
AVAILABL
E

1 of 23 011002

1.0 Introduction
The purpose of this document is to familiarize 1-Wire® software developers with the APIs for producing
secure SHA applications. There is an API available in both of the major development kits: the 1-Wire
API for Java™ and the 1-Wire Public Domain Kit. This document should serve as both a tutorial for
designing new secure applications with each API, as well as a walkthrough for a deeper understanding of
the demo applications shipped with each development kit.

This document assumes a basic understanding of the SHA iButton® hardware as well as the 1-Wire
protocol for using iButtons. The data sheet for the DS1963S (SHA iButton) is available on the website
(www.maxim-ic.com). Also, there are application notes available that detail the structure of a signed
certificate for eCash systems [AN151, Maxim Digital Monetary Certificates], a high-level protocol for
secure applications [AN157, SHA iButton API Overview], a SHA-1 overview [AN1201, 1-Wire
SHA-1 Overview], and the implementation of a file system for memory devices [AN114, 1-Wire
File Structure].

In any monetary SHA application, the two major components are the coprocessor and the user token. The
coprocessor is a DS1963S initialized for verifying a user token as a member of the system and validating
the user’s certificate. A user’s token is a DS1963S (or comparable 1-Wire device) that carries a monetary
certificate and identifies a user of the system. For each API, this document will give an overview of the
methods used for initializing the coprocessor, initializing the user token, and performing transactions.
Each transaction can be broken down to further steps, which could include authenticating the user,
verifying the transaction data, and updating the transaction data with dynamic information.

For all the code samples in this document, the code boxes with the light gray shading indicate that the
code is the breakdown of a higher-level task to the most detailed of operations. In the 1-Wire API for
Java, this low-level code will use the OneWireContainer18 class. In the Public Domain Kit, it will use
functions from the SHA18.C module.

2.0 SHA Applications with the 1-Wire API for Java
The solution for SHA Applications in the 1-Wire API for Java introduces a new package into the
development kit: com.dalsemi.onewire.application.sha. A snapshot of the classes in that package, as well
as their inheritance relationships, is shown in Figure 1. When detailing the nature of the necessary
methods introduced in that package, the container-level methods will be considered atomic and no further
breakdown will be provided (although the source is available in the kit).

The SHATransaction abstract superclass is meant to represent all secure transactions. This class defines
three key methods, which represent the fundamental steps in a typical transaction:
1) Verify that the user token is a valid member of the system (verifyUser)
2) Verify that the data is properly certified and has not been tampered with (verifyTransactionData)
3) Update the data as necessary and ensure the token receives the update (executeTransaction)

Application Note 156
DS1963S SHA 1-Wire API Users Guide

1-Wire and iButton are registered trademarks of Dallas Semiconductor.
Java is a trademark of Sun Microsystems.

AN156

2 of 23

There are two sample transactions that extend SHATransaction: SHADebit and SHADebitUnsigned. The
first implements an account debit system, where an initial account balance is stored in a signed monetary
certificate (see AN151). During typical use, a user is validated as a member of the system and the
signature on the certificate is verified. If the user and data are both valid, the balance stored in the
monetary certificate is updated, a new signature is generated, and the certificate is written back to the
device. The second transaction (SHADebitUnsigned) uses an unsigned monetary certificate and utilizes
the unused space to implement a double-write scheme, protecting the data in EEPROM devices. This
transaction type (for use with the DS1961S/DS2432 1-Wire devices) is covered in another application
note.

SHA transactions have, as a constant member, a SHAiButtonCopr (the class that represents a DS1963S
that has been initialized to perform as a coprocessor in SHA transactions). In that sense, a
SHATransaction can be thought of as an extension to the SHAiButtonCopr. It serves the same purpose as
the "decorator" classes in Java in that it separates the "thing to sign with" from "what it's signing." That
way, the "thing to sign with" (i.e. the coprocessor, SHAiButtonCopr) can be easily moved to different
systems ("what it's signing") with minimal coding for the application developer. In addition, a
SHAiButtonCoprVM, or rather a simulated coprocessor, can be used in place of a hardware DS1963S.
This class is provided as a convenience, but for optimal security a hardware coprocessor is recommended.

Inheritance Hierarchy of Package Figure 1

Every method in SHATransaction has a SHAiButtonUser as a parameter. Provided with the API are two
user objects: SHAiButtonUser33 and SHAiButtonUser18. Although the default implementation of
SHAiButtonUser only supports the two kinds of SHA iButtons (DS1961S/DS2432 family 0x33 and
DS1963S family 0x18), the concept of a user of a SHATransaction could be extended to support any 1-
Wire memory device. The SHAiButtonUser33 and SHAiButtonUser18 are handy extensions, however, as
they both provide authentication along with carrying the required account data. If iButton authentication

SHADebit
Signed eCash

SHAUnsignedDebit
Unsigned eCash

SHATransaction
Abstract Superclass

SHAiButtonUser18
DS1963S User Tokens

SHAiButtonUser33
DS1961S/DS2432 User Tokens

SHAiButtonUser
Abstract Superclass

SHAiButtonCoprVM
Software Simulated Coprcessor

SHAiButtonCopr
DS1963S Coprocessor

AN156

3 of 23

is something that isn't important to the specific system, the SHAiButtonUser class could easily be
extended to support 1-Wire memory devices, which would just carry signed account information. Note
that using other memory devices rules out the use of a challenge-response protocol for authenticating the
iButton. There is still a minimal level of security in the user token's 64-bit ROM ID.

2.1 Initializing the Coprocessor
Initializing the coprocessor consists of two important steps: installing the system authentication secret and
installing the system signing secret. An optional third step is to write all of the system configuration data
to the iButton in the form of a file (see AN114). The configuration data doesn’t have to be stored on the
coprocessor iButton, but it’s convenient to keep the system parameters as portable as the coprocessor. As
an alternative, the file can be stored on a disk drive or the parameters can be hardcoded in your
application.

The following blocks of code demonstrate the initialization of the coprocessor. Each block of code is well
commented and the declarations of all variables used are shown. The intent is that the code can be copied
into a project used after just a few edits.

Necessary System Parameters for a SHA Application Figure 2
/* The input data to be used for calculating the master authentication and signing
 * secrets. The calculation involves splitting the secret into blocks of 47 bytes
* (32 bytes to the data page, 15 bytes to the scratchpad) and then performing the
* SHA command Compute First Secret, followed by Compute Next Secret for each 47
* byte block after the first. */

byte[] inputAuthSecret, inputSignSecret; // . . . initialize from user input

/* The page to use for the signing secret must be page 8, because secret 0 is the
* only secret that can be used for the SHA command Sign Data Page. For a list of
* SHA commands, and what pages they can be used on, see the DS1963S datasheet. */

int signPageNumber = 8;

/* The authentication secret can be on any page as long as it doesn’t collide with
* the file holding coprocessor configuration information and not secret 0 */

int authPageNumber = 7;

/* The workspace page is the page the coprocessor will use for recreating a user’s
* unique authentication secret and it’s authentication response. */

int wspcPageNumber = 9;

/* The binding information is used to create the “unique” secret for each button.
* bindData is written to the data page of the user token, and bindCode is written
* to the scratchpad. The result of a Compute Next Secret using the system
* authentication secret, the account page number, the rom ID of the user token, the
* bind data, and the bind code becomes the user’s unique authentication secret.
* This is used to initialize a user token and the coprocessor must use the same
* data to recreate the user token’s unique secret. */

byte[] bindData = new byte[32], bindCode = new byte[7]; // . . . user input

/* Initial signature to use when signing the certificate */
byte[] initSignature = new byte[20]; // . . . user input

/* Three byte challenge used when signing the certificate */
byte[] signingChlg = new byte[3]; // . . . one time random calculation or user input

/* Name of the account file (and file extension) to create on user tokens */
byte[] acctFilename = (“DLSM”).getBytes();
int acctFileExt = 102; // extension for “money” files

AN156

4 of 23

Although there are a few other parameters for a system that are stored in the service configuration file,
these are the most essential parameters. The name of the provider and the version number of the system,
for example, are not necessary for a minimal-functionality debit application. Initializing the coprocessor
can be done by simply calling the constructor for SHAiButtonCopr, passing all the parameters as
arguments. For a detailed list of all the parameters, refer to the JavaDocs for the 1-Wire API for Java.

Initializing the Coprocessor with SHAiButtonCopr Figure 3

Using just the OneWireContainer18 class, it’s possible to initialize the container without the
com.dalsemi.onewire.application.sha package. The following code snippet demonstrates the steps for
installing the secrets onto the device using just the OneWireContainer18. Note that this code segment is
nearly identical to the actual implementation of the SHAiButtonCopr constructor used in Figure 3.

Container-Level Initialization of Coprocessor Figure 4
/* install the signing secret */
coprDevice.installMasterSecret(signPageNumber, inputSignSecret, signPageNumber&7);

/* install the authentication secret */
coprDevice.installMasterSecret(authPageNumber, inputAuthSecret, authPageNumber&7);

/* create the configuration file */
OWFileOutputSream fos = new OWFileOutputStream(shaDevice, “COPR.0”);
/* Write all the service parameters to the output stream (see AN157 for format) */
fos.write(acctFilename,0,4);
fos.write(acctFile);
fos.write(signPageNumber);
fos.write(authPageNumber);
fos.write(wspcPageNumber);
fos.write(0); //version number
fos.write(0x01); //month
fos.write(0x01); //day
fos.write(0x07); //year MSB
fos.write(0xD1); //year LSB –> 1/1/2001
fos.write(bindData);
fos.write(bindCode);
fos.write(signingChlg);
fos.write(l_providerName.length);
fos.write(l_initSignature.length);
fos.write(l_auxData.length);
fos.write(“Maxim”.getBytes()); //Provider name
fos.write(initSignature);
fos.write(“”.getBytes()); //auxilliary info
fos.write(l_encCode); //encryption code
fos.write(0); //DS1961S Compatibility flag (see AN157)
fos.close();

/* Create the new instance of SHAiButtonCopr, ready to perform transactions! */
SHAiButtonCopr copr = new SHAiButtonCopr(coprDevice, “COPR.0”);

// . . . Find the DS1963S iButton on the 1-Wire Network
OneWireContainer18 coprDevice = // see ‘overview’ in the JavaDocs for finding devices
/* Create the new instance of SHAiButtonCopr, ready to perform transactions! */
SHAiButtonCopr copr
 = new SHAiButtonCopr(coprDevice, “COPR.0”, true, signPageNumber, authPageNumber,
 wspcPageNumber, 1, 1, acctFileExt, acctFilename, “Maxim”, bindData, bindCode,
 “”, initSignature, signingChlg, inputSignSecret, inputAuthSecret);

AN156

5 of 23

If the SHA coprocessor will be used to authenticate DS1961S/DS2432 iButtons or to produce the copy-
scratchpad authorization, the master authentication secret will have to be padded to accommodate the
DS1961S’s smaller scratchpad. A utility function is provided which will pad the secret appropriately.
Then the “DS1961S compatibility flag” in the coprocessor file should be set to a non-zero value.

Padding the Authentication Secret Figure 5

2.2 Initializing the User Token
Initializing the user token consists of two steps. First, install the master authentication secret and bind it to
the iButton to produce the unique secret for the token. Second, write the certificate file to the iButton. It is
actually a little more complicated than it may initially sound. The DS1963S has eight secrets that
correspond to the 16 pages of memory (where each secret is shared by two pages). The certificate file
must be written to a page which has a write cycle counter, which limits it to the last eight pages of the
device’s memory banks. Also, the certificate file must be written to one of the pages whose corresponding
secret is the secret where the master authentication secret was installed. But, the 1-Wire file API doesn’t
allow the specification of a page number for the file to be stored on. The best that can be done is to give
the file one of the reserved extensions that ensures special treatment. Extensions 101 and 102, for
example, are reserved for files that must be written on pages with write cycle counters if the device has
them (see AN114). One solution for this is to use the 1-Wire file API to create an empty stub file to write
the certificate. This creates the proper directory entries for the certificate so it can be located dynamically.
Then, the page number from the directory entry specifies the page where the master authentication secret
should be installed and bound to the user token. When the certificate is actually written to the device, it is
done with a direct page write, rather than using the file API. This will allow for much faster updates (very
important in a responsive debit application) when actually debiting the token.

Using the SHAiButtonUser18 class, the installation of the secret as well as the creation of an empty
account file can be done automatically with a constructor call. The actual contents of the file still need to
be written after this step (i.e. the signed certificate must still be written to the device).

Initializing User Tokens with SHAiButtonUser Figure 6

Figure 7 illustrates how the master authentication secret is installed on the user token, as well as the
actual binding of the master authentication secret to produce a secret that is unique to the user token.

inputAuthSecret = SHAiButtonCopr.reformatFor1961S(inputAuthSecret);

/* For DS1963S user tokens */
OneWireContainer18 owc18 = // see overview in JavaDocs for finding devices.
SHAiButtonUser18 user18 = new SHAiButtonUser18(copr, owc18, true, inputAuthSecret);

Brooke Morales
Rectangle

AN156

6 of 23

Container-Level Installation of Authentication Secret in User Token Figure 7

The final step when initializing a user token is to actually write the account certificate to the data page
where the file was stored. The certificate has an option about whether or not it is signed. The main
situation where there is no need for concern about an unsigned certificate is when using a
DS1961S/DS2432, which requires knowledge of the secret to write to it.

Installing a Signed Certificate with SHADebit Figure 8

Whether signed or unsigned, the format of the certificate remains the same. If left unsigned however, the
20 bytes reserved for the MAC can be used for any system specific data. Figure 9 illustrates how to
manually format a certificate file as specified in AN151.

Creating a New Certificate Figure 9

If the certificate data needs to be signed, the coprocessor device is used to sign the account data. For the
DS1963S user token, it is necessary to get the value of the write cycle counter before writing the

/* Create the empty file on the user token */
OWFile owf = new OWFile(owc18, “DLSM.102”);
owf.format();
owf.createNewFile();

/* Get the page number the account file will be stored on */
int acctPage = owf.getPageList()[0];
owf.close();

/* Install the master authentication secret, same as on the coprocessor */
owc18.installMasterSecret(acctPage, inputAuthSecret, acctPage&7);

/* Create full binding code for DS1963S, for format see AN157 */
byte[] fullBindCode = new byte[15];
copr.getBindCode(fullBindCode, 0);
System.arraycopy(fullBindCode, 4, fullBindCode, 12, 3);
fullBindCode[4] = (byte)this.accountPageNumber;
System.arraycopy(owc18.getAddress(), 0, fullBindCode, 5, 7);

/* bind the master secret to this token to create it’s unique secret */
owc18.bindSecretToiButton(acctPage, copr.getBindData(), fullBindCode, acctPage&7);

/* eCertificate, see format in AN151 */
byte[] acctData = new byte[32];

acctData[0] = 29; // file length
acctData[1] = 0x01; // data type code or algorithm (0x01 dynamic eCash)

copr.getInitialSignature(acctData, 2); // Initial Signature

acctData[22] = 0x8B; acctData[23] = 0x48; // Conversion factor (ISO4217)
acctData[24] = 0xE8; acctData[25] = 0x03; acctData[26] = 0; // Account Balance ($10)
acctData[27] = 0; acctData[28] = 0; // TransactionID
acctData[29] = 0x00; // file continuation pointer
acctData[30] = 0x00; accountData[31] = 0x00; // ~CRC16

/* create the signed data file, sign it, and write it to the user token */
SHADebit debit = new SHADebit(copr, 1000/*initial amount*/, 50/*debit amount*/);
Debit.setupTransactionData(user18); // can be user18 or user33

AN156

7 of 23

certificate to the data page. The current value of the write cycle counter is then incremented by 1, since
the data that it will be verified with is about to be written.

The certificate’s signature is produced on the coprocessor using the Sign Data command. The command
has a few variable inputs. The first of which is the data page that is to be signed. In this case, that page is
the actual account file (as constructed in Figure 9), which is written to the signing page of the
scratchpad. The rest of the inputs are all stored on the scratchpad of the coprocessor (referred to as the
coprocessor’s “signing scratchpad”). The first parameter stored on the scratchpad is the value of the write
cycle counter for the part. Next is the page number of the user token’s memory pages that hold the
account file. This is followed by least significant 56 bits of the user token’s address (64-bit Rom ID
minus the CRC8). The last parameter is the 3-byte constant challenge set when the coprocessor was
initialized.

Retrieving Write-Cycle Counter from DS1963S Figure 10

Setting up the Coprocessor’s Scratchpad for Data Signing Figure 11

SHAiButtonCopr Helper Method for Signing Data Figure 12

The helper method shown in Figure 12 can be broken down into the necessary container methods used to
implement signing data. Figure 13 illustrates the process for creating a data signature.

byte[] signScratchpad = new byte[32];

/* assign the wcc to the coprocessor’s “signing” scratchpad */
signScratchpad[8] = (wcc&0x0ff);
signScratchpad[9] = ((wcc>>=8)&0x0ff);
signScratchpad[10] = ((wcc>>=8)&0x0ff);
signScratchpad[11] = ((wcc>>=8)&0x0ff);

/* get the page number of the account file */
signScratchpad[12] = (byte)acctPage;

/* get the Rom ID of the user token */
System.arraycopy(owc18.getAddress(),0,signScratchpad, 13, 7);

/* get the signing challenge */
System.arraycopy(signingChlg, 0, signScratchpad, 20, 3);

/* sign the data with the coprocessor and return the mac right in the data */
copr.createDataSignature(acctData, signScratchpad, acctData, 2);

/* if using a DS1963S, need to get the value of the write-cycle counter. Doing a
 * read authenticated page on the device will accomplish this. */
owc18.readAuthenticatedPage(acctPage, rawData, 0);

/* get the value of the write cycle counter for DS1963S user token only */
int wcc = (rawData[35]&0x0ff);
wcc = (wcc << 8) | (rawData[34]&0x0ff);
wcc = (wcc << 8) | (rawData[33]&0x0ff);
wcc = (wcc << 8) | (rawData[32]&0x0ff);
wcc += 1; // and increment it since we are going to write to the device

AN156

8 of 23

Signing Data with Coprocessor at Container-Level Figure 13

For the data in the account file byte array to be a valid account file, it must have an inverted, two-byte
CRC16 at the end of the file. More detail on what makes a valid file on the 1-Wire file structure can be
found in AN114.

Adding Inverted CRC16 to 1-Wire File Figure 14

Writing the account file to the data page of the DS1963S user token is fairly easy. There is a utility
function provided in the container class for writing a page of data, the exact function which is used to
write the account data to the coprocessor for signing in the above code block.

2.3 Authenticating the User Token
Authenticating the user token involves a simple challenge-response scheme. First, the coprocessor is used
to generate a 3-byte, pseudo-random challenge. This challenge is then written to the scratchpad of the
user token and the Read Authenticated Page command is issued (see DS1963S data sheet). This returns
the entire contents of the memory page followed by the value of the write cycle counter for the page and
the write cycle counter for the secret location. The scratchpad of the DS1963S user token will contain the
20-byte SHA result of the user’s unique authentication secret, the page number the data was read from,
the serial number of the user token, and the random challenge. The coprocessor is then used to reproduce
this SHA result, ensuring that the user token is a valid member of the system.

Authenticating User Token with SHADebit Figure 15

The process for verifying a user is the same for both signed and unsigned transactions. Naturally, this can
be broken down into simple steps using the SHAiButtonCopr class and the SHAiButtonUser class. The
code snippet presented in Figure 16 demonstrates the basic implementation of the user verification
method in the transaction classes (minus the error checking).

/* calculate the inverted CRC16 */
int crc = ~CRC16.compute(acctData, 0, acctData[0]+1, acctPage);

/* now the file is ready to be written */
acctData[30] = (byte)crc;
acctData[31] = (byte)(crc>>8);

/* write the account data to the signing page of the coprocessor */
coprDevice.writeDataPage(signPageNumber, acctData);

/* write the signScratchpad to the scratchpad of the coprocessor */
coprDevice.writeScratchpad(signPageNumber, 0, acctData, 0, 32);

/* sign the data and read the signature*/
coprDevice.SHAFunction(coprDevice.SIGN_DATA_PAGE, signPageNumber << 5);
coprDevice.readScratchpad(signScratchpad, 0);

/* place the resulting signature in the certificate */
System.arraycopy(signScratchpad, 8, acctData, 2, 20);

/* Verify user tokens authentication response, same for signed and unsigned */
SHADebit debit = new SHADebit(copr, 65536, 2);
debit.verifyUser(user18);

Brooke Morales
Rectangle

Brooke Morales
Rectangle

AN156

9 of 23

Using SHAiButtonCopr and SHAiButtonUser for Authentication Figure 16

Figure 17 illustrates how to use the OneWireContainer18 class to produce a random challenge. Also
included in that caption is the declaration of the variables used in the rest of the code snippets for this
section.

Using the Coprocessor to Generate a Random Challenge Figure 17

After performing the steps in Figure 17, the scratchpad buffer of the coprocessor now contains the 20-
byte result of a SHA calculation, starting at index 8. Since any three bytes are as good as any other three
for a challenge, it is safe to leave the result as it is in the scratchpad. Indices 20 to 22 of the coprocessor’s
scratchpad hold the challenge bytes that will be used for the Read Authenticated Page. Using these three
particular bytes makes it unnecessary to write the challenge back to the coprocessor later.

byte[] rawData = new byte[42];
byte[] scratchpad = new byte[32];
byte[] responseMAC = new byte[20];
byte[] challenge = new byte[3];

/* Use the coprocessor to generate the challenge, page number is irrelevant but a
 * highly used page will generate a more random (less repeating) number */
coprDevice.eraseScratchPad(authPageNumber);
coprDevice.SHAFunction(ibcL.COMPUTE_CHALLENGE, authPageNumber << 5);
coprDevice.readScratchPad(scratchpad, 0);

/* copy the challenge bytes into challenge buffer */
System.arraycopy(scratchpad, 20, challenge, 0, 3);

/* Use coprocessor to generate a random challenge */
copr.generateChallenge(0, challenge, 0);

/* issue challenge to user getting back the account data, response MAC, and the
 * value of the write-cycle counter */
int wcc = user18.readAccountData(challenge, 0, rawData, 0, responseMAC, 0);
scratchpad[8] = (wcc&0x0ff);
scratchpad[9] = ((wcc>>=8)&0x0ff);
scratchpad[10] = ((wcc>>=8)&0x0ff);
scratchpad[11] = ((wcc>>=8)&0x0ff);

/* get user’s full binding code */
fullBindCode = user18.getFullBindCode();

/* create the coprocessor’s “signing” scratchpad */
System.arraycopy(fullBindCode, 4, scratchpad, 12, 8);
System.arraycopy(challenge, 0, scratchpad, 20, 3);

if(copr.verifyAuthentication(fullBindCode, rawData, scratchpad, responseMAC,
 user18.getAuthorizationCommand()))
 System.out.println(“User Token Authentication Successful!”);

AN156

10 of 23

Answering a Random Challenge with a DS1963S User Token Figure 18

After retrieving the MAC (Message Authentication Code) from the user token, it is now the job of the
coprocessor to verify it. To verify the response, the user token’s unique secret is recreated in the
workspace secret of the coprocessor and the raw account data is signed with this workspace secret.

Validating the Authentication Response Figure 19

/* Write the challenge to the scratchpad of the user token */
owc18.writeScratchpad(acctPage, 0, scratchpad, 0, 32);

/* reads 42 bytes = 32 bytes of page data
 * + 4 bytes page counter
 * + 4 bytes secret counter
 * + 2 bytes CRC */
owc18.readAuthenticatedPage(acctPage, rawData, 0);

/* get the value of the write cycle counter*/
int wcc = (rawData[35]&0x0ff);
wcc = (wcc << 8) | (rawData[34]&0x0ff);
wcc = (wcc << 8) | (rawData[33]&0x0ff);
wcc = (wcc << 8) | (rawData[32]&0x0ff);

/* Read Scratchpad for resutling SHA computation and copy it into a buffer*/
owc18.readScratchpad(scratchpad, 0);
System.arraycopy(scratchpad, 8, responseMac, 0, 20);

/* Bind DS1963S user token’s unique secret to coprocessor */
byte[] fullBindCode = new byte[15];

/* Get the 7-byte binding code
copr.getBindCode(fullBindCode,0);
System.arrayCopy(fullBindCode, 4, fullBindCode, 12, 3);

/* get the page number of the account file and 7 bytes of the ROM ID */
fullBindCode[4] = (byte)acctPage;
System.arraycopy(owc18.getAddress(), 0, fullBindCode, 5, 7);

/* recreate user token’s unique secret in wspc */
coprDevice.bindSecretToiButton(authPageNumber,
 bindData, fullBindCode, wspcPageNumber);

/* the scratchpad of the coprocessor also needs the user’s ROM ID and page number, */
 * In addition to the challenge bytes used and the write-cycle counter. */
System.arraycopy(fullBindCode, 4, scratchpad, 12, 8);
System.arraycopy(challenge, 0, scratchpad, 20, 3);
scratchpad[8] = (wcc&0x0ff);
scratchpad[9] = ((wcc>>=8)&0x0ff);
scratchpad[10] = ((wcc>>=8)&0x0ff);
scratchpad[11] = ((wcc>>=8)&0x0ff);

/* write to the coprocessor and validate */
coprDevice.writeDataPage(wspcPageNumber, rawData);
coprDevice.writeScratchpad(wspcPageNumber, 0, scratchpad, 0, 32);
coprDevice.SHAFunction(OneWireContainer18.VALIDATE_DATA_PAGE, wspcPageNumber);

/* match the signature generated by the coprocessor with the user token’s MAC */
if(coprDevice.matchScratchpad(responseMAC, 0))
 System.out.println(“DS1963S Authentication Successful!”);

AN156

11 of 23

2.4 Validating the User’s Certificate
Validating a certificate from a user token looks a lot like the earlier section on initializing the data. The
steps for signing the data are very similar, but the coprocessor-generated signature is merely matched
against the existing signature, rather than being read into the certificate. Also, since the entire certificate
is merely stored on a file in any user token, the process for validating the certificate is identical across all
tokens. When using an unsigned certificate, this step may only consist of checking the user’s account
balance to make sure it makes sense in the system (i.e. it isn’t negative or it isn’t a trillion dollars).

Validating Transaction Data with SHADebit Figure 20

For signed transaction data, the signature of the certificate must be verified with the coprocessor. As a
nice initial check, the validity of the account balance information can be verified first. This can provide a
quick check to avoid verifying the signature of the account information if it’s unnecessary.

Validating the Account Balance Information Figure 21

The verification of the signature looks very similar to how the signature was created in the first place. The
CRC16 is cleared out (set to zero) and the data signature, after being saved in a buffer, is cleared out and
replaced with the system’s initial signature. Since the new signature will not be written back to the part
and the current signature is being verified against the current value of the write cycle counter, the write
cycle counter is not incremented this time for producing the data signature. The entire process is shown in
Figure 22.

Note that, rather than reading the signature back and matching the signature bytes in software, the
coprocessor’s Match Scratchpad command is used. Since this command only transmits 20 bytes of MAC
information to the coprocessor, rather than reading 32 bytes of scratchpad information from the
coprocessor, this technique is slightly faster. When building a fast, responsive debit application, all non-
essential reads/writes will have to be optimized in this manner. In addition, making sure that the correct
MAC isn’t transmitted from the coprocessor gives an invalid user token zero opportunity to grab the right
MAC. These will leave the application less open to holes where the user can take advantage of system
“retries.” For example, if the system was designed to retry the user challenge operation if interrupted, but
eventually repeated a 3-byte random challenge, the user could have stored the appropriate signature.

byte[] acctData = // . . . already known from verifying the user
int wcc = // . . . already known from verifying the user

/* verify the user’s account balance is ‘legal’ */
int balance = (acctData[26]&0x0ff);
balance = (balance << 8) | (acctData [25]&0x0ff);
balance = (balance << 8) | (acctData [24]&0x0ff);

/* MAX_BALANCE, MIN_BALANCE, and DEBIT_AMOUNT are constant integers */
if(balance>MAX_BALANCE)
 System.out.println(“Too Much Money!”);
else if((balance-DEBIT_AMOUNT)<MIN_BALANCE)
 System.out.println(“Not enough money to perform transaction!”);

/* Verify user tokens data, including verifying the data signature */
SHADebit debit = new SHADebit(copr, 1000, 50);
debit.verifyTransactionData(user18);

AN156

12 of 23

Container-Level Validation of the Certificate Signature Figure 22

2.5 Updating the User’s Certificate
Updating the user’s certificate is only necessary when using dynamic data. If, for example, the data stored
in the certificate were simply an identification number, there wouldn’t be any need for an update.
Authenticating the user token would ensure that it wasn’t copied from one token to another and validating
the certificate would ensure that it wasn’t tampered with. When using dynamic data, as in the example of
the account balance, it will be necessary to update the certificate information, restore the initial signature,
clear out the CRC16, and resign the data. The breakdown of these steps (with the exception of the
updated data) is identical to those presented in section 2.1. The SHATransaction class provides a method
for updating (and resigning, if necessary) the transaction data.

Debiting and Updating the User’s Certificate Figure 23

/* save the data signature */
byte[] dataSignature = new byte[20];
System.arraycopy(acctData, 2, dataSignature, 0, 20);

/* clear out the old signature and CRC 16 */
copr.getInitialSignature(acctData, 2);
acctData[30] = 0x00;
acctData[31] = 0x00;

/* assign the wcc to coprocessor’s “signing” scratchpad (DS1961S wcc=0xFFFFFFFF) */
scratchpad[8] = (wcc&0x0ff);
scratchpad[9] = ((wcc>>=8)&0x0ff);
scratchpad[10] = ((wcc>>=8)&0x0ff);
scratchpad[11] = ((wcc>>=8)&0x0ff);

/* setup the rest of the “signing” scratchpad */
scratchpad[12] = (byte)user.getAccountPageNumber();
user.getAddress(scratchpad, 13, 7);
copr.getSigningChallenge(scratchpad, 20);

/* write the user’s account page to the coprocessor */
coprDevice.writeDataPage(signPageNumber, rawData);

/* write the signing scratchpad */
coprDevice.writeScratchpad(signPageNumber, 0, scratchpad, 0, 32);

/* create the signature */
coprDevice.SHAFunction(OneWireContainer18.SIGN_DATA_PAGE, signPageNumber);

/* match the signature generated by the coprocessor with the user token’s MAC */
if(coprDevice.matchScratchpad(dataSignature, 0))
 System.out.println(“Certificate verification Successful!”);

/* Update user token, with a signed certificate */
SHADebit debit = new SHADebit(copr, 1000, 50);
debit.executeTransaction(user18);

AN156

13 of 23

3.0 SHA Applications with the 1-Wire Public Domain Kit
The solution for SHA Applications in the 1-Wire Public Domain Kit introduces a few new modules into
the development kit. Figure 24 is a listing of the new modules.

SHA API Functions Figure 24
SHA18.C (Device Layer)
ReadScratchpadSHA18 – Reads the scratchpad of DS1963S with CRC16 verification.
WriteScratchpadSHA18 – Writes the scratchpad of DS1963S with CRC16 verification.
CopyScratchpadSHA18 – Copies the scratchpad of DS1963S with verification.
MatchScratchpadSHA18 – Matches the contents of the scratchpad with given MAC.
EraseScratchpadSHA18 – Erases the scratch of DS1963S.
ReadAuthPageSHA18 – Performs a Read Authenticated Page command on DS1963S.
ReadMemoryPageSHA18 – Reads a page of memory from DS1963S.
WriteDataPageSHA18 – Writes a page of memory to DS1963S.
SHAFunction18 – Executes a given SHA function on DS1963S (i.e. Sign Data Page, Auth. Host)
InstallSystemSecret18 – Installs a master secret onto DS1963S.
BindSecretToiButton18 – Creates unique DS1963S secret with master secret and binding data.
CopySecretSHA18 – Copies 8-bytes of a SHA result into secret memory.
SHAIB.C (Protocol Layer)
SelectSHA – Accesses SHA Device on 1-Wire Net and forces overdrive.
FindNewSHA – Loops to find all SHA Devices on 1-Wire Net while blocking for arrivals.
FindUserSHA – Finds all SHA devices with the specified user account file.
FindCoprSHA – Finds all SHA devices with the specified coprocessor file.
GetCoprFromRawData – Loads service setup data from raw bytes, probably from a file.
CreateChallenge – Creates a random challenge using the Generate Challenge SHA command.
AnswerChallenge – Writes challenge to scratchpad of a user token and reads the account info.
VerifyAuthResponse – Verifies the authentication response of a user token.
CreateDataSignature – Creates a data signature using Sign Data Page SHA command.
SHADEBIT.C (Transaction Layer)
InstallServiceData – Formats the user token and installs a new certificate.
UpdateServiceData – Signs certificate information and writes it to the user token.
VerifyUser – Challenges user token with random challenge and verifies the response.
VerifyData – Verifies the certificate signature.
ExecuteTransaction – Debits user’s account balance and verifies that user received the update.

In the file SHAIB.H, there are 3 structures that define the coprocessor, the user, and the certificate. Figure
25 shows the format of the certificate.

struct DebitFile Figure 25
typedef struct { // See AN151 for certificate details
 uchar fileLength; // length of this file
 uchar dataTypeCode; // data type code – 0x01 for dynamic, 0x02 for static
 uchar signature[20]; // 20-byte data signature for this certificate
 uchar convFactor[2]; // country code and multiplier
 uchar balanceBytes[3]; // account balance
 uchar transID[2]; // transaction ID
 uchar contPtr; // file continuation pointer
 uchar crc16[2]; // crc16 of file
} DebitFile;

AN156

14 of 23

The SHAUser structure is used to maintain all pertinent information about a specific user token. Also, it
maintains state between successive calls to API functions. For example, the accountFile field is populated
when verifyUser is called, so the verifyData method uses this information for verifying the certificate
signature without re-reading the device.

struct SHAUser Figure 26

The SHACopr structure is used to maintain all system parameters. These parameters are, typically, stored
in a file on the coprocessor device.

struct SHACopr Figure 27

3.1 Initializing the Coprocessor
Initializing the coprocessor consists of two important steps: installing the system authentication secret and
installing the system signing secret. An optional third step is to write all of the system configuration data
to the iButton in the form of a file (see AN114). The configuration data doesn’t have to be stored on the
coprocessor iButton, but it’s convenient to keep the system parameters as portable as the coprocessor. As
an alternative, the file can be stored on a disk drive or the parameters can be hardcoded in your
application.

typedef struct {
 // portnum and address of the device
 int portnum;
 uchar devAN[8];

 uchar accountPageNumber; // page the user's account file is stored on
 long writeCycleCounter; // Write cycle counter for account page
 uchar responseMAC[20]; // MAC from Read Authenticated Page command

 union {
 uchar raw[32]; // used for direct writes to button only
 DebitFile file; // use this for accessing individual fields
 } accountFile;
} SHAUser;

typedef struct {
 // portnum and address of the device
 int portnum;
 uchar devAN[8];

 uchar serviceFilename[5]; // name of the account file stored on the user token
 uchar signPageNumber; // memory page used for signing data (0 or 8)
 uchar authPageNumber; // memory page used for storing master authentication secret
 uchar wspcPageNumber; // memory page used for storing user's unique secret
 uchar versionNumber; // version number of the transaction system.
 uchar bindCode[7]; // Scratchpad binding data for producing unique secrets
 uchar bindData[32]; // Data page binding data for producing unique secrets
 uchar signChlg[3]; // signature used when signing account data
 uchar initSignature[20]; // challenge used when signing account data
 uchar* providerName; // name of the transaction system provider
 uchar* auxilliaryData; // any other pertinent information
 uchar encCode; // encryption code
 uchar ds1961Scompatible; // indicates that secret was padded for DS1961S
} SHACopr;

Brooke Morales
Rectangle

Brooke Morales
Rectangle

AN156

15 of 23

The following blocks of code demonstrate the steps necessary for initializing the coprocessor. Each block
of code is well commented and the declarations, though not necessarily the initialization, of all variables
used are shown. The intent is that the code can be copied into a project and compiled after just a few
edits. This first block shows the declaration, but not the initialization, of the most important properties.

Necessary System Parameters for a SHA Application Figure 28

Although there are a few other parameters for a system that are stored in the service configuration file,
these are the most essential parameters. The name of the provider and the version number of the system,
for example, are not necessary for a minimal-functionality debit application.

/* The input data to be used for calculating the master authentication and signing
 * secrets. The calculation involves splitting the secret into blocks of 47 bytes
* (32 bytes to the data page, 15 bytes to the scratchpad) and then performing the
* SHA command Compute First Secret, followed by Compute Next Secret for each 47
* byte block after the first. */

uchar inputAuthSecret[47], inputSignSecret[47]; // . . . initialize from user input

/* The coprocessor */
SHACopr copr;
copr.portnum = 0;

/* Name of the account file (and file extension) to create on user tokens */
memcpy(copr.serviceFilename, “DLSM”, 4);
copr.serviceFilename[4] = 102; // extension for money files

/* The page to use for the signing secret must be page 8, because secret 0 is the
* only secret that can be used for the SHA command Sign Data Page. For a list of
* SHA commands, and what pages they can be used on, see the DS1963S datasheet. */

copr.signPageNumber = 8;

/* The authentication secret can be on any page as long as it doesn’t collide with
* the file holding coprocessor configuration information and not secret 0 */

copr.authPageNumber = 7;

/* The workspace page is the page the coprocessor will use for recreating a user’s
* unique authentication secret and it’s authentication response. */

copr.wspcPageNumber = 9;

/* The binding information is used to create the “unique” secret for each button.
* bindData is written to the data page of the user token, and bindCode is written
* to the scratchpad. The result of a Compute Next Secret using the system
* authentication secret, the account page number, the rom ID of the user token, the
* bind data, and the bind code becomes the user’s unique authentication secret.
* This is used to initialize a user token and the coprocessor must use the same
* data to recreate the user token’s unique secret. */

copr.bindData = //32 bytes
copr.bindCode = //7 bytes

/* Initial signature to use when signing the certificate */
copr.initSignature = // 20 bytes of user input

/* Three byte challenge used when signing the certificate */
copr.signingChlg = // 3 bytes

AN156

16 of 23

Initializing the Coprocessor Figure 29

3.2 Initializing the User Token
Initializing the user token consists of two steps. First, install the master authentication secret and bind it to
the iButton to produce the unique secret for the token. Second, write the certificate file to the iButton. It is
actually a little more complicated than it may initially sound. The DS1963S has eight secrets that
correspond to the 16 pages of memory (where each secret is shared by two pages). The certificate file
must be written to a page which has a write cycle counter, which limits it to the last eight pages of the
device’s memory banks. Also, the certificate file must be written to one of the pages whose corresponding
secret is the secret where the master authentication secret was installed. But, the 1-Wire file API doesn’t
allow the specification of a page number for the file to be stored on. The best that can be done is to give
the file one of the reserved extensions that ensures special treatment. Extensions 101 and 102, for
example, are reserved for files that must be written on pages with write cycle counters if the device has
them (see AN114). One solution for this is to use the 1-Wire file API to create an empty stub file to write
the certificate. This creates the proper directory entries for the certificate so it can be located dynamically.

/* Find the first SHA device on the 1-Wire Net */
FindNewSHA(copr.portnum, copr.devAN, FALSE);

/* Install the master authentication secret and the master signing secret */
InstallSystemSecret18(copr.portnum, copr.signPageNumber, copr.signPageNumber&7,
 inputSignSecret, 47, FALSE))
InstallSystemSecret18(copr.portnum, copr.authPageNumber, copr.authPageNumber&7,
 inputAuthSecret, 47, TRUE))

/* prepare the service file to write to the coprocessor */
int namelen = strlen(copr.providerName);
int auxlen = strlen(copr.auxilliaryData);
uchar* coprFile = malloc(80 + namelen + auxlen);
memcpy(coprFile, copr.serviceFilename, 5);
coprFile[5] = copr.signPageNumber;
coprFile[6] = copr.authPageNumber;
coprFile[7] = copr.wspcPageNumber;
coprFile[8] = copr.versionNumber;
memcpy(&coprFile[13], copr.bindData, 32);
memcpy(&coprFile[45], copr.bindCode, 7);
memcpy(&coprFile[52], copr.signChlg, 3);
coprFile[55] = namelen;
coprFile[56] = 20; // length of the initial signature
coprFile[57] = auxlen;
memcpy(&coprFile[58], copr.providerName, namelen);
memcpy(&coprFile[58+namelen], copr.initSignature, 20);
memcpy(&coprFile[78+namelen], copr.auxilliaryData, auxlen);
coprFile[78+namelen+auxlen] = copr.encCode;
coprFile[79+namelen+auxlen] = copr.ds1961Scompatible;

/* Create FileEntry for “COPR.000” file */
FileEntry feCopr;
memcpy(feCopr.Name, “COPR”, 4);
feCopr.Ext = 0;

/* using the 1-Wire file commands in public domain kit, format the device */
int handle, maxwrite;
owFormat(copr.portnum, copr.devAN);
owCreateFile(copr.portnum, copr.devAN, &maxwrite, &handle, &feCopr);
owWriteFile(copr.portnum, copr.devAN, handle, coprFile, 80+namelen+auxlen);

AN156

17 of 23

Then, the page number from the directory entry specifies the page where the master authentication secret
should be installed and bound to the user token. When the certificate is actually written to the device, it is
done with a direct page write, rather than using the file API. This will allow for much faster updates (very
important in a responsive debit application) when actually debiting the token.

Using the SHADEBIT.C module, the installation of the secret as well as the creation of an account file
can be done automatically with a single function call. The actual contents of a new certificate file are
written to the device after this step.

Initializing User Tokens with SHADEBIT.C Figure 30

Figure 31 illustrates how the master authentication secret is installed on the user token, as well as the
actual binding of the master authentication secret to produce an authentication secret that is unique to the
user token.

Installing Authentication Secret on DS1963S User Token Figure 31

The final step when initializing a user token is to actually write the account certificate to the data page
where the file was stored. The certificate has an option about whether or not it is signed. If left unsigned,
the 20 bytes of data where the signature would be stored can be used to store any other useful data that
needs to store about the user token. The main situation where there is no need for concern about an

/* Create the empty file on the user token */
FileEntry fe;
memcpy(fe.Name, copr.serviceFilename, 4);
fe.Ext = copr.serviceFilename[4];
owFormat(user.portnum, user.devAN));
owCreateFile(user.portnum, user.devAN, &maxwrite, &handle, &fe));
owCloseFile(user.portnum, user.devAN, handle);

/* File must be created first, so we can get the page number */
user.accountPageNumber = fe.Spage;

/* Install the master authentication secret, same as on the coprocessor */
installSystemSecret18(user.accountPageNumber, inputAuthSecret,
 user.accountPageNumber&7);

/* format the bind code properly, for format see AN157 */
uchar fullBindCode[15];
memcpy(fullBindCode, copr.bindCode, 4);
fullBindCode[4] = (uchar)user.accountPageNumber;
memcpy(&fullBindCode[5], user.devAN, 7);
memcpy(&fullBindCode[12], &(copr.bindCode[4]), 3);

/* create the unique secret for iButton */
BindSecretToiButton18(user.portnum, user.accountPageNumber,
 user.accountPageNumber&7,
 copr.bindData, fullBindCode, TRUE);

/* For DS1963S user tokens */
SHAUser user;
user.portnum = 0;
FindNewSHA(user.portnum, user.devAN, FALSE);

/* Install the authentication secret and write a signed certificate to the device */
InstallServiceData(copr, user, inputAuthSecret, 47);

AN156

18 of 23

unsigned certificate is when using a DS1961S/DS2432, which requires knowledge of the secret to write to
it. Whether signed or unsigned, the format of the certificate remains the same. Figure 32 illustrates how to
manually format a certificate file as specified in AN151.

Creating a New Certificate Figure 32

The certificate’s signature is produced on the coprocessor using the Sign Data command. The command
has a few variable inputs. The first of which is the data page that is to be signed. In this case, that page is
the actual account file (as constructed in Figure 32), which is written to the signing page of the
scratchpad. The rest of the inputs are all stored on the scratchpad of the coprocessor (referred to as the
coprocessor’s “signing scratchpad”). The first parameter stored on the scratchpad is the value of the write
cycle counter for the part (incremented by 1, since the data that it will be verified with is about to be
written). Next is the page number of the user token’s memory pages that will hold the account file. This is
followed by least significant 56 bits of the user token’s address (64-bit Rom ID minus the CRC8). The
last parameter is the 3-byte constant challenge set when the coprocessor was initialized.

Setting up the Coprocessor’s Scratchpad for Data Signing Figure 33

/* eCertificate, see format in AN151 */
uchar acctData[32];

acctData[0] = 29; // file length
acctData[1] = 0x01; // data type code or algorithm (0x01 dynamic eCash)

memcpy(acctData, copr.initSignature, 20); // Initial Signature

acctData[22] = 0x8B; acctData[23] = 0x48; // Conversion factor (ISO4217)
acctData[24] = 0xE8; acctData[25] = 0x03; acctData[26] = 0; // Account Balance ($10)
acctData[27] = 0; acctData[28] = 0; // TransactionID
acctData[29] = 0x00; // file continuation pointer
acctData[30] = 0x00; accountData[31] = 0x00; // ~CRC16

uchar signScratchpad[32];
int wcc;

/* need to get the value of the write-cycle counter. */
user.writeCycleCounter = ReadAuthPageSHA18(user.portnum, user.accountPageNumber,
 user.accountFile.raw, NULL,TRUE);

/* and increment it since we are about to write to the device */
int wcc = user->writeCycleCounter + 1;

/* assign the wcc to the coprocessor’s “signing” scratchpad */
signScratchpad[8] = (wcc&0x0ff);
signScratchpad[9] = ((wcc>>=8)&0x0ff);
signScratchpad[10] = ((wcc>>=8)&0x0ff);
signScratchpad[11] = ((wcc>>=8)&0x0ff);

/* get the page number of the account file and Rom ID of the user token */
signScratchpad[12] = (byte)user.accountPageNumber;
System.arraycopy(owc18.getAddress(),0,signScratchpad, 13, 7);

/* get the signing challenge */
System.arraycopy(signingChlg, 0, signScratchpad, 20, 3);

AN156

19 of 23

Signing Data with SHAIB.C Module Figure 34

The helper method shown in Figure 34 can be broken down into the necessary low-level methods used to
implement signing data. Figure 35 illustrates this process for creating a data signature

Signing Data with Coprocessor with SHA18 Module Figure 35

For the data in the account file byte array to be a valid account file, it must have an inverted, two-byte
CRC16 at the end of the file. More detail on what makes a valid file on the 1-Wire File Structure can be
found in AN114.

Adding Inverted CRC16 to 1-Wire File Figure 36

Writing the account file to the data page of the DS1963S user token is fairly easy. There is a utility
function provided for writing a page of data, the exact function which is used to write the account data to
the coprocessor for signing in the above code block.

3.3 Authenticating the User Token
Authenticating the user token involves a simple challenge-response scheme. First, the coprocessor is used
to generate a 3-byte, pseudo-random challenge. This challenge is then written to the scratchpad of the
user token and the Read Authenticated Page command is issued (see DS1963S data sheet). This returns
the entire contents of the memory page followed by the value of the write cycle counter for the page and
the write cycle counter for the secret location. The scratchpad of the DS1963S user token will contain the
20-byte SHA result of the user’s unique authentication secret, the page number the data was read from,

/* calculate the inverted CRC16 */
setcrc16(user.portnum, user.accountPageNumber);
for (i = 0; i < 30; i++)
 crc16 = docrc16(user.portnum,user.accountFile.raw[i]);
crc16 = ~crc16;

/* now the file is ready to be written */
user.accountFile.file.crc16[0] = (uchar)crc16;
user.accountFile.file.crc16[1] = (uchar)(crc16>>8);

int addr = copr.signPageNumber<<5; // physical address of the page
uchar buffer[32];

/* write the account data to the signing page of the coprocessor */
WriteDataPageSHA18(copr.portnum, copr.signPageNumber, user.accountFile.raw, FALSE);

/* write the signScratchpad to the scratchpad of the coprocessor */
WriteScratchpadSHA18(copr.portnum, addr, signScratchpad, 32, TRUE);

/* sign the data and read the signature*/
SHAFunction18(copr.portnum, SHA_SIGN_DATA_PAGE, addr, TRUE);
ReadScratchpadSHA18(copr.portnum, 0, 0, buffer, TRUE);

/* place the resulting signature in the certificate */
System.arraycopy(user.accountFile.signature, &buffer[8], 20);

/* sign the data with the coprocessor and set the value of certificate signature */
CreateDataSignature(copr, user->accountFile.raw, signScratchpad,
 user->accountFile.file.signature, TRUE);

AN156

20 of 23

the serial number of the user token, and the random challenge. The coprocessor is then used to reproduce
this SHA result, ensuring that the user token is a valid member of the system.

Authenticating User Token with SHADEBIT.C Module Figure 37

The process for verifying a user is the same for both signed and unsigned transactions. Naturally, this can
be broken down into simple steps using the SHAIB.C module. The code snippet presented in Figure 38
demonstrates the basic implementation of the user verification method in the protocol-layer module
(minus the error checking).

Authenticating User Token with SHAIB.C Module Figure 38

Figure 39 illustrates how to use the lowest-level module (SHA18.C) to produce a random challenge.

Using the Coprocessor to Generate a Random Challenge Figure 39

After performing the steps in Figure 39, the scratchpad buffer of the coprocessor now contains the 20-
byte result of a SHA calculation, starting at index 8. Since any three bytes are as good as any other three
for a challenge, it is safe to leave the result as it is in the scratchpad. Indices 20 to 22 of the coprocessor’s
scratchpad hold the challenge bytes that will be used for the Read Authenticated Page. Using these three
particular bytes makes it unnecessary to write the challenge back to the coprocessor later.

uchar scratchpad[32]; // temporary buffer
uchar chlg[3];

/* Use the coprocessor to generate the challenge, page number is irrelevant but a
 * highly used page will generate a more random (less repeating) number */
EraseScratchpadSHA18(copr.portnum, 0, FALSE);
SHAFunction18(copr.portnum, SHA_COMPUTE_CHALLENGE, copr.signPageNumber<<5, TRUE);
ReadScratchpadSHA18(copr.portnum, 0, 0, scratchpad, TRUE);

/* copy the challenge bytes into challenge buffer */
memcpy(chlg, &scratchpad[20], 3);

uchar chlg[3]; // random challenge bytes
/* Use coprocessor to generate a random challenge */
CreateChallenge(copr, copr.signPageNumber, chlg, 0);

/* issue challenge to user getting back the account data, response MAC, and the
 * value of the write-cycle counter */
AnswerChallenge(user, chlg);

/* use coprocessor to verify the authentication response */
VerifyAuthResponse(copr, user, chlg, TRUE);

/* Verify user tokens authentication response, same for signed and unsigned */
VerifyUser(copr, user, TRUE);

AN156

21 of 23

Answering a Random Challenge with a DS1963S User Token Figure 40

After retrieving the MAC (Message Authentication Code) from the user token, it is now the job of the
coprocessor to verify it. To verify the response, the user token’s unique secret is recreated in the
workspace secret of the coprocessor and the raw account data is signed with this workspace secret.

Validating the Authentication Response Figure 41

int acctAddr = user.accountPageNumber<<5; //physical address of account file
uchar scratchpad[32];
memcpy(&scratchpad[20], chlg, 3);

/* Write the challenge to the scratchpad of the user token */
EraseScratchpadSHA18(user.portnum, acctAddr, FALSE);
WriteScratchpadSHA18(user.portnum, acctAddr, scratchpad, 32, TRUE);

/* perform authenticated read to get the page data and the resulting MAC */
user.writeCycleCounter =
 ReadAuthPageSHA18(user.portnum,
 user.accountPageNumber,
 user.accountFile.raw,
 user.responseMAC, TRUE);

int wcc = user.writeCycleCounter;

/* Bind DS1963S user token’s unique secret to coprocessor */
uchar fullBindCode[15];

/* Get the 7-byte binding code
memcpy(fullBindCode, copr.bindCode, 4);
memcpy(&fullBindCode[12], &copr.bindCode[4], 3);

/* get the page number of the account file and 7 bytes of the ROM ID */
fullBindCode[4] = user.accountPageNumber;
memcpy(&fullBindCode[5], user.devAN, 7);

/* recreate user token’s unique secret in workspace secret*/
BindSecretToiButton18(copr.authPageNumber, copr.bindData, fullBindCode,
 copr.wspcPageNumber);

/* the scratchpad of the coprocessor now needs the user’s ROM ID and page number,
 * In addition to the challenge bytes used and the write-cycle counter. */
memcpy(&scratchpad[12], fullBindCode[4], 8);
memcpy(&scratchpad[20], chlg, 3);
scratchpad[8] = (wcc&0x0ff);
scratchpad[9] = ((wcc>>=8)&0x0ff);
scratchpad[10] = ((wcc>>=8)&0x0ff);
scratchpad[11] = ((wcc>>=8)&0x0ff);

/* write to the coprocessor and validate */
int wspcAddr = copr.wspcPageNumber<<5; //physical address of wspc page
WriteDataPageSHA18(copr.portnum, copr.wspcPageNumber, user.accountFile.raw, FALSE);
WriteScratchpadSHA18(copr.portnum, wspcAddr, scratchpad, 32, TRUE);
SHAFunction18(copr.portnum, SHA_VALIDATE_DATA_PAGE, wspcAddr, TRUE);

if(MatchScratchpadSHA18(copr.portnum, user.responseMAC, TRUE))
 printf(“DS1963S Authentication Successful!”);

AN156

22 of 23

3.4 Validating the User’s Certificate
Validating a certificate from a user token looks a lot like the earlier section on initializing the data. The
steps for signing the data are very similar, but the coprocessor-generated signature is merely matched
against the existing signature, rather than being read into the certificate. Also, since the entire certificate
is merely stored on a file in any user token, the process for validating the certificate is identical across all
tokens. When using an unsigned certificate, this step may only consist of checking the user’s account
balance to make sure it makes sense in the system (i.e. it isn’t negative or it isn’t a trillion dollars).

Validating Transaction Data with SHADEBIT.C Module Figure 42

For signed transaction data, the signature of the certificate must be verified with the coprocessor. As a
nice initial check, the validity of the account balance information can be verified first. This can provide a
quick check to avoid verifying the signature of the account information if it’s unnecessary.

Validating the Account Balance Information Figure 43

The verification of the signature looks very similar to how the signature was created in the first place. The
CRC16 is cleared out (set to zero) and the data signature, after being saved in a buffer, is cleared out and
replaced with the system’s initial signature. Since the new signature will not be written back to the part
and the current signature is being verified against the current value of the write cycle counter, the write
cycle counter is not incremented this time for producing the data signature. The entire process is shown in
Figure 44.

Note that, rather than reading the signature back and matching the signature bytes in software, the
coprocessor’s Match Scratchpad command is used. Since this command only transmits 20 bytes of MAC
information to the coprocessor, rather than reading 32 bytes of scratchpad information from the
coprocessor, this technique is slightly faster. When building a fast, responsive debit application, all non-
essential reads/writes will have to be optimized in this manner. In addition, making sure that the correct
MAC isn’t transmitted from the coprocessor gives an invalid user token no opportunity to grab the right
MAC. This will leave the application less open to holes where the user can take advantage of system
“retries.” For example, if the system was designed to retry the user challenge operation if interrupted, but
eventually repeated a 3-byte random challenge, the user could have stored the appropriate signature.

/* verify the user’s account balance is ‘legal’ */
int balance = (user.accountFile.file.balance[26]&0x0ff);
balance = (balance << 8) | (user.accountFile.file.balance[25]&0x0ff);
balance = (balance << 8) | (user.accountFile.file.balance[24]&0x0ff);

/* MAX_BALANCE, MIN_BALANCE are constant integers */
if(balance>MAX_BALANCE)
 printf(“Too Much Money!”);
else if(balance<MIN_BALANCE)
 printf(“Not enough money to perform transaction!”);

/* Verify user tokens data, including verifying the data signature */
VerifyData(&copr, &user);

AN156

23 of 23

Validating the Certificate Signature Figure 44

3.5 Updating the User’s Certificate
Updating the user’s certificate is only necessary when using dynamic data. If, for example, the data stored
in the certificate were simply an identification number, there wouldn’t be any need for an update.
Authenticating the user token would ensure that it wasn’t copied from one token to another and validating
the certificate would ensure that it wasn’t tampered with. When using dynamic data, as in the example of
the account balance, it will be necessary to update the certificate information, restore the initial signature,
clear out the CRC16, and resign the data. The breakdown of these steps (with the exception of the
updated data) is identical to those presented in section 2.1. Figure 45 shows the function for updating (and
re-signing if necessary) the transaction data.

Debiting and Updating the User’s Certificate Figure 45

int signAddr = copr.signPageNumber<<5; // physical address of signing page
int wcc = user.writeCycleCounter;
uchar scratchpad[32];

/* save the data signature */
uchar dataSignature[20];
memcpy(dataSignature, user.accountFile.file.signature, 20);

/* clear out the old signature and CRC 16 */
memcpy(user.accountFile.file.signature, copr.initSignature, 20);
user.accountFile.file.crc16[0] = 0x00;
user.accountFile.file.crc16[1] = 0x00;

/* assign the wcc to coprocessor’s “signing” scratchpad (DS1961S wcc=0xFFFFFFFF) */
scratchpad[8] = (wcc&0x0ff);
scratchpad[9] = ((wcc>>=8)&0x0ff);
scratchpad[10] = ((wcc>>=8)&0x0ff);
scratchpad[11] = ((wcc>>=8)&0x0ff);

/* setup the rest of the “signing” scratchpad */
scratchpad[12] = user.accountPageNum;
memcpy(&scratchpad[13], user.devAN, 7);
memcpy(&scratchpad[20], copr.signChlg, 3);

owSerialNum(copr.portnum, copr.devAN, FALSE);
/* write the user’s account page to the coprocessor */
WriteDataPageSHA18(copr.portnum, copr.signPageNumber, user.accountFile.raw, FALSE);
/* write the signing scratchpad */
WriteScratchpadSHA18(copr.portnum, signAddr, scratchpad, 0, 0, TRUE);
/* create the signature */
SHAFunction18(copr.portnum, SHA_SIGN_DATA_PAGE, signAddr, TRUE);

/* match the signature generated by the coprocessor with the user token’s MAC */
if(MatchScratchpadSHA18(copr.portnum, dataSignature, TRUE))
 printf(“Certificate verification Successful!”);

/* Update user token after subtracting 50 cents, with a signed certificate.
 * verify that the user token was updated with another read authenticated page. */
ExecuteTransaction(copr, user, 50, TRUE);

