ault Input 5 (FLI5) to the Co	orresponding I	RPn Pin bits		
	111111 = Input tied to Vss							
	100011 = lr	nput tied to RP35						
	100011 = lr 100010 = lr	nput tied to RP35 nput tied to RP34						
	100011 = lr 100010 = lr 100001 = lr	nput tied to RP35 nput tied to RP34 nput tied to RP33						
	100011 = lr 100010 = lr 100001 = lr	nput tied to RP35 nput tied to RP34						
	100011 = lr 100010 = lr 100001 = lr	nput tied to RP35 nput tied to RP34 nput tied to RP33						
	100011 = lr 100010 = lr 100001 = lr	nput tied to RP35 nput tied to RP34 nput tied to RP33						
	100011 = Ir 100010 = Ir 100001 = Ir 100000 = Ir	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32						
bit 7-6	100011 = Ir 100010 = Ir 100001 = Ir 100000 = Ir • • •	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 put tied to RP0						
	100011 = Ir 100010 = Ir 100000 = Ir	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 put tied to RP0 ented: Read as 'o		FLT4) to the Co	prresponding f	₹Pn Pin bits		
bit 7-6 bit 5-0	100011 = Ir 100010 = Ir 100000 = Ir • • • • • • • • • • • • • • • • • • •	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 put tied to RP0 ented: Read as '0		FLT4) to the Co	orresponding F	RPn Pin bits		
	100011 = lr 100010 = lr 100000 = lr 00000 = lrp Unimpleme FLT4R<5:0: 111111 = lr	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 put tied to RP0 ented: Read as '0 >: Assign PWM F nput tied to Vss)' Fault Input 4 (FLT4) to the Co	orresponding F	RPn Pin bits		
	100011 = lr 100010 = lr 100000 = lr • • • • • • • • • • • • • • • • • • •	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 put tied to RP0 ented: Read as '0), Fault Input 4 (FLT4) to the Co	orresponding F	RPn Pin bits		
	100011 = Ir 100010 = Ir 100000 = Ir 00000 = Ir 000000 = Ir Unimpleme FLT4R<5:0: 11111 = Ir 100011 = Ir 100010 = Ir	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 put tied to RP0 ented: Read as '0 >: Assign PWM F nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33	^{o'} Fault Input 4 (FLT4) to the Co	orresponding F	RPn Pin bits		
	100011 = Ir 100010 = Ir 100000 = Ir 00000 = Ir 000000 = Ir Unimpleme FLT4R<5:0: 11111 = Ir 100011 = Ir 100010 = Ir	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 put tied to RP0 ented: Read as '0 >: Assign PWM F nput tied to Vss nput tied to RP35 nput tied to RP34	^{o'} Fault Input 4 (FLT4) to the Co	orresponding F	RPn Pin bits		
	100011 = Ir 100010 = Ir 100000 = Ir 00000 = Ir 000000 = Ir Unimpleme FLT4R<5:0: 11111 = Ir 100011 = Ir 100010 = Ir	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 put tied to RP0 ented: Read as '0 >: Assign PWM F nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33	^{o'} Fault Input 4 (FLT4) to the Co	orresponding F	RPn Pin bits		
	100011 = Ir 100010 = Ir 100000 = Ir 00000 = Ir 000000 = Ir Unimpleme FLT4R<5:0: 11111 = Ir 100011 = Ir 100010 = Ir	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 put tied to RP0 ented: Read as '0 >: Assign PWM F nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33	^{o'} Fault Input 4 (FLT4) to the Co	orresponding F	RPn Pin bits		
	100011 = Ir 100010 = Ir 100000 = Ir 00000 = Ir 000000 = Ir Unimpleme FLT4R<5:0: 11111 = Ir 100011 = Ir 100010 = Ir	nput tied to RP35 nput tied to RP34 nput tied to RP33 nput tied to RP32 put tied to RP0 ented: Read as '0 >: Assign PWM F nput tied to Vss nput tied to RP35 nput tied to RP34 nput tied to RP33	^{o'} Fault Input 4 (FLT4) to the Co	orresponding F	RPn Pin bits		

REGISTER 10-11: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31

	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	_			FLT7	R<5:0>			
bit 15							bit	
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_				FLT6	R<5:0>			
bit 7							bit	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15-14	-	nted: Read as 'o						
bit 13-8	FLT7R<5:0>	: Assign PWM F	-ault Input 7 (FLT7) to the Co	orresponding I	RPn Pin bits		
	111111 = Input tied to Vss							
	100011 = Input tied to RP35							
	100010 = In	put tied to RP34	ŀ					
	100010 = In 100001 = In	put tied to RP34 put tied to RP33	L 3					
	100010 = In 100001 = In	put tied to RP34	L 3					
	100010 = In 100001 = In	put tied to RP34 put tied to RP33	L 3					
	100010 = In 100001 = In	put tied to RP34 put tied to RP33	L 3					
	100010 = In 100001 = In 100000 = In •	put tied to RP34 put tied to RP33 put tied to RP32	L 3					
	100010 = In 100001 = In 100000 = In • • •	put tied to RP34 put tied to RP33 put tied to RP32 ut tied to RP32	2					
	100010 = In 100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP34 put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as 'o	L 3 2					
	100010 = In 100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP34 put tied to RP33 put tied to RP32 ut tied to RP32	L 3 2	FLT6) to the Co	prresponding I	RPn Pin bits		
	100010 = In 100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP34 put tied to RP33 put tied to RP33 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss	o' Fault Input 6 (FLT6) to the Co	orresponding F	RPn Pin bits		
	100010 = In 100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP34 put tied to RP33 put tied to RP33 ut tied to RP0 nted: Read as '0 : Assign PWM F put tied to Vss put tied to RP35	o' Fault Input 6 (FLT6) to the Co	orresponding I	RPn Pin bits		
	100010 = In 100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP34 put tied to RP33 put tied to RP33 ut tied to RP0 nted: Read as '0 .: Assign PWM F put tied to Vss put tied to RP35 put tied to RP34) 5 Fault Input 6 (FLT6) to the Co	orresponding F	RPn Pin bits		
	100010 = In 100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP34 put tied to RP33 put tied to RP33 ut tied to RP0 nted: Read as '0 •: Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (FLT6) to the Co	orresponding I	RPn Pin bits		
	100010 = In 100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP34 put tied to RP33 put tied to RP33 ut tied to RP0 nted: Read as '0 .: Assign PWM F put tied to Vss put tied to RP35 put tied to RP34	o' Fault Input 6 (FLT6) to the Co	orresponding f	RPn Pin bits		
	100010 = In 100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP34 put tied to RP33 put tied to RP33 ut tied to RP0 nted: Read as '0 •: Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (FLT6) to the Co	orresponding I	RPn Pin bits		
	100010 = In 100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP34 put tied to RP33 put tied to RP33 ut tied to RP0 nted: Read as '0 •: Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (FLT6) to the Co	orresponding I	RPn Pin bits		
bit 7-6 bit 5-0	100010 = In 100001 = In 100000 = In 00000 = Inp Unimplement FLT6R<5:0> 111111 = In 100011 = In 100010 = In 100001 = In 100000 = In	put tied to RP34 put tied to RP33 put tied to RP33 ut tied to RP0 nted: Read as '0 •: Assign PWM F put tied to Vss put tied to RP35 put tied to RP34 put tied to RP33	o' Fault Input 6 (FLT6) to the Co	orresponding F	RPn Pin bits		

DDINDAA, DEDIDUEDAL DIN CELECT INDUT DECISTED AA

	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—			SYNCI	1R<5:0>		
bit 15							bit
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—			FLT8	R<5:0>		
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15-14	Unimpleme	nted: Read as '	0'				
bit 13-8	-	:0>: Assign PW		e Base Externa	al Synchronizat	ion Signal to th	e
		ng RPn Pin bits		e Buee Extern			0
	111111 = In	put tied to Vss					
	100011 = In	put tied to RP35					
	100011 = In 100010 = In	put tied to RP35 put tied to RP34	1				
	100011 = ln 100010 = ln 100001 = ln	put tied to RP35 put tied to RP34 put tied to RP33	4 3				
	100011 = ln 100010 = ln 100001 = ln	put tied to RP35 put tied to RP34	4 3				
	100011 = ln 100010 = ln 100001 = ln	put tied to RP35 put tied to RP34 put tied to RP33	4 3				
	100011 = ln 100010 = ln 100001 = ln	put tied to RP35 put tied to RP34 put tied to RP33	4 3				
	100011 = In 100010 = In 100001 = In 100000 = In •	put tied to RP35 put tied to RP34 put tied to RP33 put tied to RP32	4 3				
	100011 = In 100010 = In 100001 = In 100000 = In • • •	put tied to RP35 put tied to RP34 put tied to RP33 put tied to RP32 ut tied to RP32	4 3 2				
bit 7-6	100011 = In 100010 = In 100001 = In • • • • • • • • • • • • • • • • • • •	put tied to RP35 put tied to RP33 put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as f	4 3 2 0'				
bit 7-6 bit 5-0	100011 = In 100010 = In 100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP35 put tied to RP34 put tied to RP33 put tied to RP32 ut tied to RP32 ut tied to RP0 nted: Read as '	4 3 2 0'	FLT8) to the Co	prresponding R	Pn Pin bits	
	100011 = In 100010 = In 100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP35 put tied to RP34 put tied to RP33 put tied to RP32 ut tied to RP0 nted: Read as find : Assign PWM Find put tied to Vss	1 3 2 0' =ault Input 8 (FLT8) to the Co	prresponding R	Pn Pin bits	
	100011 = In 100010 = In 100001 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP35 put tied to RP32 put tied to RP32 put tied to RP32 ut tied to RP0 nted: Read as ' : Assign PWM F put tied to Vss put tied to RP35	1 3 2 0' =ault Input 8 (5	FLT8) to the Co	prresponding R	Pn Pin bits	
	100011 = In 100010 = In 100001 = In	put tied to RP35 put tied to RP32 put tied to RP32 put tied to RP32 ut tied to RP0 nted: Read as ' : Assign PWM F put tied to Vss put tied to RP32 put tied to RP34	4 3 2 - ault Input 8 (5 4	FLT8) to the Co	prresponding R	Pn Pin bits	
	100011 = In 100010 = In 100001 = In	put tied to RP35 put tied to RP32 put tied to RP32 put tied to RP32 ut tied to RP32 ut tied to RP0 nted: Read as for the tied to Vss put tied to RP32 put tied to RP32 put tied to RP32	4 3 2 - ault Input 8 (5 4 3	FLT8) to the Co	orresponding R	Pn Pin bits	
	100011 = In 100010 = In 100001 = In	put tied to RP35 put tied to RP32 put tied to RP32 put tied to RP32 ut tied to RP0 nted: Read as ' : Assign PWM F put tied to Vss put tied to RP32 put tied to RP34	4 3 2 - ault Input 8 (5 4 3	FLT8) to the Co	orresponding R	Pn Pin bits	
	100011 = In 100010 = In 100001 = In	put tied to RP35 put tied to RP32 put tied to RP32 put tied to RP32 ut tied to RP32 ut tied to RP0 nted: Read as for the tied to Vss put tied to RP32 put tied to RP32 put tied to RP32	4 3 2 - ault Input 8 (5 4 3	FLT8) to the Co	orresponding R	Pn Pin bits	
	100011 = In 100010 = In 100001 = In	put tied to RP35 put tied to RP32 put tied to RP32 put tied to RP32 ut tied to RP32 ut tied to RP0 nted: Read as for the tied to Vss put tied to RP32 put tied to RP32 put tied to RP32	4 3 2 - ault Input 8 (5 4 3	FLT8) to the Co	orresponding R	Pn Pin bits	
	100011 = In 100010 = In 100000 = In • • • • • • • • • • • • • • • • • • •	put tied to RP35 put tied to RP32 put tied to RP32 put tied to RP32 ut tied to RP32 ut tied to RP0 nted: Read as for the tied to Vss put tied to RP32 put tied to RP32 put tied to RP32	4 3 2 - ault Input 8 (5 4 3	FLT8) to the Co	orresponding R	Pn Pin bits	

REGISTER 10-13: RPINR33: PERIPHERAL PIN SELECT INPUT REGISTER 33

REGISTER	10-14: RPINR	34: PERIPHI	ERAL PIN 5	ELECT INPU	II REGISTER	34	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_		—	—	_
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—			SYNC	I2R<5:0>		
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is ur			iown
bit 15-6	Unimplemen	ted: Read as '	0'				
bit 5-0	SYNCI2R<5:0)>: Assign PW	M Master Tim	e Base Extern	al Synchronizati	ion Signal to th	e
	Correspondin	g RPn Pin bits					
	111111 = Inp	ut tied to Vss					
	100011 = Inp	ut tied to RP35	5				
	100010 = Inp	ut tied to RP34	4				
	100001 = Inp	ut tied to RP33	3				

REGISTER 10-14: RPINR34: PERIPHERAL PIN SELECT INPUT REGISTER 34

•

00000 = Input tied to RP0

100000 = Input tied to RP32

REGISTER 10-15: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			RP1F	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			RPOF	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8	RP1R<5:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits
	(see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP0R<5:0>:** Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-16: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				RP3F	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP2F	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP3R<5:0>: Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP2R<5:0>: Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-17: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_			RP5F	२<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP4F	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP5R<5:0>:** Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 10-2 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP4R<5:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-18: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				RP7I	R<5:0>		
bit 15		•					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP6I	R<5:0>		
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-14	Unimpleme	nted: Read as '	0'				
bit 13-8	RP7R<5:0>:		put Function	is Assigned to F mbers)	RP7 Output Pir	n bits	
bit 7-6	Unimpleme	nted: Read as '	0'				
bit 5 0	PBCP - Fight - Derinhered Output Eurotion is Assigned to PDC Output Din hits						

bit 5-0 **RP6R<5:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-19: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			RP9	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			RP8	R<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	Writable bit U = Unimplemented bit, read as '0'				

'0' = Bit is cleared

bit 15-14 Unimplemented: Read as '0'

bit 13-8**RP9R<5:0>:** Peripheral Output Function is Assigned to RP9 Output Pin bits
(see Table 10-2 for peripheral function numbers)bit 7-6**Unimplemented:** Read as '0'

'1' = Bit is set

bit 5-0 **RP8R<5:0>:** Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.

n = Value at POR

x = Bit is unknown

REGISTER 10-20: RF	POR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5
--------------------	---

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			RP11	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP10	R<5:0>		
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP11R<5:0>: Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP10R<5:0>: Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_	RP13R<5:0>						
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP12R<5:0>						
bit 7							bit 0	

REGISTER 10-21: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

bit 13-8 **RP13R<5:0>:** Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP12R<5:0>:** Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-22: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—		RP15R<5:0>						
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	_	RP14R<5:0>						
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'			
-n = Value a	t POR	'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown						
bit 15-14	Unimplemer	nted: Read as '	0'						
bit 13-8		RP15R<5:0>: Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 10-2 for peripheral function numbers)							
bit 7-6	Unimplemented: Read as '0'								
bit 5-0	RP14R<5:0>: Peripheral Output Function is Assigned to RP14 Output Pin bits								

(see Table 10-2 for peripheral function numbers)

REGISTER 10-23: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	_		RP17R<5:0>						
bit 15	•						bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—			RP16	6R<5:0>				
bit 7	·						bit 0		
Legend:									
R = Readabl	le bit	W = Writable	W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at	t POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unk			nown				
bit 15-14	Unimpleme	nted: Read as '	0'						
bit 13-8	RP17R<5:0>: Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 10-2 for peripheral function numbers)								
bit 7-6	Unimplemented: Read as '0'								
bit 5-0	RP16R<5:0>: Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 10-2 for peripheral function numbers)								
Note 1: 1	This register is i	mplemented in c	IsPIC33FJ160	GS404 and dsP	PIC33FJ16GS5	04 devices only	<u>.</u>		

Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

REGISTER 10-24: RP	POR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9
--------------------	---

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP19R<5:0>					
bit 15							bit 8	

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP18R<5:0>					
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP19R<5:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP18R<5:0>: Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is implemented in dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—			RP21	R<5:0>			
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP20R<5:0>					
bit 7							bit 0	

REGISTER 10-25: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'	

bit 13-8 **RP21R<5:0>:** Peripheral Output Function is Assigned to RP21 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP20R<5:0>:** Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 10-2 for peripheral function numbers)

© 2009 Microchip Technology Inc.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_			RP23R<5:0>					
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—			RP22	R<5:0>			
bit 7							bit 0	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown	
bit 15-14	Unimplemen	ted: Read as '	0'					
bit 13-8	RP23R<5:0>: Peripheral Output Function is Assigned to RP23 Output Pin bits (see Table 10-2 for peripheral function numbers)							
bit 7-6	Unimplemen	Unimplemented: Read as '0'						
bit 5-0	RP22R<5:0>: Peripheral Output Function is Assigned to RP22 Output Pin bits							

Note 1: This register is implemented in dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—		RP25R<5:0>						
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	_			RP24	R<5:0>				
bit 7							bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-14	Unimpleme	ented: Read as '	0'						
bit 13-8		>: Peripheral Ou 10-2 for periphera		-	RP25 Output F	Pin bits			
bit 7-6	Unimpleme	ented: Read as '	0'						
bit 5-0	RP24R<5:0>: Peripheral Output Function is Assigned to RP24 Output Pin bits (see Table 10-2 for peripheral function numbers)								

REGISTER 10-27: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

(see Table 10-2 for peripheral function numbers)

Note 1: This register is implemented in dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

	-20. IN O							
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_			RP27R<5:0>					
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	_			RP26	R<5:0>			
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

REGISTER 10-28: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP27R<5:0>: Peripheral Output Function is Assigned to RP27 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP26R<5:0>: Peripheral Output Function is Assigned to RP26 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is implemented in dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_		RP29R<5:0>					
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_		RP28R<5:0>					
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bi	W = Writable bit $U = Unimplemented bit, read as '0'$					

R = Readable bit	w = whitable bit	O = Onimplemented bit, read	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP29R<5:0>: Peripheral Output Function is Assigned to RP29 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP28R<5:0>: Peripheral Output Function is Assigned to RP28 Output Pin bits (see Table 10-2 for peripheral function numbers)

Note 1: This register is implemented in dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—			RP33R<5:0>						
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_			RP32R<5:0>						
bit 7							bit (
Legend:									
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							

REGISTER 10-30: RPOR16: PERIPHERAL PIN SELECT OUTPUT REGISTER 16

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP33R<5:0>: Peripheral Output Function is Assigned to RP33 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP32R<5:0>: Peripheral Output Function is Assigned to RP32 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-31: RPOR17: PERIPHERAL PIN SELECT OUTPUT REGISTER 17

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP35R<5:0>					
bit 15							bit 8	

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—		RP34R<5:0>					
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP35R<5:0>:** Peripheral Output Function is Assigned to RP35 Output Pin bits (see Table 10-2 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP34R<5:0>:** Peripheral Output Function is Assigned to RP34 Output Pin bits (see Table 10-2 for peripheral function numbers)

11.0 TIMER1

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", Section 11. "Timers" (DS70205), which is available from the Microchip web site (www.microchip.com).

The Timer1 module is a 16-bit timer, which can serve as a time counter for the Real-Time Clock (RTC), or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low-power 32 kHz crystal oscillator available on the device
- Can be operated in Asynchronous Counter mode from an external clock source.
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

The unique features of Timer1 allow it to be used for Real-Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 11-1.

The Timer1 module can operate in one of the following modes:

• Timer mode

Counter

- · Gated Timer mode
- · Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:

- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

The timer control bit settings for different operating modes are given in the Table 11-1.

TABLE 11-1:	TIMER MODE SETTINGS				
Mode	TCS	TGATE	TSYNC		
Timer	0	0	x		
Gated Timer	0	1	x		
Synchronous Counter	1	x	1		
Asynchronous	1	x	0		

REGISTER	11-1: T1COI	N: TIMER1 C	ONTROL RI	EGISTER							
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON		TSIDL									
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
—	TGATE	TCKPS	S<1:0>		TSYNC	TCS	_				
bit 7							bit C				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own				
bit 15	TON: Timer1	On bit									
	1 = Starts 16- 0 = Stops 16-										
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	TSIDL: Stop in Idle Mode bit										
		ue module ope			lle mode						
		module operat		de							
bit 12-7	•	ted: Read as '									
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit										
	<u>When T1CS = 1:</u> This bit is ignored.										
	When T1CS :										
		ne accumulation ne accumulation									
bit 5-4		 Timer1 Input (a Salact hits							
	11 = 1:256										
	10 = 1:64										
	01 = 1:8 00 = 1:1										
bit 3		ted: Read as '	o'								
bit 2	-			chronization Se	elect hit						
	TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1:										
	1 = Synchronize external clock input										
	0 = Do not synchronize external clock input										
	When TCS = This bit is ign										
bit 1	•		Select bit								
bit 1	TCS: Timer1 Clock Source Select bit										
	1 = External clock from T1CK pin (on the rising edge) 0 = Internal clock (Fcy)										
			k pin (on the	nsing edge)							

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

12.0 TIMER2/3 FEATURES

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", Section 11. "Timers" (DS70205), which is available on the Microchip web site (www.microchip.com).

Timer2 is a Type B timer that offers the following major features:

• A Type B timer can be concatenated with a Type C timer to form a 32-bit timer

• External clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

Figure 12-1 shows a block diagram of the Type B timer.

Timer3 is a Type C timer that offers the following major features:

- A Type C timer can be concatenated with a Type B timer to form a 32-bit timer
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed before the prescaler

A block diagram of the Type C timer is shown in Figure 12-2.

Note: Timer3 is not available on all devices.

FIGURE 12-1: TYPE B TIMER BLOCK DIAGRAM (x = 2)

FIGURE 12-2: TYPE C TIMER BLOCK DIAGRAM (x = 3)

The Timer2/3 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous Counter mode, the input clock is derived from the external clock input at the TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 12-1.

TABLE 12-1: TIMER MODE SETTINGS

Mode	TCS	TGATE
Timer	0	0
Gated Timer	0	1
Synchronous Counter	1	x

12.1 16-Bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

12.2 32-Bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control (TxCON<3>) register must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

When configured for 32-bit operation, only the Type B Timer Control (TxCON) register bits are required for setup and control while the Type C Timer Control register bits are ignored (except the TSIDL bit).

For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The Timer2 and Timer 3 that can be combined to form a 32-bit timer are listed in Table 12-2.

TABLE 12-2: 32-BIT TIMER

Type B Timer (Isw)	Type C Timer (msw)
Timer2	Timer3

A block diagram representation of the 32-bit timer module is shown in Figure 12-3. The 32-timer module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode

To configure the features of Timer2/3 for 32-bit operation:

- 1. Set the T32 control bit.
- 2. Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3 contains the most significant word of the value, while PR2 contains the least significant word.
- 5. If interrupts are required, set the interrupt enable bit, T3IE. Use the priority bits, T3IP<2:0>, to set the interrupt priority. While Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2, which always contains the most significant word of the count, while TMR2 contains the least significant word.

REGISTER	12-1: TxCO	N: TIMER CC	NTROL RE	GISTER (x = 2	2)						
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON	—	TSIDL	_	—		—	—				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0				
_	TGATE	TCKP	S<1:0>	T32 ⁽¹⁾	_	TCS	_				
bit 7							bit				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value at	t POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15	TON: Timerx										
		1 (in 32-Bit Tim									
		bit TMRx:TMR	•								
	 0 = Stops 32-bit TMRx:TMRy timer pair When T32 = 0 (in 16-Bit Timer mode): 										
	1 = Starts 16-bit timer										
	0 = Stops 16-	bit timer									
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	TSIDL: Stop in Idle Mode bit										
	1 = Discontinue timer operation when device enters Idle mode										
	0 = Continue	timer operation	n in Idle mode	9							
bit 12-7	Unimplemen	ted: Read as '	0'								
bit 6	TGATE: Timerx Gated Time Accumulation Enable bit										
	When TCS = 1:										
	This bit is ignored.										
	When TCS = 0:										
	 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled 										
bit 5-4		: Timerx Input		la Salact hits							
Dit 3-4		•	CIUCK I TESCO	lie Gelect bits							
	11 = 1:256 prescale value 10 = 1:64 prescale value										
	01 = 1.8 prescale value										
	00 = 1:1 pres	cale value									
bit 3	T32: 32-Bit Timerx Mode Select bit										
		d TMRy form a d TMRy form s		t timer							
bit 2	Unimplemen	ted: Read as '	0'								
bit 1	TCS: Timerx	Clock Source	Select bit								
	1 = External o	clock from TxC	K pin								
	0 = Internal c	lock (Fosc/2)									
		ted: Read as '									

REGISTER 12-1: TxCON: TIMER CONTROL REGISTER (x = 2)

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON ⁽²⁾	—	TSIDL ⁽¹⁾	_	—	_	—				
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0			
	TGATE ⁽²⁾	TCKPS<	<1:0>(²)		—	TCS ⁽²⁾	—			
bit 7							bit (
Legend:										
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own			
bit 15	TON: Timery	On bit ⁽²⁾								
	1 = Starts 16-									
	0 = Stops 16-	•								
bit 14	-	ted: Read as 'c								
bit 13		n Idle Mode bit								
		ue timer operati timer operation			mode					
bit 12-7		ted: Read as 'c		-						
bit 6	TGATE: Time	ery Gated Time	Accumulatio	n Enable bit ⁽²⁾						
	When TCS =									
	When TCS = 0 :									
	 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled 									
bit 5-4				le Select bits ⁽²⁾)					
	TCKPS<1:0>: Timery Input Clock Prescale Select bits ⁽²⁾ 11 = 1:256 prescale value									
	10 = 1:64 pre									
	01 = 1:8 pres									
	00 = 1:1 pres									
bit 3-2	•	ted: Read as 'c								
bit 1	-	Clock Source S								
	1 = External o 0 = Internal cl	clock from TxCk	K pin							
bit 0		ted: Read as 'c)'							

REGISTER 12-2: TyCON: TIMER CONTROL REGISTER (y = 3)

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, these bits have no effect.

NOTES:

13.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", Section 12. "Input Capture" (DS70198), which is available Microchip on the web site (www.microchip.com).

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices support up to two input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
- Capture timer value on every edge (rising and falling)
- Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select one of the two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Use of input capture to provide additional sources of external interrupts

FIGURE 13-1: INPUT CAPTURE BLOCK DIAGRAM

13.1 Input Capture Registers

REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
	_	ICSIDL	—	—	_	_	_			
bit 15	·					· · · ·	bit 8			
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0			
ICTMR	IC	CI<1:0>	ICOV	ICBNE		ICM<2:0>				
bit 7							bit (
Legend:		HC = Hardwar	e Clearable bit							
R = Readable	bit	W = Writable b	bit	U = Unimple	mented bit, re	ad as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own			
bit 15-14	Unimpleme	ented: Read as '0	,							
bit 13	ICSIDL: Inp	ut Capture Modul	e Stop in Idle (Control bit						
	1 = Input capture module halts in CPU Idle mode									
	-	pture module cor	-	ate in CPU Idle	mode					
bit 12-8	-	ented: Read as '0								
bit 7	ICTMR: Input Capture Timer Select bits									
	 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event 									
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits									
	 11 = Interrupt on every fourth capture event 10 = Interrupt on every third capture event 									
	01 = Interrupt on every second capture event									
	00 = Interru	pt on every captu	re event							
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)									
	 1 = Input capture overflow occurred 0 = No input capture overflow occurred 									
1.11.0	•									
bit 3	ICBNE: Input Capture Buffer Empty Status bit (read-only)									
	 1 = Input capture buffer is not empty, at least one more capture value can be read 0 = Input capture buffer is empty 									
bit 2-0	•	•	. ,							
5112 0	ICM<2:0>: Input Capture Mode Select bits 111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode. Rising edge									
	detect-only, all other control bits are not applicable.									
	110 = Unused (module disabled)									
	101 = Capture mode, every 16th rising edge 100 = Capture mode, every 4th rising edge									
		ure mode, every r								
		ure mode, every f								
		ure mode, every e	edge (rising and	d falling). ICI<1	:0> bits do no	ot control interrup	pt generatio			
		is mode.	urpod off							
	000 = Input capture module turned off									

14.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", Section 13. "Output Compare" (DS70209), which is available on the Microchip web site (www.microchip.com).

The output compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

The output compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- · Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without Fault Protection
- PWM mode with Fault Protection

FIGURE 14-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

14.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 14-1 lists the different bit settings for the Output Compare modes. Figure 14-2 illustrates the output compare operation for various modes. The user

TABLE 14-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

Note: Refer to Section 13. "Output Compare" in the "dsPIC33F Family Reference Manual" (DS7029) for OCxR and OCxRS register restrictions.

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation		
000	Module Disabled	Controlled by GPIO register	_		
001	Active-Low One-Shot	0	OCx rising edge		
010	Active-High One-Shot	1	OCx falling edge		
011	Toggle	Current output is maintained	OCx rising and falling edge		
100	Delayed One-Shot	0	OCx falling edge		
101	Continuous Pulse	0	OCx falling edge		
110	PWM without Fault Protection	ʻ0', if OCxR is zero ʻ1', if OCxR is non-zero	No interrupt		
111	PWM with Fault Protection	ʻ0', if OCxR is zero ʻ1', if OCxR is non-zero	OCFA falling edge for OC1 to OC4		

FIGURE 14-2: OUTPUT COMPARE OPERATION

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
	_	OCSIDL		—	_	_	_				
bit 15							bit 8				
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0				
	—	—	OCFLT	OCTSEL		OCM<2:0>					
bit 7							bit (
Legend:		HC = Hardware	Clearable bit								
R = Readat	ole bit	W = Writable bit	t	U = Unimple	mented bit, r	ead as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15-14	Unimpleme	ented: Read as '0'									
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit										
	 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode 										
bit 12-5	-	ented: Read as '0'	-		ue						
bit 4	-										
	OCFLT: PWM Fault Condition Status bit 1 = PWM Fault condition has occurred (cleared in hardware only)										
	0 = NO PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)										
bit 3	OCTSEL: (OCTSEL: Output Compare Timer Select bit									
	1 = Timer3 is the clock source for Compare x										
	0 = Timer2	is the clock source	e for Compare >	K							
bit 2-0		OCM<2:0>: Output Compare Mode Select bits									
		111 = PWM mode on OCx, Fault pin enabled									
		110 = PWM mode on OCx, Fault pin disabled101 = Initialize OCx pin low, generate continuous output pulses on OCx pin									
		lize OCx pin low, g				pin					
		pare event toggles		earpar paice of	i e en più						
		lize OCx pin high,									
		lize OCx pin low, o		forces OCx pin	high						
	000 = Output compare channel is disabled										

REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

NOTES:

15.0 HIGH-SPEED PWM

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", Section 43. "High-Speed PWM" (DS70323), which is available on the Microchip web site (www.microchip.com).

The high-speed PWM module on the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/ X04 devices supports a wide variety of PWM modes and output formats. This PWM module is ideal for power conversion applications, such as:

- AC/DC Converters
- DC/DC Converters
- Power Factor Correction(PFC)
- Uninterruptible Power Supply (UPS)
- Inverters
- Battery Chargers
- Digital Lighting

15.1 Features Overview

The high-speed PWM module incorporates the following features:

- 2-4 PWM generators with 4-8 outputs
- Individual time base and duty cycle for each of the eight PWM outputs
- Dead time for rising and falling edges:
- Duty cycle resolution of 1.04 ns at 40 MIPS
- · Dead-time resolution of 1.04 ns at 40 MIPS
- · Phase shift resolution of 1.04 ns at 40 MIPS
- Frequency resolution of 1.04 ns at 40 MIPS
- PWM modes supported:
 - Standard Edge-Aligned
 - True Independent Output
 - Complementary
 - Center-Aligned
 - Push-Pull
 - Multiphase
 - Variable Phase
 - Fixed Off-Time
 - Current Reset
 - Current-Limit
- Independent Fault/Current-Limit inputs for each of the eight PWM outputs
- Output override control
- · Special Event Trigger
- PWM capture feature
- Prescaler for input clock

- Dual trigger from PWM to ADC
- PWMxH, PWMxL output pin swapping
- PWM4H, PWM4L pins remappable
- On-the-fly PWM frequency, duty cycle and phase shift changes
- Disabling of Individual PWM generators to reduce power consumption
- · Leading-Edge Blanking (LEB) functionality

Note:	Duty cycle, dead-time, phase shift and								
	frequency resolution is 8.32 ns in								
	Center-Aligned PWM mode.								

Figure 15-1 conceptualizes the PWM module in a simplified block diagram. Figure 15-2 illustrates how the module hardware is partitioned for each PWM output pair for the Complementary PWM mode. Each functional unit of the PWM module is discussed in subsequent sections.

The PWM module contains four PWM generators. The module has up to eight PWM output pins: PWM1H, PWM1L, PWM2H, PWM2L, PWM3H, PWM3L, PWM4H and PWM4L. For complementary outputs, these eight I/O pins are grouped into H/L pairs.

15.2 Feature Description

The PWM module is designed for applications that require:

- High-resolution at high PWM frequencies
- The ability to drive Standard, Edge-Aligned, Center-Aligned Complementary mode, and Push-Pull mode outputs
- The ability to create multiphase PWM outputs

For Center-Aligned mode, the duty cycle, period phase and dead-time resolutions will be 8 ns.

Two common, medium power converter topologies are push-pull and half-bridge. These designs require the PWM output signal to be switched between alternate pins, as provided by the Push-Pull PWM mode.

Phase-shifted PWM describes the situation where each PWM generator provides outputs, but the phase relationship between the generator outputs is specifiable and changeable.

Multiphase PWM is often used to improve DC/DC converter load transient response, and reduce the size of output filter capacitors and inductors. Multiple DC/DC converters are often operated in parallel, but phase-shifted in time. A single PWM output operating at 250 kHz has a period of 4 μ s, but an array of four PWM channels, staggered by 1 μ s each, yields an effective switching frequency of 1 MHz. Multiphase PWM applications typically use a fixed-phase relationship.

Variable phase PWM is useful in Zero Voltage Transition (ZVT) power converters. Here, the PWM duty cycle is always 50%, and the power flow is controlled by varying the relative phase shift between the two PWM generators.

FIGURE 15-2: PARTITIONED OUTPUT PAIR, COMPLEMENTARY PWM MODE

15.3 Control Registers

The following registers control the operation of the high-speed PWM module.

- PTCON: PWM Time Base Control Register
- PTCON2: PWM Clock Divider Select Register
- PTPER: PWM Master Time Base Register(1)
- SEVTCMP: PWM Special Event Compare Register
- MDC: PWM Master Duty Cycle Register
- PWMCONx: PWMx Control Register
- PDCx: PWMx Generator Duty Cycle Register
- PHASEx: PWMx Primary Phase Shift Register (PHASEx Register provides the local time base period for PWMxH)
- DTRx: PWMx Dead-Time Register
- ALTDTRx: PWMx Alternate Dead-Time Register

- SDCx: PWMx Secondary Duty Cycle Register
- SPHASEx: PWMx Secondary Phase Shift Register (Provides the local time base for PWMxL)
- TRGCONx: PWMx Trigger Control Register
- IOCONx: PWMx I/O Control Register
- FCLCONx: PWMx Fault Current-Limit Control Register
- TRIGx: PWMx Primary Trigger Compare Value Register
- STRIGx: PWMx Secondary Trigger Compare Value Register
- LEBCONx: Leading-Edge Blanking Control Register
- PWMCAPx: Primary PWMx Time Base Capture Register

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTEN		PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹		
bit 15							bit 8		
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SYNCEN ⁽¹⁾	—	SYNCSF	RC<1:0> ⁽¹⁾		SEV	TPS<3:0> ⁽¹⁾			
bit 7							bit (
Legend:		HC = Hardwar	e Clearable bit	HS = Hard	ware Settabl	e bit			
R = Readable	bit	W = Writable b	bit	U = Unimp	lemented bit	, read as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is o	cleared	x = Bit is unkr	nown		
bit 15		Module Enable	bit						
		odule is enabled							
bit 14	Unimplemer	nted: Read as '0	,						
bit 13	PTSIDL: PW	/M Time Base St	op in Idle Mode	bit					
		e base halts in C							
L:1 40		e base runs in C							
bit 12		ecial Event Interr	-						
		event interrupt is							
bit 11	SEIEN: Special Event Interrupt Enable bit								
		event interrupt is							
		event interrupt is		(1)					
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾ 1 = Active Period register is updated immediately								
					oundaries				
bit 9	 a Active Period register updates occur on PWM cycle boundaries SYNCPOL: Synchronization Input/Output Polarity bit⁽¹⁾ 								
	1 = SYNCIx a	and SYNCO pola and SYNCO are	arity is inverted						
bit 8		Primary Time Ba	-	e bit ⁽¹⁾					
	1 = SYNCO	output is enabled	t t						
		output is disable			(4)				
bit 7		kternal Time Bas							
		synchronization synchronization							
bit 6		nted: Read as '0			lou				
bit 5-4	-	1:0>: Synchrono		ction bits ⁽¹⁾					
	00 = SYNCI 1	1							
	01 = SYNCI2								
	10 = Reserve								
bit 3-0		0>: PWM Specia	l Event Trigger	Output Posts	caler Select	bits(1)			
	0000 = 1:1 F	Postscaler genera	ates a Special E	vent Trigger	on every cor	npare match eve			
	•								
	•								
	1111 = 1:16 	Postscaler genera	ates a Special Ev	ent Trigger tri	gger on every	sixteenth compa	are match ever		
Note 1: Th	nese bits should	d be changed on	ly when PTEN =	o. In additio	n, when usin	g the SYNCIx fe	ature, the use		

REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.

-							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	—	—	—	PCLKDIV<2:0> ⁽¹⁾		
bit 7		•					bit 0
Legend:							
R = Readable b	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

REGISTER 15-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER

bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾

000 = Divide by 1, maximum PWM timing resolution (power-on default)

001 = Divide by 2, maximum PWM timing resolution

010 = Divide by 4, maximum PWM timing resolution 011 = Divide by 8, maximum PWM timing resolution

100 =Divide by 16, maximum PWM timing resolution

101 = Divide by 32, maximum PWM timing resolution

10 = Divide by 62, maximum PWM timing resolution

- 111 = Reserved
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 15-3: PTPER: PWM MASTER TIME BASE REGISTER⁽¹⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R <15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	R <7:0>			
bit 7							bit 0
Legend:							
R = Readable	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknow			nown		

bit 15-0 **PTPER<15:0>:** PWM Master Time Base (PMTMR) Period Value bits

Note 1: The minimum value that can be loaded into the PTPER register is 0x0010 and the maximum value is 0xFFF8.

© 2009 Microchip Technology Inc.

REGISTER 15-4: SEVTCMP: PWM SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTC	MP <15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	SE	EVTCMP <7:3>			—	_	_
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
<u> </u>							

bit 15-3SEVTCMP<15:3>: Special Event Compare Count Value bitsbit 2-0Unimplemented: Read as '0'

REGISTER 15-5: MDC: PWM MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
R/W-U	R/W-U	R/W-U	R/W-0	R/W-0	R/W-0	R/W-U	R/W-U
			MDC	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MD	C<7:0>			
bit 7							bit C
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 MDC<15:0>: Master PWM Duty Cycle Value bits

Note 1: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period – 0x0008.

2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSB.

HS/HC-0	HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT ⁽¹⁾	CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽³⁾	MDCS ⁽³⁾
bit 15			1		1	1	bit 8
R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
DTC<	<1:0>	—	—	—	CAM ^(2,3)	XPRES ⁽⁴⁾	IUE
bit 7							bit 0
Legend:		HC = Hardware	Clearable bit		are Settable b		
R = Readable	bit	W = Writable bit		U = Unimple	mented bit, re	ad as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unl	known
bit 15		ault Interrupt State rrupt is pending	us bit ⁽¹⁾				
		interrupt is pendin		eared by setting	g FLTIEN = 0.		
bit 14		urrent-Limit Interru	-				
		mit interrupt is per					
h# 40		nt-limit interrupt is		DIT IS Cleared by	setting CLIEP	N = 0.	
bit 13		igger Interrupt Staterrupt is pending	atus dit				
		r interrupt is pending	ina. This bit is c	cleared by setti	na TRGIEN =	0.	
bit 12		ult Interrupt Enabl	•				
		rrupt is enabled					
	0 = Fault inte	rrupt is disabled a	nd the FLTSTA	T bit is cleared			
bit 11	CLIEN: Cur	rent-Limit Interrup	t Enable bit				
		mit interrupt enab mit interrupt disab		STAT bit is clea	ared		
bit 10	TRGIEN: Trig	ger Interrupt Ena	ble bit				
		event generates a vent interrupts are			it is cleared		
bit 9	ITB: Indepe	ndent Time Base	Mode bit ⁽³⁾				
		SPHASEx registe			r this PWM ge	enerator	
bit 8	MDCS: Mas	ter Duty Cycle Re	gister Select bi	it ⁽³⁾			
		ster provides duty Cx register provid				erator	
bit 7-6	DTC<1:0>: D	ead-Time Control	bits				
	01 = Negative	dead time activel e dead time active ne function is disa ed	ely applied for a				
bit 5-3	Unimplemen	ted: Read as '0'					
Note 1: So	ftware must cle	ear the interrupt st	atus here and t	he correspond	ing IFS bit in t	ne interrupt co	ontroller.
2: Th		Time Base mode		-	-	-	

REGISTER 15-6: PWMCONx: PWMx CONTROL REGISTER

- CAM bit is ignored. **3:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will
- yield unpredictable results.
 4: To operate in External Period Reset mode, configure FCLCONx<CLMOD> = 0 and PWMCONx<ITB> = 1.
- © 2009 Microchip Technology Inc.

REGISTER 15-6: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

- bit 2 **CAM:** Center-Aligned Mode Enable bit^(2,3) 1 = Center-Aligned mode is enabled 0 = Center-Aligned mode is disabled
- bit 1 XPRES: External PWM Reset Control bit⁽⁴⁾
 - 1 = Current-limit source resets time base for this PWM generator if it is in Independent Time Base mode
 - 0 = External pins do not affect PWM time base
- bit 0 **IUE:** Immediate Update Enable bit
 - 1 = Updates to the active MDC/PDCx/SDCx registers are immediate
 - 0 = Updates to the active MDC/PDCx/SDCx registers are synchronized to the PWM time base
 - Note 1: Software must clear the interrupt status here and the corresponding IFS bit in the interrupt controller.
 - 2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
 - **3:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.
 - 4: To operate in External Period Reset mode, configure FCLCONx<CLMOD> = 0 and PWMCONx<ITB> = 1.

REGISTER 15-7: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	Cx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 PDCx<15:0>: PWM Generator # Duty Cycle Value bits

- **Note 1:** In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of 0xFFEF.
 - 2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSB.

REGISTER 15-8: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.00-0	1	1.0.00-0	-	-	10.00-0	10.00-0	10.00-0
			SDC	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDC	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit		U = Unimpler	mented bit, read	l as '0'	

bit 15-0 **SDCx<15:0>:** Secondary Duty Cycle for PWMxL Output Pin bits

'1' = Bit is set

Note 1: The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle. The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of 0xFFEF.

2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSB.

'0' = Bit is cleared

-n = Value at POR

x = Bit is unknown

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	SEx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 **PHASEx<15:0>:** PWM Phase Shift Value or Independent Time Base Period for this PWM Generator bits

Note 1: If PWMCONx<ITB> = 0, the following applies based on the mode of operation:

- Complementary, Redundant and Push-Pull Output mode (IOCONx<PMOD> = 00, 01, or 10) PHASEx<15:0> = Phase shift value for PWMxH and PWMxL outputs
- True Independent Output mode (IOCONx<PMOD> = 11) PHASEx<15:0> = Phase shift value for PWMxL only
- **2:** If PWMCONx<ITB> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant, and Push-Pull Output mode (IOCONx<PMOD> = 00, 01, or 10) PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL
 - True Independent Output mode (IOCONx<PMOD> = 11) PHASEx<15:0> = Independent time base period value for PWMxL only
 - The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period - 0x0008.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SPHASE	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SPHAS	Ex<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at P		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	own
bit 15-0		5:0>: Secondar bendent PWM i	5	et for PWMxL (Output Pin bits		
Note 1: If P	WMCONx <ite< td=""><td>B> = 0, the follo</td><td>wing applies</td><td>based on the n</td><td>node of operation</td><td>on:</td><td></td></ite<>	B> = 0, the follo	wing applies	based on the n	node of operation	on:	
	Complementer	v Dodundant o	nd Duch Dull				
	SPHASEx<15:	•	ina Push-Puli	Output mode (IOCONx <pmo< td=""><td>D> = 00, 01, 0</td><td>10)</td></pmo<>	D> = 00, 01, 0	10)
•	SPHASEx<15:	0> = Not used			PHASEx<15:0>		
• -	SPHASEx<15: True Independe PWMxL only	0> = Not used ent Output mod	le (IOCONx <f< td=""><td>PMOD> = 11) F</td><td></td><td>= Phase shift</td><td></td></f<>	PMOD> = 11) F		= Phase shift	
• - 2: If P • (SPHASEx<15: True Independe PWMxL only PWMCONx <ite< td=""><td>0> = Not used ent Output moc 3> = 1, the follc y, Redundant a</td><td>le (IOCONx<f owing applies</f </td><td>PMOD> = 11) F</td><td>PHASEx<15:0></td><td>= Phase shift</td><td>value for</td></ite<>	0> = Not used ent Output moc 3> = 1, the follc y, Redundant a	le (IOCONx <f owing applies</f 	PMOD> = 11) F	PHASEx<15:0>	= Phase shift	value for

© 2009 Microchip Technology Inc.

REGISTER 15-11: DTRx: PWMx DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	_	DTRx<13:8>							
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			DTF	x<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, rea	id as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 15-12: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	_		ALTDTRx<13:8>							
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			ALTD1	「R <7:0>						
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable b	oit	U = Unimplem	ented bit, read	l as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown			

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

bit 15 R/W-0 DTM ⁽¹⁾ bit 7 Legend: R = Readable -n = Value at F bit 15-12	POR	<3:0> R/W-0 W = Writable I 1' = Bit is set	R/W-0		— R/W-0 TRT<5:0>	— R/W-0	— bit t R/W-0 bit t
R/W-0 DTM ⁽¹⁾ bit 7 Legend: R = Readable -n = Value at F	bit POR	W = Writable I		TRGST		R/W-0	R/W-0
DTM ⁽¹⁾ bit 7 Legend: R = Readable -n = Value at F	bit POR	W = Writable I		TRGST		R/W-0	
DTM ⁽¹⁾ bit 7 Legend: R = Readable -n = Value at F	bit POR	W = Writable I		TRGST		R/W-0	
bit 7 Legend: R = Readable -n = Value at F	POR		Dit		RT<5:0>		bit
Legend: R = Readable -n = Value at F	POR		pit	U = Unimpler			bit
R = Readable -n = Value at F	POR		oit	U = Unimpler			
-n = Value at F	POR		oit	U = Unimpler			
		1' = Bit is set		e enimpier	nented bit, read	as '0'	
bit 15-12	TRGDIV<3:0>			'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-12	TRGDIV<3:0>						
		Trigger # Out	put Divider b	oits			
	0000 = Trigge r	output for eve	ery trigger ev	vent			
	0001 = Trigger						
	0010 = Trigger						
	0011 = Trigger						
	0100 = Trigger						
	0101 = Trigger						
	0110 = Trigger 0111 = Trigger						
	1000 = Trigger						
	1000 = Trigger						
	1010 = Trigger						
	1011 = Trigger						
	1100 = Trigger						
	1101 = Trigger						
	1110 = Trigger	output for eve	ery 15th trigg	jer event			
	1111 = Trigger	output for eve	ery 16th trigg	jer event			
bit 11-8	Unimplemente	ed: Read as 'd)'				
bit 7	DTM: Dual Trig	ger Mode bit ⁽	1)				
	1 = Secondary	/ trigger event	is combined	with the primar	ry trigger event	to create the P\	VM trigger.
		/ trigger event ate PWM trigg		ned with the prir erated.	mary trigger eve	ent to create the	PWM trigge
bit 6	Unimplemente	ed: Read as 'o)'				
bit 5-0	TRGSTRT<5:0	>: Trigger Po	stscaler Starl	t Enable Select	bits		
				nerating the first		fter the module	is enabled
	000001 = Wai t	1 PWM cycle	s before gen	nerating the first nerating the first	trigger event a	fter the module	is enabled
	•						
	•						
	•						
	111111 = Wai t	63 PWM cvc	les before ae	enerating the fire	st trigger event :	after the module	e is enabled

REGISTER 15-13: TRGCONx: PWMx TRIGGER CONTROL REGISTER

Note 1: The secondary generator cannot generate PWM trigger interrupts.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PENH	PENL	POLH	POLL	PMOD	<1:0> (1)	OVRENH	OVRENL		
pit 15				•			bit		
D 444 0		5444.0	D 444 A	D 444 0	D 444 0	5444.0			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	DAT<1:0>	FLIDA	\T<1:0>	CLDA	T<1:0>	SWAP	OSYNC		
bit 7							bit		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'			
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15	1 = PWM mo	dule controls F	•						
bit 14	PENL: PWM 1 = PWM mod	 0 = GPIO module controls PWMxH pin PENL: PWML Output Pin Ownership bit 1 = PWM module controls PWMxL pin 0 = GPIO module controls PWMxL pin 							
bit 13	POLH: PWN 1 = PWMxH p	 POLH: PWMH Output Pin Polarity bit 1 = PWMxH pin is active-low 0 = PWMxH pin is active-high 							
bit 12	POLL: PWML Output Pin Polarity bit 1 = PWMxL pin is active-low 0 = PWMxL pin is active-high								
bit 11-10	00 = PWM I/0 01 = PWM I/0 10 = PWM I/0	D pin pair is in D pin pair is in D pin pair is in	the Redundan the Push-Pull	entary Output m t Output mode Output mode					
bit 9	1 = OVRDAT	 11 = PWM I/O pin pair is in the True Independent Output mode OVRENH: Override Enable for PWMxH Pin bit 1 = OVRDAT<1> provides data for output on PWMxH pin 0 = PWM generator provides data for PWMxH pin 							
bit 8	1 = OVRDAT	OVRENL: Override Enable for PWMxL Pin bit 1 = OVRDAT<0> provides data for output on PWMxL pin 0 = PWM generator provides data for PWMxL pin							
bit 7-6	If OVERENH	= 1 then OVR	DAT<1> provid	WMxL Pins if O des data for PW les data for PW	/MxH.	bled bits			
bit 5-4	FCLCONx <if If Fault active If Fault active</if 	LTMOD> = 0: , then FLTDAT , then FLTDAT	Normal Fault	data for PWMx data for PWMx	H.	bled bits			
		t active, then F		ovides data for					

REGISTER 15-14: IOCONX: PWMx I/O CONTROL REGISTER

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 15-14: IOCONX: PWMx I/O CONTROL REGISTER (CONTINUED)

CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMODE is Enabled bits							
FCLCONx <ifltmod> = 0: Normal Fault mode:</ifltmod>							
If current-limit active, then CLDAT<1> provides data for PWMxH. If current-limit active, then CLDAT<0> provides data for PWMxL.							
<u>FCLCONx<ifltmod> = 1: Independent Fault mode:</ifltmod></u> CLDAT<1:0> is ignored.							
SWAP<1:0>: SWAP PWMxH and PWMxL pins 1 = PWMxH output signal is connected to PWMxL pin and PWMxL signal is connected to PWMxH pins 0 = PWMxH and PWMxL pins are mapped to their respective pins							
OSYNC: Output Override Synchronization bit 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base 0 = Output overrides via the OVDDAT<1:0> bits occur on next CPU clock boundary							

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IFLTMOD	CLSRC<4:0>			2,3)		CLPOL ⁽¹⁾	CLMOD			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F	LTSRC<4:0>(2,3)		FLTPOL ⁽¹⁾	FLTMO	D<1:0>			
bit 7							bit			
Legend:										
R = Readable b	t	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'				
-n = Value at PC	R	'1' = Bit is set			eared	x = Bit is unknown				
		ndependent Fau								
		ndent Fault mode								
		LTDAT<0> to PV								
		Fault mode: Cu								
	•	The PWM Fault	•				•			
	CLSRC<4:0>: Current-Limit Control Signal Source Select for PWM # Generator bits ^(2,3)									
	00000 = Fault 1									
	00001 = Fault 2 00010 = Fault 3									
	00010 = Fault 3 00011 = Fault 4									
	00011 = Fault 4 00100 = Fault 5									
	00101 = Fault 6									
	00110 = Fault 7									
	00111 = Fa	ult 8								
	01000 = Reserved									
	•									
	•									
	•									
	11111 = Reserved									
bit 9	CLPOL: Current-Limit Polarity for PWM Generator # bit ⁽¹⁾									
	1 = The selected current-limit source is active-low									
	0 = The selected current-limit source is active-high									
bit 8	CLMOD: Current-Limit Mode Enable bit for PWM Generator # bit									
	1 = Current-limit function is enabled									
	0 = Current-	-limit function is c	lisabled							
		Ild be changed c	only when PT	EN = 0. Chan	ging the clock s	election during	operation w			
-	l unpredicta									
(CLS	When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mod (CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unuse Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.									
						· · · · · · · · ·				

REGISTER 15-15: FCLCONX: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER

3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

REGISTER 15-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)

bit 7-3	FLTSRC<4:0>: Fault Control Signal Source Select for PWM Generator # bits ^(2,3)
	00000 = Fault 1
	00001 = Fault 2
	00010 = Fault 3
	00011 = Fault 4
	00100 = Fault 5
	00101 = Fault 6
	00110 = Fault 7
	00111 = Fault 8
	01000 = Reserved
	•
	•
	•
	11111 = Reserved
bit 2	FLTPOL: Fault Polarity for PWM Generator # bit ⁽¹⁾
	1 = The selected Fault source is active-low
	0 = The selected Fault source is active-high
bit 1-0	FLTMOD<1:0>: Fault Mode for PWM Generator # bits
	00 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)
	01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)
	10 = Reserved

- 11 = Fault input is disabled
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.
 - 2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.
 - **3:** When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode (FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.

REGISTER 15-16: TRIGX: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGCI	MP<15:8>			
bit 15							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		TRGCMP<7:3>			_	_	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown	

bit 15-3	TRGCMP<15:3>: Trigger Control Value bits
	When primary PWM functions in local time base, this register contains the compare values that can
	trigger the ADC module.
bit 2-0	Unimplemented: Read as '0'

REGISTER 15-17: STRIGX: PWMx SECONDARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			STRGC	MP<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
	S	STRGCMP<7:3>	•		—	—	—		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'						
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-3	STRGCMP<15:3>: Secondary Trigger Control Value bits								
	When secor	ndary PWM func	tions in local t	time base, this re	egister contains	the compare va	alues that can		
	trigger the A	DC module.							

bit 2-0 Unimplemented: Read as '0'
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	LEB<	9:8>
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		LEB<7:3>			_	—	_
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 14 bit 13	1 = Falling ec 0 = LEB igno PLR: PWML	Falling Edge T Ige of PWMxH res falling edge Rising Edge Tr ge of PWMxL v	will trigger LE of PWMxH igger Enable vill trigger LE	EB counter bit			
	0 = LEB igno	•••					
bit 12	0 = LEB igno PLF: PWML 1 = Falling ec	res rising edge Falling Edge Tr Ige of PWMxL res falling edge	igger Enable will trigger LE				
bit 12 bit 11	0 = LEB igno PLF: PWML 1 = Falling ec 0 = LEB igno FLTLEBEN: 1 = Leading-e	Falling Edge Tr Ige of PWMxL res falling edge Fault Input LEE edge blanking is	igger Enable will trigger LE of PWMxL Enable bit s applied to s				
	0 = LEB igno PLF: PWML 1 = Falling ed 0 = LEB igno FLTLEBEN: 1 = Leading-e CLLEBEN: C 1 = Leading-e	Falling Edge Tr Ige of PWMxL res falling edge Fault Input LEE edge blanking is edge blanking is current-Limit LE edge blanking is	igger Enable will trigger LE of PWMxL Enable bit s applied to s s not applied B Enable bit s applied to s	B counter elected Fault in	lt input limit input		
bit 11	0 = LEB igno PLF: PWML 1 = Falling ec 0 = LEB igno FLTLEBEN: 1 = Leading-e 0 = Leading-e 0 = Leading-e LEB: Leading	Falling Edge Tr Ige of PWMxL res falling edge Fault Input LEE edge blanking is current-Limit LE edge blanking is edge blanking is	igger Enable will trigger LE of PWMxL Enable bit s applied to s s not applied B Enable bit s applied to s s not applied	B counter elected Fault in to selected Fau elected current-	lt input limit input ent-limit input		

REGISTER 15-18: LEBCONx: LEADING-EDGE BLANKING CONTROL REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PWMCA	\P<15:8> ^(1,2)			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	U-0	U-0	U-0
	P۱	VMCAP<7:3> ^(1,2))		_	_	_
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	lown	

bit 15-3 **PWMCAP<15:3>:** Captured PWM Time Base Value bits^(1,2) The value in this register represents the captured PWM time base value when a leading edge is detected on the current-limit input.

bit 2-0 Unimplemented: Read as '0'

Note 1: The capture feature is only available on primary output (PWMxH).

2: This feature is active only after LEB processing on the current-limit input signal is complete.

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", Section 18. "Serial Peripheral Interface (SPI)" (DS70206), which is available on the Microchip web site (www.microchip.com).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters and so on. The SPI module is compatible with SPI and SIOP from Motorola[®].

The SPI module consists of a 16-bit shift register, SPIxSR (where x = 1), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of the following four pins:

- SDIx (Serial Data Input)
- SDOx (Serial Data Output)
- SCKx (Shift Clock Input Or Output)
- SSx (Active-Low Slave Select).

In Master mode operation, SCK is a clock output; in Slave mode, it is a clock input.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
SPIEN		SPISIDL	—			_				
bit 15							bit 8			
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0			
	SPIROV	<u> </u>		—		SPITBF	SPIRBF			
bit 7	bi									
Logondi		C - Clearable	hit							
Legend: R = Readab	lo hit	C = Clearable			monted bit read	d aa 'O'				
		W = Writable		-	mented bit, read					
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	IOWN			
bit 15	SPIEN: SPIX	Enable bit								
			ifiqures SCKx	SDOX SDIX	and SSx as ser	rial port pins				
	0 = Disables			, 02 07, 02 77						
bit 14	Unimplemen	ted: Read as 'o)'							
bit 13	SPISIDL: Sto	p in Idle Mode	bit							
		ue module oper			lle mode					
		module operati		de						
bit 12-7	-	ted: Read as '								
bit 6		eive Overflow l	0	ed and discard	led The user so	oftware has not	read the			
			/word is completely received and discarded. The user software has not read the ata in the SPIxBUF register.							
	0 = No overfl	ow has occurre	ed							
bit 5-2	Unimplemen	ted: Read as 'o	י'							
bit 1		x Transmit Buffe								
	0 = Transmit location,		XB is empty. KB. Automatic	Automatically		e when CPU wi n SPIx module				
bit 0	SPIRBF: SPI	x Receive Buffe	er Full Status I	oit						
	0 = Receive data fron		e, SPIxRXB is PIxRXB. Auto			ardware when a e when core re				

REGISTER 16-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	_	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾		
bit 15							bit		
D /// 0	DAMO	DAMO		D44/0		D/// 0	D/M/ O		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SSEN ⁽³⁾	CKP	MSTEN		SPRE<2:0>(2	-)	PPRE<	<1:0> (2)		
bit 7							bit		
Legend:									
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-13	=	nted: Read as '							
bit 12		able SCKx pin	•	• /					
		SPI clock is disa SPI clock is ena		tions as 1/O					
bit 11		able SDOx pin							
		n is not used by		unctions as I/C)				
	0 = SDOx pir	n is controlled b	by the module						
bit 10		MODE16: Word/Byte Communication Select bit 1 = Communication is word-wide (16 bits)							
		ication is word- ication is byte-							
bit 9		ata Input Sam	. ,						
	Master mode								
		a sampled at e							
	 0 = Input data Slave mode: 	a sampled at m	iddle of data o	output time					
		e cleared when	SPIx is used	in Slave mode.					
bit 8	CKE: SPIx C	lock Edge Sele	ect bit ⁽¹⁾						
	1 = Serial out	tput data chang	ges on transition		clock state to Id				
		-			ock state to activ	/e clock state (s	see bit 6)		
bit 7		Select Enable		de) ⁽³⁾					
		used for Slave not used by mo		olled by port fu	unction				
bit 6	•	Polarity Select	•						
		for clock is a h		ve state is a lov	v level				
	0 = Idle state	for clock is a l	ow level; activ	e state is a higł	n level				
bit 5		ster Mode Enat	ole bit						
	1 = Master m 0 = Slave mo								
Note 1:	The CKE bit is n (FRMEN = 1).	ot used in the	Framed SPI	modes. Progra	i m this bit to '0	' for the Frame	ed SPI mode		
2:	Do not set both p	rimary and sec	ondary presca	alers to a value	of 1:1.				
2.	This hit must be								

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1

3: This bit must be cleared when FRMEN = 1.

REGISTER 16-2: SPIxCON1: SPIx CONTROL REGISTER 1 (CONTINUED)

- - Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both primary and secondary prescalers to a value of 1:1.
 - **3:** This bit must be cleared when FRMEN = 1.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
FRMEN	SPIFSD	FRMPOL	—	—	—	—	_				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0				
0-0	0-0	0-0	0-0	0-0	0-0	FRMDLY	0-0				
 pit 7				_			bit (
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
bit 15		FRMEN: Framed SPIx Support bit									
		• •	• •	in used as fram	ie sync pulse ir	nput/output)					
oit 14		 Framed SPIx support disabled SPIFSD: Frame Sync Pulse Direction Control bit 									
		1 = Frame sync pulse input (slave)									
	0 = Frame sync pulse output (master)										
oit 13	FRMPOL: Fra	FRMPOL: Frame Sync Pulse Polarity bit									
		1 = Frame sync pulse is active-high									
	-	nc pulse is acti									
bit 12-2	-	ted: Read as '									
bit 1		ame Sync Pulse	•								
		nc pulse coinci									
hit O	-	nc pulse prece			or opplication						
oit 0	Unimplemen	itea: This bit m	ust not be se	t to '1' by the us	ser application						

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

NOTES:

17.0 INTER-INTEGRATED CIRCUIT (I²C[™])

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", Section 19. "Inter-Integrated Circuit (l²C[™])" (DS70195), which is available on the Microchip web site (www.microchip.com).

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- The SDAx pin is data.

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation.
- I²C Slave mode supports 7-bit and 10-bit addressing.
- I²C Master mode supports 7-bit and 10-bit addressing.
- I²C port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly.

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the l^2C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, refer to the "*dsPlC33F Family Reference Manual*". Please see the Microchip web site (www.microchip.com) for the latest "*dsPlC33F Family Reference Manual*" chapters.

17.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it.
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read.
- I2CxTRN is the transmit register to which bytes are written during a transmit operation.
- The I2CxADD register holds the slave address.
- A status bit, ADD10, indicates 10-Bit Address mode.
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0					
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC					
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN					
bit 7							bit					
Legend:		U = Unimple	mented bit, re	ead as '0'								
R = Readabl	le bit	W = Writable			re Settable bit	HC = Hardwar	e Clearable bi					
-n = Value at		'1' = Bit is se		'0' = Bit is clea		x = Bit is unknown						
bit 15	12CEN: 120	Cx Enable bit										
					Ax and SCLx pin		ins					
	0 = Disable	es the I2Cx m	odule. All I ² C	pins are contro	olled by port function	tions.						
bit 14	Unimplem	ented: Read	as '0'									
bit 13	I2CSIDL: S	Stop in Idle Mo	ode bit									
					rs an Idle mode							
bit 12		0 = Continue module operation in Idle mode										
		SCLREL: SCLx Release Control bit (when operating as I ² C slave) 1 = Release SCLx clock										
		0 = Hold SCLx clock low (clock stretch)										
		If STREN = 1:										
		Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clea at beginning of slave transmission. Hardware clear at end of slave reception.										
	If STREN =	-										
			can only write	'1' to release	clock). Hardware	clear at beginnir	ng of slave					
	transmissio				,	0	0					
bit 11	IPMIEN: In	ntelligent Perip	oheral Manage	ement Interface	e (IPMI) Enable b	it						
		1 = IPMI mode is enabled; all addresses acknowledged										
		node disabled										
bit 10		A10M: 10-Bit Slave Address bit										
		1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address										
bit 9		0 = I2CxADD is a 7-bit slave address DISSLW: Disable Slew Rate Control bit										
bit 5		1 = Slew rate control disabled										
		ate control en										
bit 8	SMEN: SM	Ibus Input Lev	els bit									
	1 = Enable	1 = Enable I/O pin thresholds compliant with SMbus specification										
		0 = Disable SMbus input thresholds										
bit 7	GCEN: Ge	GCEN: General Call Enable bit (when operating as I ² C slave)										
	1 = Enable	interrupt whe	en a general c	all address is r	eceived in the I2	CxRSR						
			-									
	(modul	e is enabled f	or reception)									
	(modul) 0 = Genera	e is enabled f al call address	or reception) s disabled	it (when opera	ting as l^2 slave)						
	(modul) 0 = Genera STREN: S	e is enabled f al call address CLx Clock Str	or reception) disabled etch Enable b	it (when opera	ting as I ² C slave)						
bit 6	(modul 0 = Genera STREN: S Used in co	e is enabled f al call address CLx Clock Str njunction with	or reception) disabled etch Enable b		ting as I ² C slave)						

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence.
	0 = Repeated Start condition not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HSC	R-0, HSC	R-0, HSC		
ACKSTAT	TRSTAT	—	_	_	BCL	GCSTAT	ADD10		
bit 15							bit 8		
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC		
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF		
bit 7							bit 0		
Legend:		U = Unimple	emented bit, I	ead as '0'					
R = Readab	le bit	W = Writabl	e bit	HS = Hardwa	re Settable bit	HSC = Hardware	Settable/Clearable		
-n = Value at	t POR	'1' = Bit is s	et	'0' = Bit is cle	ared	x = Bit is unknow	'n		
bit 15	(when operating as I ² C master, applicable to master transmit operation) 1 = NACK received from slave 0 = ACK received from slave								
bit 14	 Hardware set or clear at end of slave Acknowledge. TRSTAT: Transmit Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. 								
bit 13-11		ented: Read	•						
bit 10	-	er Bus Collisio							
bit 9	0 = No collis Hardware s GCSTAT: G	sion et at detectio eneral Call S	n of bus collis		ter operation				
	0 = Genera	I call address	was not rece	eived	ddress. Hardwa	ire clear at Stop de	etection.		
bit 8	ADD10: 10-	-Bit Address	Status bit						
	0 = 10-bit a	ddress was n ddress was n et at match o	ot matched	matched 10-b	it address. Harc	lware clear at Stop	detection.		
bit 7	IWCOL: Wr	ite Collision [Detect bit						
	0 = No collis	sion			because the I ² C ile busy (cleare	c module is busy d by software).			
bit 6		ceive Overflov			,	, ,			
	1 = A byte v 0 = No over	was received flow	while the I2C	U	Ū	the previous byte			
hit E					xRCV (cleared	by sonware).			
bit 5	1 = Indicate 0 = Indicate	es that the las is that the las	t byte receive t byte receive	ed was device		n of slave byte.			
bit 4	0 = Stop bit	was not dete	ected last	detected last beated Start or	Stop detected.				

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

REGISTER 17-3:	I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER
----------------	--

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	—		—	—	AMSK	(<9:8>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			AMS	K<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit,			nented bit, rea	d as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unkn	iown	

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Mask for Address bit x Select bits

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

NOTES:

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", Section 17. "UART" (DS70188), which is available on the Microchip web site (www.microchip.com).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 device families. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8-Bit or 9-Bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits

- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 1 Mbps to 15 bps at 16x mode at 40 MIPS
- Baud Rates Ranging from 4 Mbps to 61 bps at 4x mode at 40 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- A Separate Interrupt for all UART Error Conditions
- · Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- · Support for Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA[®] Support

A simplified block diagram of the UART module is shown in Figure 18-1. The UART module consists of these key hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UART SIMPLIFIED BLOCK DIAGRAM

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN	<1:0>			
pit 15			•	•			bit			
R/W-0 HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL			
bit 7							bit			
Legend:		HC = Hardwa	re Clearable							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15	UARTEN: UA	ARTx Enable bi	t ⁽¹⁾							
			•	•		ined by UEN<1:				
			•	controlled by po	ort latches; UAR	Tx power consu	mption minim			
bit 14	-	ted: Read as '								
bit 13	•	in Idle Mode bi								
		nue module ope			dle mode					
bit 12		e module opera Encoder and D								
		coder and dec								
		coder and dec								
bit 11		de Selection for		it						
	$1 = \overline{\text{UxRTS}}$ pin in Simplex mode									
		oin in Flow Con								
bit 10	Unimplemen	ted: Read as '	0'							
bit 9-8		JARTx Enable								
						ontrolled by por	rt latches			
	 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches 									
	01 = UXTX, UXRX and UXRTS pins are enabled and used; UXCTS pin controlled by port latches 00 = UXTX and UXRX pins are enabled and used; UXCTS and UXRTS/BCLK pins controlled by									
	port lat									
bit 7	WAKE: Wake	e-up on Start bi	t Detect During	g Sleep Mode	Enable bit					
	1 = UARTx v	vill continue to	sample the Ux	RX pin; interro	upt generated o	n falling edge; I	bit cleared			
		are on following	g rising edge							
	0 = No wake	-								
bit 6		ARTx Loopback		bit						
		oopback mode k mode is disa								
bit 5		o-Baud Enable								
				e next charac	ter – requires r	eception of a S	vnc field (55ł			
		ther data; clear			•		,			
	0 = Baud rat	e measuremen	t disabled or c	completed						
bit 4		ceive Polarity Ir	nversion bit							
	1 = UxRX Idle									
	0 = UxRX Idl	e state is '1'								

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

enabling the UART module for receive or transmit operation.2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 3	 BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1			
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0			
	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA			
bit 7		ADDEN	RIDLE	FLNN	FERR	ULKK	bit			
Legend:		HC = Hardware	Clearable bit	C = Clearable	e bit					
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, rea	d as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	known			
bit 15,13	UTXISEL<1:(0>: Transmission	Interrupt Mode	Selection bits						
,		ed; do not use	•							
		ot when a charac		ed to the Tran	smit Shift regi	ister, and as	a result, th			
		it buffer becomes ot when the last		hifted out of t	he Transmit §	Shift register:	all transm			
		ons are complete				onne register,				
	00 = Interrup	ot when a charact	ter is transferre		mit Shift regist	er (this implie	es there is a			
bit 14	least one character open in the transmit buffer) UTXINV: Transmit Polarity Inversion bit									
	$\frac{\text{If IREN = 0:}}{\text{If IREN = 0:}}$									
	1 = UxTX Idle state is '0' 0 = UxTX Idle state is '1'									
	<u>If IREN = 1:</u>									
		coded UxTX Idle coded UxTX Idle								
bit 12		ted: Read as '0'	51010 15 0							
bit 11	-	ansmit Break bit								
	1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit.									
	cleared by hardware upon completion									
	0 = Sync Break transmission disabled or completed									
bit 10	UTXEN: Transmit Enable bit ⁽¹⁾									
	1 = Transmit enabled, UxTX pin controlled by UARTx									
	 Transmit disabled, any pending transmission is aborted and buffer is reset; UxTX pin controlled by port 									
bit 9	UTXBF: Transmit Buffer Full Status bit (read-only)									
	1 = Transmit			,						
	0 = Transmit	buffer is not full;	at least one mo	re character ca	an be written					
bit 8	TRMT: Transi	mit Shift Register	Empty bit (read	d-only)						
		Shift register is er Shift register is n					s completed			
bit 7-6	URXISEL<1:	0>: Receive Inter	rupt Mode Sele	ction bits						
	11 = Interrup 10 = Interrup	ot is set on UxRS ot is set on UxRSF ot is set when any	R transfer maki R transfer maki	ng the receive ng the receive l	ouffer 3/4 full (i	.e., has 3 data	a characters			

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Refer to Section 17. "UART" (DS70188) in the "dsPIC33F Family Reference Manual" for information on enabling the UART module for transmit operation.

buffer; receive buffer has one or more characters

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect. 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 → 0 transition) will reset the receiver buffer and the UxRSR to the empty state.
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Noto 1	Poter to Section 17 "ILART" (DS70199) in the "deDIC22E Family Deference Manual" for information on

Note 1: Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F Family Reference Manual"* for information on enabling the UART module for transmit operation.

NOTES:

19.0 HIGH-SPEED 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", Section 44. "High-Speed 10-Bit Analog-to-Digital Converter (ADC)" (DS70321), which is available on the Microchip web site (www.microchip.com).

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices provide high-speed successive approximation analog to digital conversions to support applications such as AC/DC and DC/DC power converters.

19.1 Features Overview

The ADC module comprises the following features:

- · 10-bit resolution
- Unipolar inputs
- Up to two Successive Approximation Registers (SARs)
- Up to 12 external input channels
- Up to two internal analog inputs
- Dedicated result register for each analog input
- ±1 LSB accuracy at 3.3V
- Single supply operation
- 4 Msps conversion rate at 3.3V (devices with two SARs)
- 2 Msps conversion rate at 3.3V (devices with one SAR)
- Low-power CMOS technology

19.2 Module Description

This ADC module is designed for applications that require low latency between the request for conversion and the resultant output data. Typical applications include:

- · AC/DC power supplies
- DC/DC converters
- Power Factor Correction (PFC)

This ADC works with the high-speed PWM module in power control applications that require high-frequency control loops. This module can sample and convert two analog inputs in a 0.5 microsecond when two SARs are used. This small conversion delay reduces the "phase lag" between measurement and control system response.

Up to five inputs may be sampled at a time (four inputs from the dedicated sample and hold circuits and one from the shared sample and hold circuit). If multiple inputs request conversion, the ADC will convert them in a sequential manner, starting with the lowest order input.

This ADC design provides each pair of analog inputs (AN1,AN0), (AN3,AN2),..., the ability to specify its own trigger source out of a maximum of sixteen different trigger sources. This capability allows this ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.

The user application typically requires synchronization between analog data sampling and PWM output to the application circuit. The very high-speed operation of this ADC module allows "data on demand".

In addition, several hardware features have been added to the peripheral interface to improve real-time performance in a typical DSP based application.

- Result alignment options
- · Automated sampling
- External conversion start control
- Two internal inputs to monitor 1.2V internal reference and EXTREF input signal

A block diagram of the ADC module is shown in Figure 19-6.

19.3 Module Functionality

The high-speed 10-bit ADC module is designed to support power conversion applications when used with the High-Speed PWM module. The ADC may have one or two SAR modules, depending on the device variant. If two SARs are present on a device, two conversions can be processed at a time, yielding 4 Msps conversion rate. If only one SAR is present on a device, only one conversion can be processed at a time, yielding 2 Msps conversion rate. The high-speed 10-bit ADC produces two 10-bit conversion results in a 0.5 microsecond.

The ADC module supports up to 12 external analog inputs and two internal analog inputs. To monitor reference voltage, two internal inputs, AN12 and AN13, are connected to the EXTREF and internal band gap voltages (1.2V), respectively.

The analog reference voltage is defined as the device supply voltage (AVDD/AVss).

The ADC module uses the following control and status registers:

- ADCON: A/D Control Register
- ADSTAT: A/D Status Register
- ADBASE: A/D Base Register(1,2)
- ADPCFG: A/D Port Configuration Register
- ADCPC0: A/D Convert Pair Control Register 0
- ADCPC1: A/D Convert Pair Control Register 1
- ADCPC2: A/D Convert Pair Control Register 2(1)
- ADCPC3: A/D Convert Pair Control Register 3(1)

The ADCON register controls the operation of the ADC module. The ADSTAT register displays the status of the conversion processes. The ADPCFG registers configure the port pins as analog inputs or as digital I/O. The ADCPCx registers control the triggering of the ADC conversions. See Register 19-1 through Register 19-8 for detailed bit configurations.

Note: A unique feature of the ADC module is its ability to sample inputs in an asynchronous manner. Individual sample and hold circuits can be triggered independently of each other.

FIGURE 19-2: ADC BLOCK DIAGRAM FOR dsPIC33FJ06GS102 DEVICES WITH ONE SAR

© 2009 Microchip Technology Inc.

Preliminary

DS70318D-page 241

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	
ADON		ADSIDL	SLOWCLK ⁽¹⁾	_	GSWTRG	_	FORM ⁽¹	
bit 15							bit	
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-1	R/W-1	
EIE ⁽¹⁾	ORDER ⁽¹⁾	SEQSAMP ⁽¹⁾	ASYNCSAMP ⁽¹⁾	_		ADCS<2:0>(1)		
bit 7							bit	
Legend:								
R = Readable	e bit	W = Writable t	bit	U = Unimple	emented bit, rea	ad as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	nown	
bit 15	ADON: A/D	Operating Mode	e bit					
		verter module is						
bit 14		nted: Read as '	0'					
bit 13	•	op in Idle Mode						
	1 = Disconti	nue module ope	ration when device ion in Idle mode	e enters Idle	mode			
bit 12	SLOWCLK: Enable The Slow Clock Divider bit ⁽¹⁾							
511 12	1 = ADC is clocked by the auxiliary PLL (ACLK)							
			nary PLL (Fvco)	,				
bit 11	Unimpleme	nted: Read as '	0'					
bit 10	GSWTRG: (Global Software	Trigger bit					
		jisters. This bit n	ser, it will trigger c nust be cleared by					
bit 9	Unimpleme	nted: Read as '	0'					
bit 8	FORM: Data	Output Format	bit ⁽¹⁾					
	1 = Fraction	al (Dout = ddd	d dddd dd00 00 Odd dddd dddd					
bit 7	EIE: Early In	iterrupt Enable I	Dit(1)					
			ter first conversion ter second convers					
bit 6	ORDER: Co	nversion Order	bit ⁽¹⁾					
			nput is converted f					
	0 = Even nu	mbered analog	Input is converted	TITSL, TOHOWEC			red input	

REGISTER 19-1: ADCON: A/D CONTROL REGISTER

Note 1: This control bit can only be changed while ADC is disabled (ADON = 0), and only applies to single SAR devices.

REGISTER 19-1: ADCON: A/D CONTROL REGISTER (CONTINUED)

- bit 4 ASYNCSAMP: Asynchronous Dedicated S&H Sampling Enable bit⁽¹⁾
 - 1 = The dedicated S&H is constantly sampling and then terminates sampling as soon as the trigger pulse is detected.
 - 0 = The dedicated S&H starts sampling when the trigger event is detected and completes the sampling process in two ADC clock cycles.
- bit 3 Unimplemented: Read as '0'

bit 2-0 ADCS<2:0>: A/D Conversion Clock Divider Select bits⁽¹⁾

111 = FADC/8 110 = FADC/7 101 = FADC/6 100 = FADC/5 011 = FADC/4 (default) 010 = FADC/3 001 = FADC/2 000 = FADC/1

Note 1: This control bit can only be changed while ADC is disabled (ADON = 0), and only applies to single SAR devices.

REGISTER 19-2: ADSTAT: A/D STATUS REGI
--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 15							bit 8

U-0	R/C-0, HS	R/C-0, HS	R/C-0, HS				
—	P6RDY ⁽¹⁾	P5RDY ⁽²⁾	P4RDY ⁽²⁾	P3RDY ⁽³⁾	P2RDY ⁽⁴⁾	P1RDY	P0RDY
bit 7							bit 0

Legend

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR C = Clearable bit	'1' = Bit is set HS = Hardware Settable bit	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6	P6RDY: Conversion Data for Pair 6 Ready bit ⁽¹⁾
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 5	P5RDY: Conversion Data for Pair 5 Ready bit ⁽²⁾
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 4	P4RDY: Conversion Data for Pair 4 Ready bit ⁽²⁾
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 3	P3RDY: Conversion Data for Pair 3 Ready bit ⁽³⁾
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 2	P2RDY: Conversion Data for Pair 2 Ready bit ⁽⁴⁾
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 1	P1RDY: Conversion Data for Pair 1 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
bit 0	PORDY: Conversion Data for Pair 0 Ready bit
	Bit is set when data is ready in buffer, cleared when a '0' is written to this bit.
Note 1:	This bit is available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504 and dsPIC33FJ06GS202 devices

- **Note 1:** This bit is available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504 and dsPIC33FJ06GS202 device only.
 - 2: This bit is available in the dsPIC33FJ16GS504 devices only.
 - **3:** This bit is available in the dsPIC33FJ16GS402/404, dsPIC33FJ16GS502, dsPIC33FJ16GS504 and dsPIC33FJ06GS101 devices only.
 - 4: This bit is available in the dsPIC33FJ16GS504 and dsPIC33FJ16GS502 devices only.

REGISTER 19-3: ADBASE: A/D BASE REGISTER (1,27)	REGISTER 19-3:	ADBASE: A/D BASE REGISTER ^(1,2)
---	----------------	--

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADBAS	E<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
ADBASE<7:1>							—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1
 ADBASE<15:1>: This register contains the base address of the user's ADC Interrupt Service Routine jump table. This register, when read, contains the sum of the ADBASE register contents and the encoded value of the PxRDY status bits.

 The encoder logic provides the bit number of the highest priority PxRDY bits where P0RDY is the highest priority, and P6RDY is the lowest priority.

bit 0 Unimplemented: Read as '0'

Note 1: The encoding results are shifted left two bits so bits 1-0 of the result are always zero.

2: As an alternative to using the ADBASE Register, the ADCP0-6 ADC Pair Conversion Complete Interrupts can be used to invoke A to D conversion completion routines for individual ADC input pairs.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	PCFG11	PCFG10	PCFG9	PCFG8	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				

REGISTER 19-4: ADPCFG: A/D PORT CONFIGURATION REGISTER

bit 15-12 Unimplemented: Read as '0'

bit 11-0 **PCFG<11:0>:** A/D Port Configuration Control bits^(1,2,3,4)

'1' = Bit is set

1 = Port pin in Digital mode, port read input enabled, A/D input multiplexor connected to AVss
 0 = Port pin in Analog mode, port read input disabled, A/D samples pin voltage

'0' = Bit is cleared

Note: Not all PCFGx bits are available on all devices. See Figure 19-1 through Figure 19-6 for the available analog pins (PCFGx = ANx, where x = 0-11).

-n = Value at POR

x = Bit is unknown

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04

IRQEN1 bit 15	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15	PEND1	SWTRG1			TRGSRC1<4:0>		
							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN0	PEND0	SWTRG0			TRGSRC0<4:0>		
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpl	emented bit, read a	as 'O'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is c	leared	x = Bit is unkr	nown
bit 15				d conversior	n of channels AN3	and AN2 is co	ompleted
bit 14	PEND1: Pen 1 = Conversi	iding Conversio		is pending.	Set when selected	trigger is asse	erted
bit 13	SWTRG1: S 1 = Start con This bit is au	oftware Trigger version of AN3	and AN2 (if se red by hardwa		GSRC bits) ⁽¹⁾ PEND1 bit is set.		
	00000 = No 00001 = Ind 00010 = Glo 00011 = PW 00100 = PW 00101 = PW	conversion ena ividual software bal software trig /M Special Ever /M Generator 1 /M Generator 2 /M Generator 3	bled trigger selected t Trigger select primary trigge primary trigge primary trigge	ed cted r selected r selected	Is AN3 and AN2.		

Note 1: If other conversions are in progress, then conversion will be performed when the conversion resources are available.

REGISTER 1	9-5: ADCPC0: A/D CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)
bit 7	IRQEN0: Interrupt Request Enable 0 bit
	 1 = Enable IRQ generation when requested conversion of channels AN1 and AN0 is completed 0 = IRQ is not generated
bit 6	PEND0: Pending Conversion Status 0 bit
	 1 = Conversion of channels AN1 and AN0 is pending; set when selected trigger is asserted 0 = Conversion is complete
bit 5	SWTRG0: Software Trigger 0 bit 1 = Start conversion of AN1 and AN0 (if selected by TRGSRC bits) ⁽¹⁾ This bit is automatically cleared by hardware when the PEND0 bit is set. 0 = Conversion is not started
bit 4-0	TRGSRC0<4:0>: Trigger 0 Source Selection bits Selects trigger source for conversion of analog channels AN1 and AN0. 0000 = No conversion enabled 0001 = Individual software trigger selected 0001 = Global software trigger selected 0010 = PWM Special Event Trigger selected 00100 = PWM Generator 1 primary trigger selected 00110 = PWM Generator 2 primary trigger selected 00110 = PWM Generator 3 primary trigger selected 00111 = PWM Generator 4 primary trigger selected 01100 = Reserved 01100 = Timer1 period match 01101 = Reserved 01110 = PWM Generator 1 secondary trigger selected 01111 = PWM Generator 3 secondary trigger selected 01111 = PWM Generator 3 secondary trigger selected 01000 = PWM Generator 4 secondary trigger selected 01111 = PWM Generator 4 secondary trigger selected 01111 = PWM Generator 4 secondary trigger selected 01001 = Reserved 01110 = Reserved 01011 = Reserved 01010 = Reserved 01010 = Reserved 01110 = Reserved 01110 = Reserved 01110 = Reserved 01110 = Reserved 01110 = Reserved 01111 = PWM Generator 4 current-limit ADC trigger 11000 = PWM Generator 3 current-limit ADC trigger 11010 = PWM Generator 4 current-limit ADC trigger 11010 = PWM Generator 4 current-limit ADC trigger 11010 = PWM Generator 4 current-limit ADC trigger 11011 = Reserved 01111 = Reserved

Note 1: If other conversions are in progress, then conversion will be performed when the conversion resources are available.
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IRQEN3 ⁽¹⁾	PEND3 ⁽¹⁾	SWTRG3 ⁽¹⁾		Т	RGSRC3<4:0>	.(1)			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IRQEN2 ⁽²⁾	PEND2 ⁽²⁾	SWTRG2 ⁽²⁾		Т	RGSRC2<4:0>	.(2)			
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	Writable bit U = Unimplemented bit, read as '0'						
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is cleared			x = Bit is unknown			
bit 15		errupt Request E RQ generation w t generated			of channels AN7	7 and AN6 is co	ompleted		
bit 14	PEND3: Pending Conversion Status 3 bit ⁽¹⁾ 1 = Conversion of channels AN7 and AN6 is pending. Set when selected trigger is asserted 0 = Conversion is complete								
bit 13	SWTRG3: Software Trigger 3 bit ⁽¹⁾ 1 = Start conversion of AN7 and AN6 (if selected in TRGSRC bits) ⁽³⁾ This bit is automatically cleared by hardware when the PEND3 bit is set. 0 = Conversion is not started								

REGISTER 19-6: ADCPC1: A/D CONVERT PAIR CONTROL REGISTER 1

- Note 1: These bits are available in the dsPIC33FJ16GS402/404, dsPIC33FJ16GS504, dsPIC33FJ16GS502 and dsPIC33FJ06GS101 devices only.
 - **2:** These bits are available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504, dsPIC33FJ06GS102, dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices only.
 - **3:** If other conversions are in progress, then conversion will be performed when the conversion resources are available.

REGISTER 19-6: ADCPC1: A/D CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)

bit 12-8	TRGSRC3<4:0>: Trigger 3 Source Selection bits ⁽¹⁾ Selects trigger source for conversion of analog channels AN7 and AN6.
	00000 = No conversion enabled
	00001 = Individual software trigger selected
	00010 = Global software trigger selected
	00011 = PWM Special Event Trigger selected 00100 = PWM Generator 1 primary trigger selected
	00101 = PWM Generator 2 primary trigger selected
	00110 = PWM Generator 3 primary trigger selected
	00111 = PWM Generator 4 primary trigger selected
	01000 = Reserved
	•
	• 01100 = Timer1 period match
	01101 = Reserved
	01110 = PWM Generator 1 secondary trigger selected
	01111 = PWM Generator 2 secondary trigger selected
	10000 = PWM Generator 3 secondary trigger selected 10001 = PWM Generator 4 secondary trigger selected
	10010 = Reserved
	•
	•
	10110 = Reserved
	10111 = PWM Generator 1 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger
	11001 = PWM Generator 3 current-limit ADC trigger
	11010 = PWM Generator 4 current-limit ADC trigger
	11011 = Reserved
	•
	11111 = Timer2 period match
bit 7	IRQEN2: Interrupt Request Enable 2 bit ⁽²⁾
	 1 = Enable IRQ generation when requested conversion of channels AN5 and AN4 is completed 0 = IRQ is not generated
bit 6	PEND2: Pending Conversion Status 2 bit ⁽²⁾
	 1 = Conversion of channels AN5 and AN4 is pending; set when selected trigger is asserted. 0 = Conversion is complete
bit 5	SWTRG2: Software Trigger 2 bit ⁽²⁾
	1 = Start conversion of AN5 and AN4 (if selected by TRGSRC bits) ⁽³⁾
	This bit is automatically cleared by hardware when the PEND2 bit is set. 0 = Conversion is not started
Note 1:	These bits are available in the dsPIC33FJ16GS402/404, dsPIC33FJ16GS504, dsPIC33FJ16GS502 and dsPIC33FJ06GS101 devices only.

- **2:** These bits are available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504, dsPIC33FJ06GS102, dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices only.
- **3:** If other conversions are in progress, then conversion will be performed when the conversion resources are available.

REGISTER 19-6: ADCPC1: A/D CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)

```
bit 4-0
               TRGSRC2<4:0>: Trigger 2 Source Selection bits
               Selects trigger source for conversion of analog channels AN5 and AN4.
               00000 = No conversion enabled
               00001 = Individual software trigger selected
               00010 = Global software trigger selected
               00011 = PWM Special Event Trigger selected
               00100 = PWM Generator 1 primary trigger selected
               00101 = PWM Generator 2 primary trigger selected
               00110 = PWM Generator 3 primary trigger selected
               00111 = PWM Generator 4 primary trigger selected
               01000 = Reserved
               01100 = Timer1 period match
               01101 = Reserved
               01110 = PWM Generator 1 secondary trigger selected
               01111 = PWM Generator 2 secondary trigger selected
               10000 = PWM Generator 3 secondary trigger selected
               10001 = PWM Generator 4 secondary trigger selected
               10010 = Reserved
              10110 = Reserved
               10111 = PWM Generator 1 current-limit ADC trigger
               11000 = PWM Generator 2 current-limit ADC trigger
               11001 = PWM Generator 3 current-limit ADC trigger
               11010 = PWM Generator 4 current-limit ADC trigger
               11011 = Reserved
               11111 = Timer2 period match
```

- **Note 1:** These bits are available in the dsPIC33FJ16GS402/404, dsPIC33FJ16GS504, dsPIC33FJ16GS502 and dsPIC33FJ06GS101 devices only.
 - **2:** These bits are available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504, dsPIC33FJ06GS102, dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices only.
 - **3:** If other conversions are in progress, then conversion will be performed when the conversion resources are available.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN5	PEND5	SWTRG5	TRGSRC5<4:0>				
bit 15		- 1					bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IRQEN4	PEND4	SWTRG4			TRGSRC4<4:0)>	
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set	t '0' = Bit is cleared		ared	x = Bit is unknown	
bit 15	IRQEN5: Interrupt Request Enable 5 bit 1 = Enable IRQ generation when requested conversion of channels AN11 and AN10 is completed 0 = IRQ is not generated						
bit 14	PEND5: Pending Conversion Status 5 bit 1 = Conversion of channels AN11 and AN10 is pending; set when selected trigger is asserted 0 = Conversion is complete						
bit 13	SWTRG5: Software Trigger 5 bit 1 = Start conversion of AN11 and AN10 (if selected in TRGSRC bits) ⁽²⁾ This bit is automatically cleared by hardware when the PEND5 bit is set. 0 = Conversion is not started						

REGISTER 19-7: ADCPC2: A/D CONVERT PAIR CONTROL REGISTER 2⁽¹⁾

- **Note 1:** This register is only implemented on the dsPIC33FJ16GS504 devices.
 - 2: If other conversions are in progress, then conversion will be performed when the conversion resources are available.

REGISTER 19-7: ADCPC2: A/D CONVERT PAIR CONTROL REGISTER 2⁽¹⁾ (CONTINUED)

bit 12-8	TRGSRC5<4:0>: Trigger 5 Source Selection bits Selects trigger source for conversion of analog channels AN11 and AN10.
	00000 = No conversion enabled 00001 = Individual software trigger selected
	00010 = Global software trigger selected
	00011 = PWM Special Event Trigger selected
	00100 = PWM Generator 1 primary trigger selected
	00101 = PWM Generator 2 primary trigger selected
	00110 = PWM Generator 3 primary trigger selected
	00111 = PWM Generator 4 primary trigger selected
	01000 = Reserved
	•
	01100 = Timer1 period match 01101 = Reserved
	01110 = PWM Generator 1 secondary trigger selected
	01111 = PWM Generator 2 secondary trigger selected
	10000 = PWM Generator 3 secondary trigger selected
	10001 = PWM Generator 4 secondary trigger selected
	10010 = Reserved
	•
	•
	10110 = Reserved
	10111 = PWM Generator 1 current-limit ADC trigger 11000 = PWM Generator 2 current-limit ADC trigger
	11000 = PWM Generator 3 current-limit ADC trigger
	11010 = PWM Generator 4 current-limit ADC trigger
	11011 = Reserved
	•
	•
	11111 = Timer2 period match
bit 7	IRQEN4: Interrupt Request Enable 4 bit
	1 = Enable IRQ generation when requested conversion of channels AN9 and AN8 is completed
	0 = IRQ is not generated
bit 6	PEND4: Pending Conversion Status 4 bit
	1 = Conversion of channels AN9 and AN8 is pending; set when selected trigger is asserted
	0 = Conversion is complete
bit 5	SWTRG4: Software Trigger4 bit
	1 = Start conversion of AN9 and AN8 (if selected by TRGSRC bits) ⁽²⁾
	This bit is automatically cleared by hardware when the PEND4 bit is set.
	0 = Conversion is not started
Note 1:	This register is only implemented on the dsPIC33FJ16GS504 devices.

2: If other conversions are in progress, then conversion will be performed when the conversion resources are available.

REGISTER 19-7: ADCPC2: A/D CONVERT PAIR CONTROL REGISTER 2⁽¹⁾ (CONTINUED)

bit 4-0	TRGSRC4<4:0>: Trigger 4 Source Selection bits
	Selects trigger source for conversion of analog channels AN9 and AN8
	00000 = No conversion enabled
	00001 = Individual software trigger selected
	00010 = Global software trigger selected
	00011 = PWM Special Event Trigger selected
	00100 = PWM Generator 1 primary trigger selected
	00101 = PWM Generator 2 primary trigger selected
	00110 = PWM Generator 3 primary trigger selected
	00111 = PWM Generator 4 primary trigger selected
	01000 = Reserved
	•
	•
	•
	01100 = Timer1 period match 01101 = Reserved
	01110 = PWM Generator 1 secondary trigger selected
	01111 = PWM Generator 2 secondary trigger selected
	10000 = PWM Generator 3 secondary trigger selected
	10001 = PWM Generator 4 secondary trigger selected
	10010 = Reserved
	•
	•
	10110 = Reserved
	10111 = PWM Generator 1 current-limit ADC trigger
	11000 = PWM Generator 2 current-limit ADC trigger
	11001 = PWM Generator 3 current-limit ADC trigger
	11010 = PWM Generator 4 current-limit ADC trigger
	11011 = Reserved
	•
	:
	11111 = Timer2 period match

- **Note 1:** This register is only implemented on the dsPIC33FJ16GS504 devices.
 - 2: If other conversions are in progress, then conversion will be performed when the conversion resources are available.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	—	_	_	_	—		
bit 15 bit 8									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IRQEN6	PEND6	SWTRG6			TRGSRC6<4:0	>			
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-8	Unimplemen	ted: Read as '	כי						
bit 7	IRQEN6: Inte	rrupt Request I	Enable 6 bit						
	1 = Enable IR 0 = IRQ is no		vhen requeste	ed conversion of	of channels AN1	3 and AN12 is	completed		
bit 6 PEND6: Pending Conversion Status 6 bit 1 = Conversion of channels AN13 and AN 12 is pending; set when selected trigger is asserted 0 = Conversion is complete									
bit 5	it 5 SWTRG6: Software Trigger 6 bit								
 1 = Start conversion of AN13 (INTREF) and AN12 (EXTREF) (if selected by TRGSRC bits)⁽²⁾ This bit is automatically cleared by hardware when the PEND6 bit is set. 0 = Conversion is not started 									
Note 1: Th	is register is or	ly implemented	l on the dsPIC	C33FJ16GS50	2 and dsPIC33F	J16GS504 dev	vices.		

REGISTER 19-8: ADCPC3: A/D CONVERT PAIR CONTROL REGISTER 3⁽¹⁾

2: If other conversions are in progress, conversion will be performed when the conversion resources are

available.

REGISTER 19-8: ADCPC3: A/D CONVERT PAIR CONTROL REGISTER 3⁽¹⁾ (CONTINUED)

bit 4-0	TRGSRC6<4:0>: Trigger 6 Source Selection bits
	Selects trigger source for conversion of analog channels AN13 and AN12.
	00000 = No conversion enabled
	00001 = Individual software trigger selected
	00010 = Global software trigger selected
	00011 = PWM Special Event Trigger selected
	00100 = PWM Generator 1 primary trigger selected
	00101 = PWM Generator 2 primary trigger selected
	00110 = PWM Generator 3 primary trigger selected
	00111 = PWM Generator 4 primary trigger selected
	01000 = Reserved
	•
	•
	• 01100 - Timor1 pariod match
	01100 = Timer1 period match 01101 = Reserved
	01110 = PWM Generator 1 secondary trigger selected
	01111 = PWM Generator 2 secondary trigger selected
	10000 = PWM Generator 3 secondary trigger selected
	10001 = PWM Generator 4 secondary trigger selected
	10010 = Reserved
	•
	10110 = Reserved
	10111 = PWM Generator 1 current-limit ADC trigger
	11000 = PWM Generator 2 current-limit ADC trigger
	11001 = PWM Generator 3 current-limit ADC trigger
	11010 = PWM Generator 4 current-limit ADC trigger
	11011 = Reserved
	•
	•
	11111 = Timer2 period match

- **Note 1:** This register is only implemented on the dsPIC33FJ16GS502 and dsPIC33FJ16GS504 devices.
 - 2: If other conversions are in progress, conversion will be performed when the conversion resources are available.

20.0 HIGH-SPEED ANALOG COMPARATOR

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual", Section 45. "High-Speed Analog Comparator" (DS70296), which is available on the Microchip web site (www.microchip.com).

The dsPIC33F SMPS Comparator module monitors current and/or voltage transients that may be too fast for the CPU and ADC to capture.

20.1 Features Overview

The SMPS comparator module offers the following major features:

- 16 selectable comparator inputs
- Up to four analog comparators
- 10-bit DAC for each analog comparator
- · Programmable output polarity
- Interrupt generation capability
- DACOUT pin to provide DAC output

- DAC has three ranges of operation:
 - AVDD/2
 - Internal Reference 1.2V, 1%
 - External Reference < (AVDD 1.6V)
- · ADC sample and convert trigger capability
- Disable capability reduces power consumption
- Functional support for PWM module:
 - PWM duty cycle control
 - PWM period control
 - PWM Fault detect

20.2 Module Description

Figure 20-1 shows a functional block diagram of one analog comparator from the SMPS comparator module. The analog comparator provides high-speed operation with a typical delay of 20 ns. The comparator has a typical offset voltage of ± 5 mV. The negative input of the comparator is always connected to the DAC circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin.

The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

20.3 Module Applications

This module provides a means for the SMPS dsPIC DSC devices to monitor voltage and currents in a power conversion application. The ability to detect transient conditions and stimulate the dsPIC DSC processor and/or peripherals, without requiring the processor and ADC to constantly monitor voltages or currents, frees the dsPIC DSC to perform other tasks.

The comparator module has a high-speed comparator and an associated 10-bit DAC that provides a programmable reference voltage to the inverting input of the comparator. The polarity of the comparator output is user-programmable. The output of the module can be used in the following modes:

- · Generate an Interrupt
- Trigger an ADC Sample and Convert Process
- Truncate the PWM Signal (current limit)
- Truncate the PWM Period (current minimum)
- Disable the PWM Outputs (Fault latch)

The output of the comparator module may be used in multiple modes at the same time, such as: (1) generate an interrupt, (2) have the ADC take a sample and convert it, and (3) truncate the PWM output in response to a voltage being detected beyond its expected value.

The comparator module can also be used to wake-up the system from Sleep or Idle mode when the analog input voltage exceeds the programmed threshold voltage.

20.4 DAC

The range of the DAC is controlled via an analog multiplexer that selects either AVDD/2, internal 1.2V, 1% reference, or an external reference source, EXTREF. The full range of the DAC (AVDD/2) will typically be used when the chosen input source pin is shared with the ADC. The reduced range option (INTREF) will likely be used when monitoring current levels using a current sense resistor. Usually, the measured voltages in such applications are small (<1.25V); therefore the option of using a reduced reference range for the comparator extends the available DAC resolution in these applications. The use of an external reference enables the user to connect to a reference that better suits their application.

DACOUT, shown in Figure 20-1, can only be associated with a single comparator at a given time.

Note: It should be ensured in software that multiple DACOE bits are not set. The output on the DACOUT pin will be indeterminate if multiple comparators enable the DAC output.

20.5 Interaction with I/O Buffers

If the comparator module is enabled and a pin has been selected as the source for the comparator, then the chosen I/O pad must disable the digital input buffer associated with the pad to prevent excessive currents in the digital buffer due to analog input voltages.

20.6 Digital Logic

The CMPCONx register (see Register 20-1) provides the control logic that configures the comparator module. The digital logic provides a glitch filter for the comparator output to mask transient signals in less than two instruction cycles. In Sleep or Idle mode, the glitch filter is bypassed to enable an asynchronous path from the comparator to the interrupt controller. This asynchronous path can be used to wake-up the processor from Sleep or Idle mode.

The comparator can be disabled while in Idle mode if the CMPSIDL bit is set. If a device has multiple comparators, if any CMPSIDL bit is set, then the entire group of comparators will be disabled while in Idle mode. This behavior reduces complexity in the design of the clock control logic for this module.

The digital logic also provides a one TCY width pulse generator for triggering the ADC and generating interrupt requests.

The CMPDACx (see Register 20-2) register provides the digital input value to the reference DAC.

If the module is disabled, the DAC and comparator are disabled to reduce power consumption.

20.7 Comparator Input Range

The comparator has a limitation for the input Common Mode Range (CMR) of (AVDD - 1.5V), typical. This means that both inputs should not exceed this range. As long as one of the inputs is within the Common Mode Range, the comparator output will be correct. However, any input exceeding the CMR limitation will cause the comparator input to be saturated.

If both inputs exceed the CMR, the comparator output will be indeterminate.

20.8 DAC Output Range

The DAC has a limitation for the maximum reference voltage input of (AVDD - 1.6) volts. An external reference voltage input should not exceed this value or the reference DAC output will become indeterminate.

20.9 Comparator Registers

The comparator module is controlled by the following registers:

- CMPCONx: Comparator Control Register
- CMPDACx: Comparator DAC Control Register

-	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0				
CMPON		CMPSIDL	_		_		DACOE				
bit 15	·						bit				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0				
INSE	EL<1:0>	EXTREF		CMPSTAT	_	CMPPOL	RANGE				
bit 7							bit				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, re	ad as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	CMPON: Cor	nparator Opera	ting Mode b	it							
	•	ator module is e			(according)						
hit 11	•			duces power cor	isumption)						
bit 14 bit 13	-	ted: Read as ' top in Idle Mode									
DIL 15		•		a dovico ontore l	dla mada						
		 Discontinue module operation when device enters Idle mode. Continue module operation in Idle mode 									
					set to '1' disa	bles ALL compa	rators while				
bit 12-9	Reserved: R	Reserved: Read as '0'									
bit 8	DACOE: DAG	C Output Enable	е								
		log voltage is o log voltage is n	•	COUT pin ⁽¹⁾ d to DACOUT pir	n						
bit 7-6	INSEL<1:0>:	Input Source S	Select for Co	mparator bits							
		MPxA input pir									
	01 = Select CMPxB input pin										
	10 = Select CMPxC input pin 11 = Select CMPxD input pin										
bit 5											
UIL U		EXTREF: Enable External Reference bit 1 = External source provides reference to DAC (maximum DAC voltage determined by external									
	voltage source)										
	0 = Internal		ces provide	reference to DA	AC (maximur	m DAC voltage o	determined				
bit 4	Reserved: R	ead as '0'									
bit 3	CMPSTAT: C	urrent State of	Comparator	Output Including	CMPPOL S	election bit					
bit 2	Reserved: R	ead as 'o'									
bit 1	CMPPOL: Co	omparator Outp	ut Polarity C	Control bit							
	1 = Output is	inverted	-								
	0 = Output is	non-inverted									
	RANGE: Selects DAC Output Voltage Range bit										
bit 0		-	-	2/2, 1.65V at 3.3							

REGISTER 20-1: CMPCONx: COMPARATOR CONTROL REGISTER

Note 1: DACOUT can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DAC output by setting their respective DACOE bit.

REGISTER 20-2: CMPDACx: COMPARATOR DAC CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	—	—	—	CMRE	F<9:8>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CMRE	F<7:0>			
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-10	Reserved: F	Read as '0'					
bit 9-0	CMREF<9:0	>: Comparator I	Reference Vo	Itage Select bit	s		
	1111111111 = (CMREF * INTREF/1024) or (CMREF * (AVDD/2)/1024) volts depending on RANGE						
				/1024) if EXTR			5
	•	Υ.		,			
	•						
	•						

000000000 = 0.0 volts

21.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33F Family Reference Manual" sections.

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- · Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation
- Brown-out Reset (BOR)

21.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the FBS, FGS, FOSCSEL, FOSC, FWDT, FPOR and FICD Configuration registers are shown in Table 21-2.

Note that address, 0xF80000, is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

The upper byte of all device Configuration registers should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written to again. Changing a device configuration requires that power to the device be cycled.

The device Configuration register map is shown in Table 21-1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
0xF80000	FBS	—	— — — — BSS<2:0>				BWRP							
0xF80002	RESERVED				Reserve	ed ⁽¹⁾								
0xF80004	FGS	_	—	—	_	—	GSS<1	:0>	GWRP					
0xF80006	FOSCSEL	IESO — — — FNOSC<2:0>				>								
0xF80008	FOSC	FCKS	M<1:0>	IOL1WAY	_	_	OSCIOFNC	POSCI	/ID<1:0>					
0xF8000A	FWDT	FWDTEN	WINDIS	—	WDTPRE		WDTPOST	<3:0>						
0xF8000C	FPOR	_	—	—	_	—	FPV	VRT<2:0>	>					
0xF8000E	FICD	Rese	erved ⁽¹⁾	JTAGEN	_	_	—	ICS	<1:0>					
0xF80010	FUID0		User Unit ID Byte 0											
0xF80012	FUID1				User Unit I	D Byte 1			User Unit ID Byte 1					

TABLE 21-1: DEVICE CONFIGURATION REGISTER MAP

Note 1: When read, these bits will appear as '1'. When you write to these bits, set these bits to '1'.

Bit Field	Register	Description
BWRP	FBS	Boot Segment Program Flash Write Protection bit 1 = Boot segment can be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	Boot Segment Program Flash Code Protection Size bits X11 = No boot program Flash segment
		Boot space is 256 instruction words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0003FE 010 = High security; boot program Flash segment ends at 0x0003FE
		Boot space is 768 instruction words (except interrupt vectors) 101 = Standard security; boot program Flash segment ends at 0x0007FE
		 001 = High security; boot program Flash segment ends at 0x0007FE Boot space is 1792 instruction words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x000FFE
GSS<1:0>	FGS	000 = High security; boot program Flash segment ends at 0x000FFE General Segment Code-Protect bits 11 = User program memory is not code-protected 10 = Standard security 0x = High security
GWRP	FGS	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Peripheral Pin Select Configuration bit 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	FOSC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode

TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION

Bit Field	Register	Description
FWDTEN	FWDT	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled; clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	FWDT	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDTPOST<3:0>	FWDT	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •
FPWRT<2:0>	FPOR	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled
JTAGEN	FICD	JTAG Enable bit 1 = JTAG is enabled 0 = JTAG is disabled
ICS<1:0>	FICD	ICD Communication Channel Select Enable bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use.

TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

21.2 On-Chip Voltage Regulator

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 families incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP/VDDCORE pin (Figure 21-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 24-13 located in **Section 24.1 "DC Characteristics"**.

Note:	It is important for the low-ESR capacitor to				
	be placed as close as possible to the				
	VCAP/VDDCORE pin.				

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 21-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2)

21.3 BOR: Brown-Out Reset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP/VDDCORE. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

21.4 Watchdog Timer (WDT)

dsPIC33FJ06GS101/X02 For and dsPIC33FJ16GSX02/X04 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

21.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>) which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- · On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- · When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

All Device Resets . Transition to New Clock Source Exit Sleep or Idle Mode **PWRSAV** Instruction Watchdog Timer CLRWDT Instruction WDTPRE WDTPOST<3:0> SWDTEN

FIGURE 21-2: WDT BLOCK DIAGRAM

21.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs. the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3:2>) will need to be cleared in software after the device wakes up.

ENABLING WDT 21.4.3

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

If the WINDIS bit (FWDT<6>) is cleared, the Note: CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

21.5 JTAG Interface

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface will be provided in future revisions of the document.

21.6 In-Circuit Serial Programming

dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family digital signal controllers can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33F/PIC24H Flash Programming Specification" (DS70152) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

21.7 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the EMUCx (Emulation/Debug Clock) and EMUDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS, and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

21.8 Code Protection and CodeGuard[™] Security

The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices offer the intermediate implementation of CodeGuard™ Security. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, Code-Guard[™] Security can be used to securely update Flash even when multiple IPs reside on a single chip.

TABLE 21-3:CODE FLASH SECURITY
SEGMENT SIZES FOR
6-Kbyte DEVICES

Configuration Bits		
	VS = 256 IW	000000h 0001FEh
BSS<2:0> = x11 0K	GS = 1792 IW	000200h 0003FEh 000400h 0007FEh 000800h 000FFEh 0000FFEh
		002BFEh
	VS = 256 IW	000000h 0001FEh
	BS = 256 IW	000200h 0003FEh
BSS<2:0> = x10 256	GS = 1536 IW	000400h 0007FEh 000800h 000FFEh 001000h
		002BFEh
	VS = 256 IW	000000h 0001EEh
BSS<2:0> = x01	BS = 768 IW	000200h 0003FEh 000400h 0007FEh
768	GS = 1024 IW	0005500h 000FFEh 001000h
		002BFEh
	VS = 256 IW	000000h 0001FEh 000200h
BSS<2:0> = x00 1792	BS = 1792 IW	000200h 0003FEh 000400h 0007FEh 000800h 0006FEh 0001000h
		002BFEh

The code protection features are controlled by the Configuration registers: FBS and FGS.

Secure segment and RAM protection is not implemented in dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices.

Note:	Refer to CodeGuard Security Reference
	Manual (DS70180) for further information
	on usage, configuration and operation of
	CodeGuard Security.

TABLE 21-4: CODE FLASH SECURITY SEGMENT SIZES FOR 16-Kbyte DEVICES

	-	
Configuration Bits		
	VS = 256 IW	000000h 0001FEh 000200h
BSS<2:0> = x11 0K	GS = 5376 IW	0003FEh 000400h 0007FEh 000800h 000FFEh 001000h
		002BFEh
	VS = 256 IW	000000h 0001FEh
BSS<2:0> = x10	BS = 256 IW	000200h 0003FEh 000400h
256		000400h 0007FEh 000800h 000FFEh 001000h
	GS = 5120 IW	002BFEh
	VS = 256 IW	000000h 0001EEb
BSS<2:0> = x01	BS = 768 IW	0001FEh 000200h 0003FEh 000400h 0007FEh
768	GS = 4608 IW	000800h 000FFEh 001000h
	00 - 4000 10	002BFEh
	VS = 256 IW	000000h 0001FEh 000200h
BSS<2:0> = x00	BS = 1792 IW	0003FEh 000400h 0007EEh
1792	GS = 3584 IW	0006550 0005556 001000h 0028556h

NOTES:

22.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest "dsPIC33F Family Reference Manual" sections.

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- Literal operations
- · DSP operations
- Control operations

Table 22-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 22-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value, 'f'
- The destination, which could be either the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write-back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register, 'Wn', or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"dsPIC30F/33F Programmer's Reference Manual"* (DS70157).

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator Write-Back Destination Address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word-addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (Direct Addressing)
·	

 TABLE 22-1:
 SYMBOLS USED IN OPCODE DESCRIPTIONS

TABLE 22-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)
-------------	---

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn One of 16 Working registers ∈ {W0W15}	
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	 X Data Space Prefetch Address register for DSP instructions € {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

	E 22-2:		UCTION SET OVER				
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-Bit Signed Add to Accumulator	1	1	OA,OB,SA,SB
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = Iit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4 As	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE,Expr	Branch if Greater Than or Equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if Unsigned Greater Than or Equal	1	1 (2)	None
		BRA	GT,Expr	Branch if Greater Than	1	1 (2)	None
		BRA	GTU,Expr	Branch if Unsigned Greater Than	1	1 (2)	None
		BRA	LE,Expr	Branch if Less Than or Equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if Unsigned Less Than or Equal	1	1 (2)	None
		BRA	LT, Expr	Branch if Less Than	1	1 (2)	None
		BRA	LTU, Expr	Branch if Unsigned Less Than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA,Expr	Branch if Accumulator A Overflow	1	1 (2)	None
		BRA	OB,Expr	Branch if Accumulator B Overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA,Expr	Branch if Accumulator A Saturated	1	1 (2)	None
		BRA	SB,Expr	Branch if Accumulator B Saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
5	NOU	BSW.C		Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BSW.Z BTG	Ws,Wb	Bit Toggle f	1	1	None
J.	D10	DIG	f,#bit4				NULLE

TABLE 22-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call Subroutine	2	2	None
		CALL	Wn	Call Indirect Subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	СОМ	COM	f	$f = \overline{f}$	1	1	N,Z
		СОМ	f,WREG	WREG = f	1	1	N,Z
		СОМ	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
10	CI	CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP		Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	Wb,Ws f	Compare f with 0x0000	1	1	
19	CPU			Compare Ws with 0x0000		1	C,DC,N,OV,Z
20	GDD	CP0	Ws	· ·	1	-	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB CPB	Wb,#lit5 Wb,Ws	Compare Wb with lit5, with Borrow Compare Wb with Ws, with Borrow (Wb – Ws – \overline{C})	1	1	C,DC,N,OV,Z C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = Decimal Adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None

IABL	E 22-2:	INSTRU	JCTION SET OVERVIE	W (CONTINUED)			
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to Address	2	2	None
		GOTO	Wn	Go to Indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-Bit Literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-Bit Literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	N,Z
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and Store Accumulator	1	1	None

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48	MPY	MPY Wm*Wn,Ad	cc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,Ac	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,Ad	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
50		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software Device Reset	1	1	None
60	RETFIE	RETFIE	#1: - 10 M	Return from interrupt	1	3 (2)	None
61 62	RETLW	RETLW	#lit10,Wn	Return with Literal in Wn Return from Subroutine	1	3 (2)	None
63	RETURN	RETURN	f	f = Rotate Left through Carry f	1	3 (2) 1	None C,N,Z
00	1110	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Will = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
65	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
-		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z

IADL	E 22-2:	INSIR	JCTION SET OVERV	IEW (CONTINUED)			
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Асс	Subtract Accumulators	1	1	OA,OB,OAB SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,2
		SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C,DC,N,OV,2
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
10	SWAT	SWAP	Wn	Wn = Byte Swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK	- , ··	Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wite I it10 .XOR. Wite Wite S	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
	1						
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z

23.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
 - PICSTART® Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit[™] 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

23.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

23.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

23.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

23.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of linking many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

23.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

23.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

23.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

23.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

23.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers cost-effective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

23.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

23.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

23.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

23.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

24.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any combined analog and digital pin and MCLR, with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital-only pin with respect to Vss	0.3V to +5.6V
Voltage on VCAP/VDDCORE with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	
Maximum output current sunk by non-remappable PWM pins	16 mA
Maximum output current sourced by non-remappable PWM pins	16 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).
- 3: Exceptions are PWMxL, and PWMxH, which are able to sink/source 16 mA, and digital pins, which are able to sink/source 8 mA.

24.1 DC Characteristics

	Ved Bongo	Tomp Dongo	Max MIPS
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04
	3.0-3.6V	-40°C to +85°C	40
	3.0-3.6V	-40°C to +125°C	40

TABLE 24-1: OPERATING MIPS VS. VOLTAGE

TABLE 24-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	Pint + Pi/o			v
Maximum Allowed Power Dissipation	Pdmax	(TJ – TA)/θJA			W

TABLE 24-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 44-Pin QFN	θJA	28	_	°C/W	1
Package Thermal Resistance, 44-Pin TFQP	θJA	39	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	42	-	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	47	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θJA	34	_	°C/W	1
Package Thermal Resistance, 18-Pin SOIC	θJA	57		°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
Operati	ng Voltag	e							
	Supply Voltage								
DC10	Vdd		3.0	_	3.6	V	Industrial and extended		
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8			V			
DC16	VPOR	VDD Start Voltage⁽⁴⁾ to Ensure Internal Power-on Reset Signal	_	_	Vss	V			
DC17	SVDD	VDD Rise Rate⁽³⁾ to Ensure Internal Power-on Reset Signal	0.03	_	—	V/ms	0-3.0V in 0.1s		
DC18	VCORE	VDD Core Internal Regulator Voltage	2.25	—	2.75	V	Voltage is dependent on load, temperature and VDD		

TABLE 24-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: These parameters are characterized but not tested in manufacturing.

4: VDD voltage must remain at Vss for a minimum of 200 µs to ensure POR.

© 2009 Microchip Technology Inc.

Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) **DC CHARACTERISTICS** Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended Parameter Typical⁽¹⁾ Max Units Conditions No. Operating Current (IDD)⁽²⁾ DC20d 55 70 mΑ -40°C DC20a 70 +25°C 55 mΑ 10 MIPS 3.3V DC20b 70 +85°C See Note 2 55 mΑ DC20c 55 70 +125°C mΑ DC21d 68 85 -40°C mΑ +25°C DC21a 68 85 mΑ 16 MIPS 3.3V DC21b +85°C See Note 2 and Note 3 68 85 mΑ DC21c 68 +125°C 85 mΑ DC22d 78 95 -40°C mΑ DC22a +25°C 78 95 mΑ 20 MIPS 3.3V DC22b 78 95 +85°C See Note 2 and Note 3 mΑ +125°C DC22c 78 95 mΑ DC23d 88 110 mΑ -40°C +25°C DC23a 88 110 mΑ 30 MIPS 3.3V DC23b See Note 2 and Note 3 88 110 mΑ +85°C DC23c 88 110 +125°C mΑ DC24d 98 120 mΑ -40°C DC24a 98 120 +25°C mΑ 40 MIPS 3.3V +85°C See Note 2 DC24b 98 120 mΑ DC24c 98 120 mΑ +125°C DC25d 128 -40°C 160 mΑ 40 MIPS DC25a 125 +25°C 150 mΑ See **Note 2**, except PWM is 3.3V DC25b operating at maximum speed 121 150 +85°C mΑ (PTCON2 = 0x0000)DC25c 119 150 +125°C mΑ DC26d 140 -40°C 115 mΑ 40 MIPS DC26a 112 140 mΑ +25°C See Note 2, except PWM is 3.3V operating at 1/2 speed DC26b 110 140 +85°C mΑ (PTCON2 = 0x0001)DC26c 108 140 mΑ +125°C DC27d 140 -40°C 111 mΑ 40 MIPS DC27a 108 130 mΑ +25°C See **Note 2**, except PWM is 3.3V DC27b 105 130 +85°C operating at 1/4 speed mΑ (PTCON2 = 0x0002)DC27c 103 130 mΑ +125°C DC28d -40°C 102 130 mΑ 40 MIPS DC28a 100 120 +25°C mΑ See **Note 2**, except PWM is 3.3V DC28b 100 120 +85°C operating at 1/8 speed mA (PTCON2 = 0x0003)DC28c +125°C 100 120 mΑ

TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Note 1:

The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O 2: pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating (PMD bits are all set).

3: These parameters are characterized but not tested in manufacturing.
DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Parameter No.	Typical ⁽¹⁾	Max	Units	S Conditions					
Idle Current (I	DLE): Core Of	f Clock On I	Base Current ⁽	2)					
DC40d	80	100	mA	-40°C					
DC40a	80	100	mA	+25°C	3.3V	10 MIPS			
DC40b	80	100	mA	+85°C	3.3V	10 MIPS			
DC40c	80	100	mA	+125°C					
DC41d	81	100	mA	-40°C					
DC41a	81	100	mA	+25°C	- 3.3V	16 MIPS ⁽³⁾			
DC41b	81	100	mA	+85°C	3.3V				
DC41c	81	100	mA	+125°C					
DC42d	82	100	mA	-40°C		20 MIPS ⁽³⁾			
DC42a	82	100	mA	+25°C	- 3.3V				
DC42b	82	100	mA	+85°C	3.3V				
DC42c	82	100	mA	+125°C					
DC43d	84	105	mA	-40°C					
DC43a	84	105	mA	+25°C	2.2)/	30 MIPS ⁽³⁾			
DC43b	84	105	mA	+85°C	- 3.3V	30 MIPS			
DC43c	84	105	mA	+125°C]				
DC44d	86	105	mA	-40°C					
DC44a	86	105	mA	+25°C	2.2)/				
DC44b	86	105	mA	+85°C	3.3V 40 MIPS				
DC44c	86	105	mA	+125°C	1				

TABLE 24-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

3: These parameters are characterized but not tested in manufacturing.

TABLE 24-7:	DC CHARACTERIST	ICS: POWER-DOWN CURRENT (IPD)
		Standard Operating Conditions: 3.0V to 3.6V

DC CHARACT	TERISTICS		(unless oth	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le T_A \le +125^{\circ}C$ for Extended						
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions						
Power-Down	Current (IPD) ⁽	2,4)								
DC60d	304	500	μΑ	-40°C						
DC60a	317	500	μΑ	+25°C	2.21/	Dees Dever Dever Current				
DC60b	321	500	μΑ	+85°C	3.3V	Base Power-Down Current				
DC60c	800	950	μA	+125°C						
DC61d	40	50	μΑ	-40°C						
DC61a	40	50	μΑ	+25°C	2.01/	Watch day Times Comments Alwort(3)				
DC61b	40	50	μΑ	+85°C	3.3V	Watchdog Timer Current: ∆IwDT ⁽³⁾				
DC61c	80	90	μΑ	+125°C	1					

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

3: The ∆ current is the additional current consumed when the WDT module is enabled. This current should be added to the base IPD current.

4: These currents are measured on the device containing the most memory in this family.

TABLE 24-8:	DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No. Typical ⁽¹⁾ Max			Doze Ratio	Units		Conc	litions	
DC73a	86	105	1:2	mA				
DC73f	86	105	1:64	mA	-40°C	C 3.3V	40 MIPS	
DC73g	86	105	1:128	mA				
DC70a	86	105	1:2	mA				
DC70f	86	105	1:64	mA	+25°C	°C 3.3V	40 MIPS	
DC70g	86	105	1:128	mA				
DC71a	86	105	1:2	mA				
DC71f	86	105	1:64	mA	+85°C	3.3V	40 MIPS	
DC71g	86	105	1:128	mA				
DC72a	86	105	1:2	mA				
DC72f	86	105	1:64	mA	+125°C	3.3V	40 MIPS	
DC72g	86	105	1:128	mA				

Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.

DC CHA	DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for} \\ \\ \mbox{Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Ur				Conditions			
	VIL	Input Low Voltage								
DI10		I/O Pins	Vss		0.2 Vdd	V				
DI15		MCLR	Vss	_	0.2 Vdd	V				
DI16		I/O Pins with OSC1	Vss		0.2 Vdd	V				
DI18		I/O Pins with SDAx, SCLx	Vss	_	0.3 Vdd	V	SMbus disabled			
DI19		I/O Pins with SDAx, SCLx	Vss	_	0.2 Vdd	V	SMbus enabled			
DI20 DI21	Vih	Input High Voltage I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	0.7 VDD 0.7 VDD	_	VDD 5.5	V V				
	ICNPU	CNx Pull-up Current								
DI30			_	250	_	μA	VDD = 3.3V, VPIN = VSS			
DI50	lil	Input Leakage Current ^(2,3,4) I/O Pins with:								
		4 mA Source/Sink Capability 8 mA Source/Sink Capability	_	±2 ±4	_	μΑ μΑ	$Vss \le VPIN \le VDD$, Pin at high-impedance $Vss \le VPIN \le VDD$,			
		16 mA Source/Sink Capability	_	±8	_	μΑ	Pin at high-impedance $Vss \le VPIN \le VDD$, Pin at high-impedance			
DI55		MCLR	—		±2	μA	$Vss \leq V PIN \leq V DD$			
DI56		OSC1	—	—	±2	μA	VSS \leq VPIN \leq VDD, XT and HS modes			
	Isink	Sink Current Pins: RA3, RA4, RB3, RB4, RB11-RB14 Pins: RC3-RC8, RC11-RC13	_	16 8	_	mA mA				
		Pins: RA0-RA2, RB0, RB1, RB5-RB10, RB15, RC1, RC2, RC9, RC10	_	4	_	mA				

TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See "Pin Diagrams" for the list of 5V tolerant I/O pins.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
DO10	Vol	Output Low Voltage I/O Ports: 4 mA Source/Sink Capability 8 mA Source/Sink Capability		0.4 0.4	_	V V	Iol = 4 mA, Vdd = 3.3V Iol = 8 mA, Vdd = 3.3V	
DO16		16 mA Source/Sink Capability OSC2/CLKO	_	0.4 0.4	—	V V	IOL = 16 mA, VDD = 3.3V IOL = 2 mA, VDD = 3.3V	
DO20 DO26	Vон	Output High Voltage I/O Ports: 4 mA Source/Sink Capability 8 mA Source/Sink Capability 16 mA Source/Sink Capability OSC2/CLKO		2.40 2.40 2.40 2.41		V V V	Іон = -4 mA, Vdd = 3.3V Іон = -8 mA, Vdd = 3.3V Іон = -16 mA, Vdd = 3.3V Іон = -1.3 mA, Vdd = 3.3V	
DO26	ISOURCE	Source Current Pins: RA3, RA4, RB3, RB4, RB11-RB14 Pins: RC3-RC8, RC11-RC13 Pins: RA0-RA2, RB0, RB1, RB5- RB10, RB15, RC1, RC2, RC9, RC10		16 8 4		mA mA mA	юн – -1.5 ma, vdd – 3.3v	

TABLE 24-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

TABLE 24-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHAR	DC CHARACTERISTICS		Standard Oper (unless otherw Operating temp	ise state	ed) -40°C ≤	≤ Ta ≤ +8	5°C for In	dustrial Extended
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low BOR Event is Tied to VDD Core Voltage Decrease		2.55	_	2.79	V	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

DC CHARACTERISTICS					vise state	onditions: 3.0V to 3.6V ted) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
						-40°C :	\leq TA \leq +125°C for Extended		
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max U			Units	Conditions		
		Program Flash Memory							
D130	Eр	Cell Endurance	10,000	_	_	E/W	-40°C to +125°C		
D131	Vpr	VDD for Read	VMIN	_	3.6	V	Vміn = Minimum operating voltage		
D132B	VPEW	VDD for Self-Timed Write	VMIN	_	3.6	V	VMIN = Minimum operating voltage		
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C		
D135	IDDP	Supply Current during Programming	—	10	—	mA			
D136a	Trw	Row Write Time	1.32	—	1.74	ms	Trw = 11064 FRC cycles, Ta = +85°C, See Note 2		
D136b	Trw	Row Write Time	1.28	—	1.79	ms	Trw = 11064 FRC cycles, Ta = +125°C, See Note 2		
D137a	TPE	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2		
D137b	TPE	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, Ta = +125°C, See Note 2		
D138a	Tww	Word Write Cycle Time	42.3	—	55.9	μs	Tww = 355 FRC cycles, Ta = +85°C, See Note 2		
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, Ta = +125°C, See Note 2		

TABLE 24-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 24-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

TABLE 24-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operatin	Operating Conditions: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments	
	CEFC	External Filter Capacitor Value	4.7	10	_	μF	Capacitor must be low series resistance (< 5 ohms)	

24.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 AC characteristics and timing parameters.

TABLE 24-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	$\begin{array}{ll} Operating \ temperature & -40^\circ C \leq TA \leq +85^\circ C \ for \ Industrial \\ -40^\circ C \leq TA \leq +125^\circ C \ for \ Extended \end{array}$
	Operating voltage VDD range as described in Section 24.0 "Electrical Characteristics" .

FIGURE 24-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 24-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15		In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx		—	400	pF	In I ² C™ mode

AC CHA	RACTEF	RISTICS	(unless other	wise stat	onditions: 3.0\ ed) -40°C ≤ TA ≤ - -40°C ≤ TA ≤ -	+85°C fo	r Industrial
Param No.	Symb	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	40	MHz	EC
		Oscillator Crystal Frequency	3.5 10	_	10 40	MHz MHz	XT HS
OS20	Tosc	Tosc = 1/Fosc	12.5		DC	ns	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	25		DC	ns	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2		ns	
OS41	TckF	CLKO Fall Time ⁽³⁾	—	5.2	_	ns	
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C

TABLE 24-16: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- 2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

АС СНА	RACTERI	STICS	Standard stated) Operating		ure -40°	C ≤ Ta ≤ ·	+85°C fo	/ (unless otherwise or Industrial for Extended
Param No. Symbol Characteri			stic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS50	Fplli		PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		—	8	MHz	ECPLL, XTPLL modes
OS51	Fsys	On-Chip VCO Syster Frequency	m	100	—	200	MHz	
OS52	TLOCK	PLL Start-up Time (L	ock Time)	0.9	1.5	3.1	mS	
OS53	DCLK	CLKO Stability (Jitter	r)	-3	0.5	3	%	Measured over 100 ms period

TABLE 24-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

TABLE 24-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

АС СНА	RACTERI	STICS	Standard stated) Operating	-	ure -40°	C ≤ Ta ≤ -	+85°C fo	r (unless otherwise r Industrial or Extended
Param No.	Symbol Characteri			Min	Typ ⁽¹⁾	Max	Units	Conditions
	Fhpout	0n-Chip 16x PLL CC Frequency	0	105	120	135	MHz	
	Fhpin	On-Chip 16x PLL Phase Detector Input Frequency		6.56	7.5	8.44	MHz	
	Tsu	Frequency Generator Lock Time				10	μs	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

TABLE 24-19: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHA	RACTERISTICS	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Characteristic	Min	Тур	Max	Units	ions		
	Internal FRC Accuracy @	FRC Fr	equency	= 7.37 N	IHz ^(1,2)			
F20	FRC	_	±2	_	%	$-40^{\circ}C \le TA \le +85^{\circ}C$ VDD = 3.0-3.6		
	FRC	—	±5	—	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V	

Note 1: Frequency calibrated at +25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

2: FRC is set to initial frequency of 7.37 MHz (±2%) at +25°C.

TABLE 24-20: INTERNAL RC ACCURACY

AC CH	ARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Characteristic Min I Ivn Max Units Conditions					ions			
	LPRC @ 32.768 kHz ⁽¹⁾								
F21	LPRC	-20	±6	+20	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V		
	LPRC	-70	—	+70	%	$-40^\circ C \le T A \le +125^\circ C$	VDD = 3.0-3.6V		

Note 1: Change of LPRC frequency as VDD changes.

FIGURE 24-3: I/O TIMING CHARACTERISTICS

TABLE 24-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS Standard Op Operating ter				wise stat	ed) -40°C ≤	TA ≤ +8	5°C for I	ndustrial Extended
Param No.	Symbol	bol Characteristic			Typ ⁽¹⁾	Мах	Units	Conditions
DO31	TIOR	Port Output Rise Tim	ıe		10	25	ns	Refer to Figure 24-1 for test conditions
DO32	TIOF	Port Output Fall Time	9		10	25	ns	Refer to Figure 24-1 for test conditions
DI35	TINP	INTx Pin High or Low	20	—		ns		
DI40	Trbp	CNx High or Low Tin	ne (input)	2		_	TCY	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 24-22:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

AC CHA	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Conditions		
SY10	ТмсL	MCLR Pulse Width (low)	2	_	_	μs	-40°C to +85°C	
SY11	Tpwrt	Power-up Timer Period	_	2 4 16 32 64 128	_	ms	-40°C to +85°C User programmable	
SY12	TPOR	Power-on Reset Delay	3	10	30	μs	-40°C to +85°C	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs		
SY20	Twdt1	Watchdog Timer Time-out Period	_	_	_	ms	See Section 21.4 "Watch- dog Timer (WDT) " and LPRC parameter F21 (Table 24-20).	
SY30	Tost	Oscillator Start-up Time		1024 Tosc		—	Tosc = OSC1 period	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 24-5: TIMER1, 2 AND 3 EXTERNAL CLOCK TIMING CHARACTERISTICS

AC CHA	RACTERIST	ICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Charact	eristic		Min	Тур	Max	Units	Conditions	
TA10	ТтхН	TxCK High Time	Synchronous, no prescaler Synchronous, with prescaler		0.5 Tcy + 20		—	ns	Must also meet parameter TA15	
					10	_	—	ns		
			Asynchro	onous	10	_	—	ns		
TA11	ΤτxL	TxCK Low Time	Synchror no presc		0.5 TCY + 20	_	—	ns	Must also meet parameter TA15	
			Synchror with pres		10		—	ns		
			Asynchro	onous	10	_	_	ns		
TA15	ΤτχΡ	TxCK Input Period	Synchror no presc		Tcy + 40		—	ns		
			Synchror with pres		Greater of: 20 ns or (Tcy + 40)/N	_	—	_	N = prescale value (1, 8, 64, 256)	
			Asynchro	onous	20	_	_	ns		
OS60	Ft1	T1CK Oscillator Inp Range (oscillator er bit, TCS (T1CON<	nabled by		DC		50	kHz		
TA20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		ock	0.5 TCY		1.5 TCY			

TABLE 24-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.

AC CHA	RACTERIST	ïcs	Standard Operating Conditions: 3.0V to(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}$ $-40^{\circ}C \le TA \le +125^{\circ}$					+85°C fo	C for Industrial	
Param No.	Symbol	Charact	eristic		Min	Тур	Max	Units	Conditions	
TB10	ТтхН	TxCK High Time	Synchro no prese		0.5 Tcy + 20	_	—	ns	Must also meet parameter TB15	
			Synchronous, with prescaler		10		—	ns		
TB11	ΤτxL	TxCK Low Time	Synchro no prese		0.5 TCY + 20		—	ns	Must also meet parameter TB15	
			Synchro with pre		10		—	ns		
TB15	ΤτχΡ	TxCK Input Period	Synchro no prese		Tcy + 40		—	ns	N = prescale value	
			Synchronous, with prescaler		Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)	
TB20	TCKEXTMRL	Delay from Externa Edge to Timer Incr		Clock	0.5 TCY		1.5 TCY	—		

TABLE 24-24: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS

TABLE 24-25: TIMER3 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHA	RACTERIST	rics	Operating temperature $-40^{\circ}C \le IA \le$					3.0V to 3.6V A ≤ +85°C for Industrial A ≤ +125°C for Extended		
Param No.	Symbol Characteristic				Min	Тур	Max	Units	Conditions	
TC10	ТтхН	TxCK High Time	Synchro	nous	0.5 Tcy + 20		_	ns	Must also meet parameter TC15	
TC11	ΤτxL	TxCK Low Time	Synchro	nous	0.5 Tcy + 20		—	ns	Must also meet parameter TC15	
TC15	ΤτχΡ	TxCK Input Period	Synchro no preso		Tcy + 40		—	ns	N = prescale value	
			Synchronous, with prescaler		Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)	
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		lock	0.5 TCY	_	1.5 Тсү	_		

FIGURE 24-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 24-26: INPUT CAPTURE TIMING REQUIREMENTS

АС СНА	RACTERI	STICS	Standard Operat (unless otherwis Operating temper	ature -40°C ≤ T4	3.0V to 3.6V A \leq +85°C for Industrial A \leq +125°C for Extended			
Param No.	Symbol	Characte	ristic ⁽¹⁾	Min	Мах	Units	Conditions	
IC10	TccL	ICx Input Low Time	No prescaler	0.5 Tcy + 20		ns		
			With prescaler	10	_	ns		
IC11	TccH	ICx Input High Time	No prescaler	0.5 Tcy + 20	_	ns		
			With prescaler	10	_	ns		
IC15	TccP	ICx Input Period	•	(Tcy + 40)/N	_	ns	N = prescale value (1, 4, 16)	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 24-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 24-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions						
OC10	TccF	OCx Output Fall Time	— — ns See parameter D032						
OC11	TccR	OCx Output Rise Time	— — — ns See parameter D031						

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 24-8: OC/PWM MODULE TIMING CHARACTERISTICS

TABLE 24-28: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions							
OC15	Tfd	Fault Input to PWM I/O Change	— — 50 ns							
OC20	TFLT	Fault Input Pulse Width	50	50 — — ns						

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 24-9: HIGH-SPEED PWM MODULE FAULT TIMING CHARACTERISTICS

FIGURE 24-10: HIGH-SPEED PWM MODULE TIMING CHARACTERISTICS

TABLE 24-29: HIGH-SPEED PWM MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Тур	Max	Units	Conditions			
MP10	TFPWM	PWM Output Fall Time	_	2.5	—	ns	See parameter D032		
MP11	TRPWM	PWM Output Rise Time	—	2.5	_	ns	See parameter D031		
MP20	TFD	Fault Input ↓ to PWM I/O Change	—	_	15	ns			
MP30	Tfh	Minimum Pulse Width	_	8	—	ns			
	TPDLY	Tap Delay	1.04 ns Аськ = 120 MHz						
	ACLK	PWM Input Clock	—	_	120	MHz			

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 24-11: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 24-30: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Max	Units	Conditions					
SP10	TscL	SCKx Output Low Time	Tcy/2	—		ns	See Note 3		
SP11	TscH	SCKx Output High Time	Tcy/2	_	_	ns	See Note 3		
SP20	TscF	SCKx Output Fall Time	—	—		ns	See parameter D032 and Note 4		
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter D031 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter D032 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	—		ns	See parameter D031 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

FIGURE 24-12: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 24-31: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditi							
SP10	TscL	SCKx Output Low Time	Tcy/2	—	_	ns	See Note 3			
SP11	TscH	SCKx Output High Time	TCY/2	_		ns	See Note 3			
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See parameter D032 and Note 4			
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See parameter D031 and Note 4			
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See parameter D032 and Note 4			
SP31	TdoR	SDOx Data Output Rise Time	_	—	_	ns	See parameter D031 and Note 4			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns				
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns				
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23	—	_	ns				
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns				

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

FIGURE 24-13: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 24-32: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions		
SP70	TscL	SCKx Input Low Time	30	_	_	ns			
SP71	TscH	SCKx Input High Time	30			ns			
SP72	TscF	SCKx Input Fall Time	—	10	25	ns	See Note 3		
SP73	TscR	SCKx Input Rise Time	—	10	25	ns	See Note 3		
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter D032 and Note 3		
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter D031 and Note 3		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	30	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_		ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_		ns			
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \uparrow or SCKx Input	120	_		ns			
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	See Note 3		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY +40			ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: Assumes 50 pF load on all SPIx pins.

FIGURE 24-14: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP70	TscL	SCKx Input Low Time	30		_	ns			
SP71	TscH	SCKx Input High Time	30	_		ns			
SP72	TscF	SCKx Input Fall Time	—	10	25	ns	See Note 3		
SP73	TscR	SCKx Input Rise Time	—	10	25	ns	See Note 3		
SP30	TdoF	SDOx Data Output Fall Time	_		_	ns	See parameter D032 and Note 3		
SP31	TdoR	SDOx Data Output Rise Time	_		_	ns	See parameter D031 and Note 3		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_		30	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_		ns			
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↓ or SCKx ↑ Input	120	_	_	ns			
SP51	TssH2doZ	SSx	10	_	50	ns	See Note 4		
SP52	TscH2ssH TscL2ssH	SSx	1.5 TCY + 40	_		ns			
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns			

TABLE 24-33: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 24-16: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)

AC CHA	RACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	e stated) iture -40)°C ≤ Ta ≤	+85°C for Industrial +125°C for Extended
Param No.	Symbol	Charact	teristic	Min ⁽¹⁾	Max	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	
			400 kHz mode	Tcy/2 (BRG + 1)		μs	
			1 MHz mode ⁽²⁾	. ,		μs	
IM11	11 THI:SCL Clock High Time 100 kHz n		100 kHz mode	Tcy/2 (BRG + 1)	_	μs	
	400 kH		400 kHz mode	Tcy/2 (BRG + 1)		μs	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 pF to 400 pF
			1 MHz mode ⁽²⁾	—	100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 pF to 400 pF
			1 MHz mode ⁽²⁾	_	300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode ⁽²⁾	40		ns	
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μs	
		Hold Time	400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽²⁾	0.2	_	μs	
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μs	Only relevant for
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	Repeated Start
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	condition
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μs	After this period the
-	-	Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	first clock pulse is
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	generated
IM33	Τςυ:ςτο	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		μs	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μs	-
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		μs	-
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)		ns	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)		ns	1
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		ns	-
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns	
		From Clock	400 kHz mode		1000	ns	
			1 MHz mode ⁽²⁾		400	ns	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be
	1 DI .ODA		400 kHz mode	1.3		-	free before a new
			1 MHz mode ⁽²⁾	0.5		μs	transmission can star
IM50	Св	Bus Capacitive L		0.0	400	μs pF	

TABLE 24-34: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C[™] Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "dsPIC33F Family Reference Manual" available from the Microchip web site.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

АС СНА	RACTERI	STICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param.	Symbol	Charac	teristic	Min	Max	Units	Conditions			
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μs	Device must operate at a minimum of 1.5 MHz			
			400 kHz mode	1.3	—	μs	Device must operate at a minimum of 10 MHz			
			1 MHz mode ⁽¹⁾	0.5		μs				
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz			
			400 kHz mode	0.6	_	μs	Device must operate at a minimum of 10 MHz			
			1 MHz mode ⁽¹⁾	0.5		μs				
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from			
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 pF to 400 pF			
			1 MHz mode ⁽¹⁾	—	100	ns				
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from			
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 pF to 400 pF			
			1 MHz mode ⁽¹⁾	—	300	ns				
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns				
		Setup Time	400 kHz mode	100		ns				
			1 MHz mode ⁽¹⁾	100		ns				
IS26	THD:DAT		100 kHz mode	0		μs				
		Hold Time	400 kHz mode	0	0.9	μs				
			1 MHz mode ⁽¹⁾	0	0.3	μs				
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μs	Only relevant for Repeated			
		Setup Time	400 kHz mode	0.6		μs	Start condition			
			1 MHz mode ⁽¹⁾	0.25		μs				
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μs	After this period, the first			
		Hold Time	400 kHz mode	0.6		μs	clock pulse is generated			
			1 MHz mode ⁽¹⁾	0.25		μs				
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7		μs				
		Setup Time	400 kHz mode	0.6	—	μs				
			1 MHz mode ⁽¹⁾	0.6		μs				
IS34	THD:STO	Stop Condition	100 kHz mode	4000		ns				
		Hold Time	400 kHz mode	600		ns				
			1 MHz mode ⁽¹⁾	250		ns				
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns				
		From Clock	400 kHz mode	0	1000	ns				
			1 MHz mode ⁽¹⁾	0	350	ns				
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be free			
			400 kHz mode	1.3		μs	before a new transmission			
			1 MHz mode ⁽¹⁾	0.5		μs	can start			
IS50	Св	Bus Capacitive Lo	ading	_	400	pF				

TABLE 24-35: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

АС СНА		STICS	Standard Operating Conditions: 3.0V and 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions					
			Device S	upply								
AD01	AVDD	Module VDD Supply				-	See the VDD specification (DC10) in Table 24-4					
AD02	AVss	Module Vss Supply		_		—	AVss is connected to Vss					
Analog Input												
AD10	VINH-VINL	Full-Scale Input Span	Vss		Vdd	V						
AD11	Vin	Absolute Input Voltage	AVss		AVdd	V						
AD12	IAD	Operating Current		8	_	mA						
AD13	—	Leakage Current	—	±0.6	—	μA	VINL = AVSS = 0V, AVDD = 3.3V Source Impedance = 100Ω					
AD17	Rin	Recommended Impedance Of Analog Voltage Source	_		100	Ω						
		-	DC Accı	iracy								
AD20	Nr	Resolution	1	0 data bi	ts	bits						
AD21A	INL	Integral Nonlinearity		±0.5	<±2	LSb	See Note 2					
AD22A	DNL	Differential Nonlinearity		±0.5	<±1	LSb	See Note 2					
AD23A	Gerr	Gain Error		±0.75	<±3.0	LSb	See Note 2					
AD24A	EOFF	Offset Error		±2.0	<±5.0	LSb	See Note 2					
AD25	—	Monotonicity ⁽¹⁾	_	—	—	—	Guaranteed					
		Dy	namic Per	formanc	e		•					
AD30	THD	Total Harmonic Distortion		-73		dB						
AD31	SINAD	Signal to Noise and Distortion		58	_	dB						
AD32	SFDR	Spurious Free Dynamic Range	_	-73		dB						
AD33	Fnyq	Input Signal Bandwidth	_	—	0.5	MHz						
AD34	ENOB	Effective Number of Bits		9.4	_	bits						

TABLE 24-36: 10-BIT HIGH-SPEED A/D MODULE SPECIFICATIONS

Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.

2: This parameter is characterized under the following conditions: AV_{DD} = 3.3V, 2.0 MSPS for dedicated S/H, 1.5 MSPS for shared S/H. This parameter is not tested in manufacturing.

AC CHARACTERISTICS			(unless	otherwis	e stated) ature -4	·0°C ≤ TA :	0V to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended	
Param No.	ⁿ Symbol Characteristic Min. Typ ⁽¹⁾ Max. Units Condi							
		Cloc	k Parame	ters				
AD50b	TAD	ADC Clock Period	35.8	—	_	ns		
		Con	version R	ate				
AD55b	tCONV	Conversion Time	—	14 Tad	_	_		
AD56b	FCNV	Throughput Rate						
		Devices with Single SAR	—	—	2.0	Msps		
		Devices with Dual SARs	—	—	4.0	Msps		
	•	Timin	g Parame	eters		•		
AD63b	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾	1.0	_	10	μs		

TABLE 24-37: 10-BIT HIGH-SPEED A/D MODULE TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 24-19: A/D CONVERSION TIMING PER INPUT

			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature: } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$								
Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments				
	VIOFF	Input Offset Voltage		±5	±15	mV					
	VICM	Input Common Mode Voltage Range ⁽¹⁾	0	—	AVDD – 1.5	V					
	Vgain	Open Loop Gain ⁽¹⁾	90			db					
	CMRR	Common Mode Rejection Ratio ⁽¹⁾	70	—	—	db					
	TRESP	Large Signal Response		20	30	ns	V+ input step of 100 mv while V- input held at AVDD/2. Delay measured from analog input pin to PWM output pin.				

TABLE 24-38: COMPARATOR AC AND DC SPECIFICATIONS

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 24-39: DAC DC SPECIFICATIONS

			Standard Operating Conditions (unless otherwise stated) Operating temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param. No.	Symbol	Characteristic	Min Typ Max Units Comments						
	CVRSRC	External Reference Voltage ⁽¹⁾	0		AVDD - 1.6	V			
	CVRES	Resolution		10		Bits			
	INL DNL EOFF EG	Transfer Function Accuracy Integral Nonlinearity Error Differential Nonlinearity Error Offset Error Gain Error	 	±1.0 ±0.8 ±2.0 ±2.0		LSB LSB LSB LSB	AVDD = 3.3V, DACREF = (AVDD/2)V		

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 24-40: DAC AC SPECIFICATIONS

				Standard Operating Conditions (unless otherwise stated)Operating temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param. No.	Symbol	Characteristic	Min Typ Max Units Comments				Comments
	TSET	Settling Time ⁽¹⁾			650	nsec	Measured when range = 1 (high range), and CMREF<9:0> transitions from 0x1FF to 0x300.

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

	-		Standard Operating Conditions (unless otherwise stated) Operating temperature: $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments	
	RLOAD	Resistive Output Load Impedance	ЗК	—		Ω		
	CLOAD	Output Load Capacitance	—	20	35	pF		
	Ιουτ	Output Current Drive Strength	200	300	400	μA	Sink and source	
	VRANGE	Full Output Drive Strength Voltage Range	Avss + 250 mV	_	AVDD – 900 mV	V		
	VLRANGE	Output Drive Voltage Range at Reduced Current Drive of 50 μA	AVss + 50 mV	_	AV _{DD} – 500 mV	V		
	IDD	Current Consumed when Module is Enabled, High-Power Mode	_	_	1.3 x IOUT	μA	Module will always consume this current even if no load is connected to the output	
	Rin	Input Impedance	10 ⁹		_	Ω		
	ROUTON	Output Impedance when Module is Enabled	—	_	10	Ω	Closed loop output resistance	
	Rout- Off	Output Impedance when Module is Disabled	10 ⁷	_	—	Ω	<pre>buf_enable = 0</pre>	

TABLE 24-41: DAC OUTPUT BUFFER DC SPECIFICATIONS

NOTES:

25.0 PACKAGING INFORMATION

18-Lead SOIC (.300")

28-Lead SOIC

dsPIC33FJ06GS

10830235

202-E/SO (e3)

Example

28-Lead SPDIP

Example

dsPIC33FJ06GS 202-E/SP@3 0830235

Legend	: XXX	Customer-specific information				
	Y Year code (last digit of calendar year)					
	ΥY	Year code (last 2 digits of calendar year)				
	WW Week code (week of January 1 is week '01')					
	NNN	Alphanumeric traceability code				
	e3 Pb-free JEDEC designator for Matte Tin (Sn)					
	* This package is Pb-free. The Pb-free JEDEC designator ((e3))					
		can be found on the outer packaging for this package.				
Note:	If the full Microchip part number cannot be marked on one line, it is carried over to the next line, thus limiting the number of available characters for customer-specific information.					

25.1 Package Marking Information (Continued)

44-Lead QFN

44-Lead TQFP

Example

Example

Example

25.2 Package Details

18-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N	18				
Pitch	е	1.27 BSC				
Overall Height	А	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	11.55 BSC				
Chamfer (optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Foot Angle	ф	0°	-	8°		
Lead Thickness	С	0.20	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	_	15°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-051B

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
	MIN	NOM	MAX			
Number of Pins	N	28				
Pitch	е	1.27 BSC				
Overall Height	А	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	17.90 BSC				
Chamfer (optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Foot Angle Top	φ	0°	-	8°		
Lead Thickness	С	0.18	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES			
	Dimension Limits		NOM	MAX
Number of Pins	N	28		
Pitch	e	.100 BSC		
Top to Seating Plane	A	_	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensio	on Limits	MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	0.65 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.70	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.70	
Contact Width	b	0.23	0.38	0.43	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	К	0.20	_	_	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124B
28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	Contact Pitch E		0.65 BSC		
Optional Center Pad Width	W2			4.70	
Optional Center Pad Length	T2			4.70	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.40	
Contact Pad Length (X28)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	
Dir	mension Limits	MIN	NOM	MAX
Number of Pins	N		44	
Pitch	e		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	8.00 BSC		
Exposed Pad Width	E2	6.30	6.45	6.80
Overall Length	D	8.00 BSC		
Exposed Pad Length	D2	6.30	6.45	6.80
Contact Width	b	0.25	0.30	0.38
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	Contact Pitch E		0.65 BSC		
Optional Center Pad Width	W2			6.80	
Optional Center Pad Length	T2			6.80	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.80	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N		44	
Lead Pitch	е		0.80 BSC	
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	φ	0°	3.5°	7°
Overall Width	E	12.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIM	ETERS	
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (January 2008)

This is the initial revision of this document.

Revision B (June 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text. In addition, redundant information was removed that is now available in the respective chapters of the *dsPIC33F Family Reference Manual*, which can be obtained from the Microchip website (www.microchip.com).

The major changes are referenced by their respective section in the following table.

Section Name	Update Description
"High-Performance, 16-Bit Digital Signal Controllers"	Moved location of Note 1 (RP# pin) references (see "Pin Diagrams").
Section 3.0 "Memory Organization"	Updated CPU Core Register map SFR reset value for CORCON (see Table 3-1).
	Removed Interrupt Controller Register Map SFR IPC29 and updated reset values for IPC0, IPC1, IPC14, IPC16, IPC23, IPC24, IPC27, and IPC28 (see Table 3-5).
	Removed Interrupt Controller Register Map SFR IPC24 and IPC29 and updated reset values for IPC0, IPC1, IPC2, IPC14, IPC16, IPC23, IPC27, and IPC28 (see Table 3-6).
	Removed Interrupt Controller Register Map SFR IPC24 and updated reset values for IPC1, IPC2, IPC4, IPC14, IPC16, IPC23, IPC24, IPC27, and IPC28 (see Table 3-7).
	Updated Interrupt Controller Register Map SFR reset values for IPC1, IPC14, IPC16, IPC23, IPC24, IPC27, and IPC28 (see Table 3-8).
	Updated Interrupt Controller Register Map SFR reset values for IPC1, IPC14, IPC16, IPC23, IPC24, IPC25, IPC26, IPC27, IPC28, and IPC29 (see Table 3-9).
	Updated Interrupt Controller Register Map SFR reset values for IPC1, IPC4, IPC14, IPC16, IPC23, IPC24, IPC25, IPC26, IPC27, IPC28, and IPC29 (see Table 3-10).
	Added SFR definitions for RPOR16 and RPOR17 (see Table 3-34, Table 3-35, and Table 3-36).
	Updated bit definitions for PORTA, PORTB, and PORTC SFRs (ODCA, ODCB, and ODCC) (see Table 3-37, Table 3-38, Table 3-39, and Table 3-40).
	Updated bit definitions and reset value for System Control Register map SFR CLKDIV (see Table 3-41).
	Added device-specific information to title of PMD Register Map (see Table 3-47).
	Added device-specific PMD Register Maps (see Table 3-46, Table 3-45, and Table 3-43).

TABLE A-1:MAJOR SECTION UPDATES

	UPDATES (CONTINUED)
Section Name	Update Description
Section 7.0 "Oscillator Configuration"	Removed the first sentence of the third clock source item (External Clock) in Section 7.1.1 "System Clock sources"
	Updated the default bit values for DOZE and FRCDIV in the Clock Divisor Register (see Register 7-2).
Section 8.0 "Power-Saving	Added the following six registers:
Features"	"PMD1: Peripheral Module Disable Control Register 1"
	"PMD2: Peripheral Module Disable Control Register 2"
	"PMD3: Peripheral Module Disable Control Register 3"
	"PMD4: Peripheral Module Disable Control Register 4"
	"PMD6: Peripheral Module Disable Control Register 6"
	"PMD7: Peripheral Module Disable Control Register 7"
Section 9.0 "I/O Ports"	Added paragraph and Table 9-1 to Section 9.1.1 " Open-Drain Configuration ", which provides details on I/O pins and their functionality.
	Removed 9.1.2 "5V Tolerance".
	Updated MUX range and removed virtual pin details in Figure 9-2.
	Updated PWM Input Name descriptions in Table 9-1.
	Added Section 9.4.2.3 "Virtual Pins".
	Updated bit values in all Peripheral Pin Select Input Registers (see Register 9-1 through Register 9-14).
	Updated bit name information for Peripheral Pin Select Output Registers RPOR16 and RPOR17 (see Register 9-30 and Register 9-31).
	Added the following two registers:
	• "RPOR16: Peripheral Pin Select Output Register 16"
	• "RPOR17: Peripheral Pin Select Output Register 17"
	Removed the following sections:
	• 9.4.2 "Available Peripherals"
	9.4.3.2 "Virtual Input Pins"
	9.4.3.4 "Peripheral Mapping"
	• 9.4.5 "Considerations for Peripheral Pin Selection" (and all subsections)
Section 14.0 "High-Speed PWM"	Added Note 1 (remappable pin reference) to Figure 14-1.
	Added Note 2 (Duty Cycle resolution) to PWM Master Duty Cycle Register
	(Register 14-5), PWM Generator Duty Cycle Register (Register 14-7), and
	PWM Secondary Duty Cycle Register (Register 14-8).
	Added Note 2 and Note 3 and updated bit information for CLSRC and FLTSRC in the PWM Fault Current-Limit Control Register (Register 14-15).
Section 15.0 "Serial Peripheral Interface (SPI)"	Removed the following sections, which are now available in the related section of the dsPIC33F Family Reference Manual:
	• 15.1 "Interrupts"
	15.2 "Receive Operations"
	15.3 "Transmit Operations"
	• 15.4 "SPI Setup" (retained Figure 15-1: SPI Module Block Diagram)

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description		
Section 16.0 "Inter-Integrated Circuit (I ² C™)"	Removed the following sections, which are now available in the related section of the dsPIC33F Family Reference Manual:		
	• 16.3 "I ² C Interrupts"		
	• 16.4 "Baud Rate Generator" (retained Figure 16-1: I ² C Block Diagram)		
	 16.5 "I²C Module Addresses 		
	16.6 "Slave Address Masking"		
	16.7 "IPMI Support"		
	16.8 "General Call Address Support"		
	16.9 "Automatic Clock Stretch"		
	 16.10 "Software Controlled Clock Stretching (STREN = 1)" 		
	16.11 "Slope Control"		
	16.12 "Clock Arbitration"		
	• 16.13 "Multi-Master Communication, Bus Collision, and Bus Arbitration		
Section 17.0 "Universal Asynchronous Receiver Transmitter	Removed the following sections, which are now available in the related section of the dsPIC33F Family Reference Manual:		
(UART)"	17.1 "UART Baud Rate Generator"		
	17.2 "Transmitting in 8-bit Data Mode		
	17.3 "Transmitting in 9-bit Data Mode		
	17.4 "Break and Sync Transmit Sequence"		
	17.5 "Receiving in 8-bit or 9-bit Data Mode"		
	• 17.6 "Flow Control Using UxCTS and UxRTS Pins"		
	• 17.7 "Infrared Support"		
	Removed IrDA references and Note 1, and updated the bit and bit value descriptions for UTXINV (UxSTA<14>) in the UARTx Status and Control Register (see Register 17-2).		
Section 18.0 "High-Speed 10-bit	Updated bit value information for A/D Control Register (see Register 18-1).		
Analog-to-Digital Converter (ADC)"	Updated TRGSRC6 bit value for Timer1 period match in the A/D Convert Pair Control Register 3 (see Register 18-8).		

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

TABLE A-1:	MAJOR SECTION UPDATES (CONTINUED)
------------	-----------------------------------

Section Name	Update Description
Section 23.0 "Electrical	Updated Typ values for Thermal Packaging Characteristics (Table 23-3).
Characteristics"	Removed Typ value for DC Temperature and Voltage Specifications parameter DC12 (Table 23-4).
	Updated all Typ values and conditions for DC Characteristics: Operating Current (IDD), updated last sentence in Note 2 (Table 23-5).
	Updated all Typ values for DC Characteristics: Idle Current (IIDLE) (see Table 23-6).
	Updated all Typ values for DC Characteristics: Power Down Current (IPD) (see Table 23-7).
	Updated all Typ values for DC Characteristics: Doze Current (IDOZE) (see Table 23-8).
	Added Note 4 (reference to new table containing digital-only and analog pin information, as well as Current Sink/Source capabilities) in the I/O Pin Input Specifications (Table 23-9).
	Updated Max value for BOR electrical characteristics parameter BO10 (see Table 23-11).
	Swapped Min and Typ values for Program Memory parameters D136 and D137 (Table 23-12).
	Updated Typ values for Internal RC Accuracy parameter F20 and added Extended temperature range to table heading (see Table 23-19).
	Removed all values for Reset, Watchdog Timer, Oscillator Start-up Timer, and Power-up Timer parameter SY20 and updated conditions, which now refers to Section 20.4 " Watchdog Timer (WDT) " and LPRC parameter F21 (see Table 23-22).
	Added specifications to High-Speed PWM Module Timing Requirements for Tap Delay (Table 23-29).
	Updated Min and Max values for 10-bit High-Speed A/D Module parameters AD01 and AD11 (see Table 23-36).
	Updated Max value and unit of measure for DAC AC Specification (see Table 23-40).

Revision C and D (March 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSCO to OSC2
- Changed all instances of PGCx/EMUCx and PGDx/EMUDx (where x = 1, 2, or 3) to PGECx and PGEDx
- Changed all instances of VDDCORE and VDDCORE/ VCAP to VCAP/VDDCORE

Other major changes are referenced by their respective section in the following table.

Section Name	Update Description
"High-Performance, 16-Bit Digital	Added "Application Examples" to list of features
Signal Controllers"	Updated all pin diagrams to denote the pin voltage tolerance (see " Pin Diagrams ").
	Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.
Section 1.0 "Device Overview"	Added ACMP1-ACMP4 pin names and Peripheral Pin Select capability column to Pinout I/O Descriptions (see Table 1-1).
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Added new section to the data sheet that provides guidelines on getting started with 16-bit Digital Signal Controllers.
Section 3.0 "CPU"	Updated CPU Core Block Diagram with a connection from the DSP Engine to the Y Data Bus (see Figure 3-1).
	Vertically extended the X and Y Data Bus lines in the DSP Engine Block Diagram (see Figure 3-3).
Section 4.0 "Memory Organization"	Updated Reset value for ADCON in Table 4-25.
	Removed reference to dsPIC33FJ06GS102 devices in the PMD Register Map and updated bit definitions for PMD1 and PMD6, and removed PMD7 (see Table 4-43).
	Added a new PMD Register Map, which references dsPIC33FJ06GS102 devices (see Table 4-44).
	Updated RAM stack address and SPLIM values in the third paragraph of Section 4.2.6 "Software Stack"
	Removed Section 4.2.7 "Data Ram Protection Feature".
Section 5.0 "Flash Program Memory"	Updated Section 5.3 "Programming Operations" with programming time formula.

TABLE A-2: MAJOR SECTION UPDATES

TABLE A-2:	MAJOR SECTION UPDATES (CONTINUED)
------------	-----------------------------------

Section Name	Update Description
Section 8.0 "Oscillator	Added Note 2 to the Oscillator System Diagram (see Figure 8-1).
Configuration"	Added a paragraph regarding FRC accuracy at the end of Section 8.1.1 " System Clock Sources ".
	Added Note 1 and Note 2 to the OSCON register (see Register).
	Added Note 1 to the OSCTUN register (see Register 8-4).
	Added Note 3 to Section 8.4.2 "Oscillator Switching Sequence".
Section 10.0 "I/O Ports"	Removed Table 9-1 and added reference to pin diagrams for I/O pin availability and functionality.
	Added paragraph on ADPCFG register default values to Section 10.2 "Configuring Analog Port Pins".
	Added Note box regarding PPS functionality with input mapping to Section 10.4.2.1 "Input Mapping" .
Section 15.0 "High-Speed PWM"	Updated Note 2 in the PTCON register (see Register 15-1).
	Added Note 4 to the PWMCONx register (see Register 15-6).
	Updated Notes for the PHASEx and SPHASEx registers (see Register 15-9 and Register 15-10, respectively).
Section 16.0 "Serial Peripheral Interface (SPI)"	Added Note 2 and Note 3 to the SPIxCON1 register (see Register 16-2).
Section 18.0 "Universal	Updated the Notes in the UxMode register (see Register 18-1).
Asynchronous Receiver Transmitter (UART)"	Updated the UTXINV bit settings in the UxSTA register and added Note 1 (see Register 18-2).
Section 19.0 "High-Speed 10-bit Analog-to-Digital Converter (ADC)"	Updated the SLOWCLK and ADCS<2:0> bit settings and updated Note 1in the ADCON register (see Register 19-1).
	Removed all notes in the ADPCFG register and replaced them with a single note (see Register 19-4).
	Updated the SWTRGx bit settings in the ADCPCx registers (see Register 19-5, Register 19-6, Register 19-7, and Register 19-8).

Section Name	Update Description
Section 24.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 24-3).
	Updated Min and Max values for parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 24-4).
	Updated Characteristics for I/O Pin Input Specifications (see Table 24-9).
	Added ISOURCE to I/O Pin Output Specifications (see Table 24-10).
	Updated Program Memory values for parameters 136, 137, and 138 (renamed to 136a, 137a, and 138a), added parameters 136b, 137b, and 138b, and added Note 2 (see Table 24-12).
	Added parameter OS42 (Gм) to the External Clock Timing Requirements (see Table 24-16).
	Updated Conditions for symbol TPDLY (Tap Delay) and added symbol AcLK (PWM Input Clock) to the High-Speed PWM Module Timing Requirements (see Table 24-29).
	Updated parameters AD01 and AD02 in the 10-bit High-Speed A/D Module Specifications (see Table 24-36).
	Updated parameters AD50b, AD55b, and AD56b, and removed parameters AD57b and AD60b from the 10-bit High-Speed A/D Module Timing Requirements (see Table 24-37).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

NOTES:

INDEX

Numerics

10-bit High Speed Analog-to-Digital Converter. See A/D

Α
A/D
AC Characteristics
Internal RC Accuracy
Load Conditions
Alternate Vector Table (AIVT)
Arithmetic Logic Unit (ALU)27
Assembler
MPASM Assembler
В
-
Barrel Shifter
Bit-Reversed Addressing
Example
Implementation
Block Diagrams
16-Bit Timer1 Module
Comparator
Connections for On-Chip Voltage Regulator
DSP Engine
dsPIC33FJ06GS101/X02 and
dsPIC33FJ16GSX02/X04 CPU Core
dsPIC33FJ06GS101/X02 and
dsPIC33FJ16GSX02/X04
I ² C
Input Capture
Oscillator System
Output Compare
PLL
Reset System79
Shared Port Structure
Simplified Conceptual High-Speed PWM 190
SPI
Timer2/3 (32-Bit) 179
Type B Timer 177
Type C Timer 177
UART
Watchdog Timer (WDT) 259
Brown-out Reset (BOR)255

С

C Compilers	
MPLAB C18	
MPLAB C30	
Clock Switching	136
Enabling	136
Sequence	136
Code Examples	
Erasing a Program Memory Page	77
Initiating a Programming Sequence	78
Loading Write Buffers	78
Port Write/Read	147
PWRSAV Instruction Syntax	
Code Protection	
CodeGuard Security	
Configuration Bits	255
Configuration Register Map	255
Configuring Analog Port Pins	147

CPU	
Control Registers	24
CPU Clocking System	128
PLL Configuration	129
Selection	128
Sources	128
Customer Change Notification Service	331
Customer Notification Service	331
Customer Support	331

D

-	
DAC	252
Output Range	252
Data Accumulators and Adder/Subtracter	29
Data Space Write Saturation	31
Overflow and Saturation	29
Round Logic	30
Write Back	30
Data Address Space	35
Alignment	35
Memory Map for dsPIC33FJ06GS101/102 Devices	
with 256 Bytes of RAM	36
Memory Map for dsPIC33FJ06GS202 Device	
with 1-Kbyte RAM	37
Memory Map for dsPIC33FJ16GS402/404/502/504	
Devices with 2-Kbyte RAM	38
Near Data Space	35
Software Stack	63
Width	35
DC Characteristics	
Doze Current (IDOZE)	
I/O Pin Input Specifications	281
I/O Pin Output Specifications	
Idle Current (IIDLE)	279
Operating Current (IDD)	278
Power-Down Current (IPD)	280
Program Memory	
Temperature and Voltage Specifications	277
Development Support	271
Doze Mode	138
DSP Engine	27
Multiplier	29

Е

EBCONx (Leading-Edge Blanking Control)	207
Electrical Characteristics	275
AC Characteristics and Timing Parameters	284
BOR	282
Equations	
Device Operating Frequency	128
Fosc Calculation	129
XT with PLL Mode Example	129
Errata	. 12
F	
Fail-Safe Clock Monitor (FSCM)	136

Fail-Safe Clock Monitor (FSCM)	136
Flash Program Memory	73
Control Registers	74
Operations	
Programming Algorithm	
RTSP Operation	74
Table Instructions	
Flexible Configuration	255

Н

High-Speed Analog Comparator High-Speed PWM	
I	
I/O Ports	. 145
Parallel I/O (PIO)	
Write/Read Timing	
l ² C	
Operating Modes	.215
Registers	
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	
Input Capture	
Registers	. 184
Input Change Notification	
Instruction Addressing Modes	
File Register Instructions	63
Fundamental Modes Supported	
MAC Instructions	
MCU Instructions	
Move and Accumulator Instructions	
Other Instructions	
Instruction Set	
Overview	266
Summary	
Instruction-Based Power-Saving Modes	137
Idle	
Sleep	
Interfacing Program and Data Memory Spaces	
Internal RC Oscillator	
Use with WDT	259
Internet Address	
Interrupt Control and Status Registers	
IECx	
IFSx	
INTCON1	
INTCON2	
INTTREG	
IPCx	
Interrupt Setup Procedures	
Initialization	
Interrupt Disable	
Interrupt Service Routine	
Trap Service Routine	
Interrupt Vector Table (IVT)	
Interrupts Coincident with Power Save Instructions	
J	
JTAG Boundary Scan Interface	255

Memory Organization	
Microchip Internet Web Site	
Modulo Addressing	65
Applicability	66
Operation Example	65
Start and End Address	65
W Address Register Selection	65
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB ICD 2 In-Circuit Debugger	
MPLAB ICE 2000 High-Performance Universal	
In-Circuit Emulator	

MPLAB Integrated Development Environment Software	271
MPLAB PM3 Device Programmer	273
MPLAB REAL ICE In-Circuit Emulator System	273
MPLINK Object Linker/MPLIB Object Librarian	272

0

Open-Drain Configuration	146
Oscillator Configuration	
Output Compare	185

Ρ

-	
Packaging	309
Details	311
Marking	309
Peripheral Module Disable (PMD)	138
PICSTART Plus Development Programmer	274
Pinout I/O Descriptions (table)	15
Power-on Reset (POR)	84
Power-Saving Features	137
Clock Frequency and Switching	137
Program Address Space	33
Construction	68
Data Access from Program Memory Using	
Program Space Visibility	71
Data Access from Program Memory Using	
Table Instructions	70
Data Access from, Address Generation	69
Memory Maps	33
Table Read Instructions	
TBLRDH	70
TBLRDL	70
Visibility Operation	71
Program Memory	
Interrupt Vector	34
Organization	
Reset Vector	34

R

Reader Response	332
Registers	
	~~-

	207
A/D Control Register (ADCON)	237
A/D Convert Pair Control Register 0 (ADCPC0)	241
A/D Convert Pair Control Register 1 (ADCPC1)	243
A/D Convert Pair Control Register 2 (ADCPC2)	246
A/D Convert Pair Control Register 3 (ADCPC3)	249
A/D Port Configuration Register (ADPCFG)	240
A/D Status Register (ADSTAT)	239
ACLKCON (Auxiliary Clock Divisor Control)	134
ALTDTRx (PWM Alternate Dead-Time)	200
CLKDIV (Clock Divisor)	
CMPCPNx (Comparator Control)	253
CMPDACx (Comparator DAC Control)	254
CORCON (Core Control)	
DTRx (PWMx Dead-Time)	
FCLCONx (PWMx Fault Current-Limit Control)	204
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	221
I2CxSTAT (I2Cx Status)	219
ICxCON (Input Capture x Control)	
IEC0 (Interrupt Enable Control 0)	103
IEC1 (Interrupt Enable Control 1)	105
IEC3 (Interrupt Enable Control 3)	106
IEC4 (Interrupt Enable Control 4)	
IEC5 (Interrupt Enable Control 5)	
IFS0 (Interrupt Flag Status 0)	96

IFS1 (Interrupt Flag Status 1)	98
IFS3 (Interrupt Flag Status 3)	
IFS4 (Interrupt Flag Status 4)	99
IFS5 (Interrupt Flag Status 5)	100
IFS6 (Interrupt Flag Status 6) 101,	
IFS7 (Interrupt Flag Status 7) 102,	109
INTCON1 (Interrupt Control 1)	93
INTTREG Interrupt Control and Status	
IOCONx (PWMx I/O Control)	. 202
IPC0 (Interrupt Priority Control 0)	
IDC1 (Interrupt Priority Control 0)	444
IPC1 (Interrupt Priority Control 1)	
IPC14 (Interrupt Priority Control 14)	. 116
IPC16 (Interrupt Priority Control 16)	
IPC2 (Interrupt Priority Control 2)	
IPC23 (Interrupt Priority Control 23)	. 117
IPC24 (Interrupt Priority Control 24)	118
IPC25 (Interrupt Priority Control 25)	
IPC26 (Interrupt Priority Control 26)	. 120
IPC27 (Interrupt Priority Control 27)	
IPC28 (Interrupt Priority Control 28)	
IPC29 (Interrupt Priority Control 29)	. 123
IPC3 (Interrupt Priority Control 3)	113
IPC4 (Interrupt Priority Control 4)	
IPC5 (Interrupt Priority Control 5)	. 115
IPC7 (Interrupt Priority Control 7)	115
MDC (DMM Meeter Duty Cycle)	101
MDC (PWM Master Duty Cycle)	
NVMCON (Flash Memory Control)	75
NVMKEY (Nonvolatile Memory Key)	76
OCxCON (Output Compare x Control)	
OSCCON (Oscillator Control)	. 130
OSCTUN (Oscillator Tuning)	. 133
PLLFBD (PLL Feedback Divisor)	
PMD1 (Peripheral Module Disable Control 1)	
PMD2 (Peripheral Module Disable Control 2)	. 140
PMD3 (Peripheral Module Disable Control 3)	
PMD4 (Peripheral Module Disable Control 4)	. 141
PMD6 (Peripheral Module Disable Control 6)	. 142
PMD7 (Peripheral Module Disable Control 7)	
PTCON (PWM Time Base Control)	
PWMCAPx (Primary PWMx Time Base Capture)	208
PWMCONx (PWMx Control)	
RCON (Reset Control)	80
REFOCON (Reference Oscillator Control)	. 135
RPINR0 (Peripheral Pin Select Input 0)	152
RPINR1 (Peripheral Pin Select Input 1)	
RPINR11 (Peripheral Pin Select Input 11)	. 156
RPINR18 (Peripheral Pin Select Input 18)	157
RPINR20 (Peripheral Pin Select Input 20)	
RPINR21 (Peripheral Pin Select Input 21)	. 159
RPINR29 (Peripheral Pin Select Input 29)	. 160
RPINR3 (Peripheral Pin Select Input 3)	
RPINR30 (Peripheral Pin Select Input 30)	. 161
RPINR31 (Peripheral Pin Select Input 31)	. 162
RPINR32 (Peripheral Pin Select Input 32)	
	163
RPINR32 (Peripheral Pin Select Input 32)	
RPINR33 (Peripheral Pin Select Input 33)	. 164
RPINR33 (Peripheral Pin Select Input 33) RPINR34 (Peripheral Pin Select Input 34)	. 164 . 165
RPINR33 (Peripheral Pin Select Input 33) RPINR34 (Peripheral Pin Select Input 34) RPINR7 (Peripheral Pin Select Input 7)	. 164 . 165 . 155
RPINR33 (Peripheral Pin Select Input 33) RPINR34 (Peripheral Pin Select Input 34) RPINR7 (Peripheral Pin Select Input 7) RPOR0 (Peripheral Pin Select Output 0)	. 164 . 165 . 155 . 165
RPINR33 (Peripheral Pin Select Input 33) RPINR34 (Peripheral Pin Select Input 34) RPINR7 (Peripheral Pin Select Input 7)	. 164 . 165 . 155 . 165
RPINR33 (Peripheral Pin Select Input 33) RPINR34 (Peripheral Pin Select Input 34) RPINR7 (Peripheral Pin Select Input 7) RPOR0 (Peripheral Pin Select Output 0) RPOR1 (Peripheral Pin Select Output 1)	. 164 . 165 . 155 . 165 . 166
RPINR33 (Peripheral Pin Select Input 33) RPINR34 (Peripheral Pin Select Input 34) RPINR7 (Peripheral Pin Select Input 7) RPOR0 (Peripheral Pin Select Output 0) RPOR1 (Peripheral Pin Select Output 1) RPOR10 (Peripheral Pin Select Output 10)	. 164 . 165 . 155 . 165 . 166 . 170
RPINR33 (Peripheral Pin Select Input 33) RPINR34 (Peripheral Pin Select Input 34) RPOR0 (Peripheral Pin Select Input 7) RPOR0 (Peripheral Pin Select Output 0) RPOR1 (Peripheral Pin Select Output 1) RPOR10 (Peripheral Pin Select Output 10) RPOR11 (Peripheral Pin Select Output 11)	. 164 . 165 . 155 . 165 . 166 . 170 . 171
RPINR33 (Peripheral Pin Select Input 33) RPINR34 (Peripheral Pin Select Input 34) RPINR7 (Peripheral Pin Select Input 7) RPOR0 (Peripheral Pin Select Output 0) RPOR1 (Peripheral Pin Select Output 1) RPOR10 (Peripheral Pin Select Output 10)	. 164 . 165 . 155 . 165 . 166 . 170 . 171
RPINR33 (Peripheral Pin Select Input 33) RPINR34 (Peripheral Pin Select Input 34) RPOR0 (Peripheral Pin Select Input 7) RPOR1 (Peripheral Pin Select Output 0) RPOR1 (Peripheral Pin Select Output 1) RPOR10 (Peripheral Pin Select Output 10) RPOR11 (Peripheral Pin Select Output 11) RPOR12 (Peripheral Pin Select Output 12)	. 164 . 165 . 155 . 165 . 166 . 170 . 171 . 171
RPINR33 (Peripheral Pin Select Input 33) RPINR34 (Peripheral Pin Select Input 34) RPINR7 (Peripheral Pin Select Input 7) RPOR0 (Peripheral Pin Select Output 0) RPOR1 (Peripheral Pin Select Output 1) RPOR10 (Peripheral Pin Select Output 1) RPOR11 (Peripheral Pin Select Output 10) RPOR12 (Peripheral Pin Select Output 11) RPOR13 (Peripheral Pin Select Output 13)	. 164 . 165 . 155 . 165 . 166 . 170 . 171 . 171 . 172
RPINR33 (Peripheral Pin Select Input 33) RPINR34 (Peripheral Pin Select Input 34) RPOR0 (Peripheral Pin Select Input 7) RPOR1 (Peripheral Pin Select Output 0) RPOR1 (Peripheral Pin Select Output 1) RPOR10 (Peripheral Pin Select Output 10) RPOR11 (Peripheral Pin Select Output 11) RPOR12 (Peripheral Pin Select Output 12) RPOR13 (Peripheral Pin Select Output 13) RPOR14 (Peripheral Pin Select Output 14)	. 164 . 165 . 155 . 165 . 166 . 170 . 171 . 171 . 172 . 172
RPINR33 (Peripheral Pin Select Input 33) RPINR34 (Peripheral Pin Select Input 34) RPINR7 (Peripheral Pin Select Input 7) RPOR0 (Peripheral Pin Select Output 0) RPOR1 (Peripheral Pin Select Output 1) RPOR10 (Peripheral Pin Select Output 1) RPOR11 (Peripheral Pin Select Output 10) RPOR12 (Peripheral Pin Select Output 11) RPOR13 (Peripheral Pin Select Output 13)	. 164 . 165 . 155 . 165 . 166 . 170 . 171 . 171 . 172 . 172
RPINR33 (Peripheral Pin Select Input 33) RPINR34 (Peripheral Pin Select Input 34) RPOR0 (Peripheral Pin Select Input 7) RPOR1 (Peripheral Pin Select Output 0) RPOR1 (Peripheral Pin Select Output 1) RPOR10 (Peripheral Pin Select Output 10) RPOR11 (Peripheral Pin Select Output 11) RPOR12 (Peripheral Pin Select Output 12) RPOR13 (Peripheral Pin Select Output 13) RPOR14 (Peripheral Pin Select Output 14)	. 164 . 165 . 155 . 165 . 166 . 170 . 171 . 171 . 172 . 172 . 173

RPOR2 (Peripheral Pin Select Output 2)	166
RPOR3 (Peripheral Pin Select Output 3)	167
RPOR4 (Peripheral Pin Select Output 4)	167
RPOR5 (Peripheral Pin Select Output 5)	
RPOR6 (Peripheral Pin Select Output 6)	168
RPOR7 (Peripheral Pin Select Output 7)	169
RPOR8 (Peripheral Pin Select Output 8)	169
RPOR9 (Peripheral Pin Select Output 9)	
SEVTCMP (PWM Special Event Compare)	194
SPIxCON1 (SPIx Control 1)	211
SPIxCON2 (SPIx Control 2)	
SPIxSTAT (SPIx Status and Control)	210
SR (CPU STATUS)	92
SR (CPU Status)	24
STRIGx (PWMx Secondary Trigger	
Compare Value)	
T1CON (Timer1 Control)	
TRGCONx (PWMx Trigger Control)	
TRIGx (PWMx Primary Trigger Compare Value)	
TxCON (Timer Control, x = 2)	180
TyCON (Timer Control, y = 3)	
UxMODE (UARTx Mode)	224
UxSTA (UARTx Status and Control)	226
Reset	
Configuration Mismatch	86
Illegal Opcode	. 79, 86
Trap Conflict	85
Uninitialized W Register	. 79, 86
Reset Sequence	87
Resets	
Revision History	321

S

Serial Peripheral Interface (SPI)	209
Software RESET Instruction (SWR)	
Software Simulator (MPLAB SIM)	272
Software Stack Pointer, Frame Pointer	
CALL Stack Frame	63
Special Features of the CPU	255
Symbols Used in Opcode Descriptions	264

Т

Temperature and Voltage Specifications

AC	. 284
Timer1	. 175
Timer2/3	. 177
Timing Diagrams	
A/D Conversion per Input	. 305
Brown-out Situations	85
External Clock	. 285
High-Speed PWM	. 294
High-Speed PWM Fault	. 294
I/O	. 287
I2Cx Bus Data (Master Mode)	. 300
I2Cx Bus Data (Slave Mode)	. 302
I2Cx Bus Start/Stop Bits (Master Mode)	. 300
I2Cx Bus Start/Stop Bits (Slave Mode)	. 302
Input Capture (CAPx)	. 292
OC/PWM	. 293
Output Compare (OCx)	. 292
Reset, Watchdog Timer, Oscillator Start-up Timer	
and Power-up Timer	. 288
SPIx Master Mode (CKE = 0)	. 295
SPIx Master Mode (CKE = 1)	. 296
SPIx Slave Mode (CKE = 0)	. 297
SPIx Slave Mode (CKE = 1)	. 298

Timer1, 2, 3 External Clock	290
Timing Requirements	
External Clock	285
I/O	287
Input Capture	292
Timing Specifications	
10-Bit A/D Conversion Requirements	305
High-Speed PWM Requirements	294
I2Cx Bus Data Requirements (Master Mode)	301
I2Cx Bus Data Requirements (Slave Mode)	303
Output Compare Requirements	292
PLL Clock	286
Reset, Watchdog Timer, Oscillator Start-up Timer,	
Power-up Timer and Brown-out Reset	
Requirements	289
Simple OC/PWM Mode Requirements	293
SPIx Master Mode (CKE = 0) Requirements	295
SPIx Master Mode (CKE = 1) Requirements	296
SPIx Slave Mode (CKE = 0) Requirements	297

SPIx Slave Mode (CKE = 1) Requirements Timer1 External Clock Requirements Timer2 External Clock Requirements Timer3 External Clock Requirements	290 291
U	
Universal Asynchronous Receiver Transmitter (UART) Using the RCON Status Bits	
V	
Voltage Regulator (On-Chip)	258

W

Watchdog Time-out Reset (WDTO)	85
Watchdog Timer (WDT)	255, 259
Programming Considerations	
WWW Address	
WWW, On-Line Support	12

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software.
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing.
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives.

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent	
RE:	Reader Response		
Fron	n: Name		
	Company		
	Address		
	City / State / ZIP / Country		
	Telephone: ()	FAX: ()	
App	lication (optional):		
Wou	Ild you like a reply?YN		
Devi	ice: dsPIC33FJ06GS101/X02 and dsPIC	Literature Number: DS70318D	
Que	stions:		
1.	What are the best features of this docume	ent?	
-			
2.	How does this document meet your hard	ware and software development needs?	
-			
3.	3. Do you find the organization of this document easy to follow? If not, why?		
4.	What additions to the document do you the	nink would enhance the structure and subject?	
5.	What deletions from the document could	be made without affecting the overall usefulness?	
6.	Is there any incorrect or misleading inforr	nation (what and where)?	
-			
7.	How would you improve this document?		
-			

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Tape and Reel Fl	amily — y Size (K ag (if ap nge	B)	Examples: a) dsPIC33FJ06GS102-E/SP: SMPS dsPIC33, 6-Kbyte program memory, 28-pin, Extended temp.,SPDIP package.
Architecture:	33	= 16-bit Digital Signal Controller	
Flash Memory Family:	FJ	Flash program memory, 3.3V	
Product Group:	GS2 GS4	 Switch Mode Power Supply (SMPS) family 	
Pin Count:	02	= 18-pin = 28-pin = 44-pin	
Temperature Range:	I E	 -40°C to+85°C (Industrial) -40°C to+125°C (Extended) 	
Package:	SP ML MM	 Plastic Small Outline - Wide - 7.50 mm body (SOIC) Skinny Plastic Dual In-Line - 300 mil body (SPDIP) Plastic Quad Flat, No Lead Package - 8x8 mm body (QFN) Plastic Quad Flat, No Lead Package - 6x6x0.9 mm body (QFN-S) Plastic Thin Quad Flatpack - 10x10x1 mm body (TQFP) 	

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820