CSD87335Q3D SLPS574 - FEBRUARY 2016 # **CSD87335Q3D Synchronous Buck NexFET™ Power Block** ## **Features** - Half-Bridge Power Block - Up to 27-V V_{IN} - 93.5% System Efficiency at 15 A - Up to 25-A Operation - High-Frequency Operation (Up To 1.5 MHz) - High-Density SON 3.3 mm × 3.3 mm Footprint - Optimized for 5-V Gate Drive - Low Switching Losses - Ultralow Inductance Package - **RoHS Compliant** - Halogen Free - Pb-Free Terminal Plating # Applications - Synchronous Buck Converters - High-Frequency Applications - High-Current, Low-Duty Cycle Applications - Multiphase Synchronous Buck Converters - POL DC-DC Converters - IMVP, VRM, and VRD Applications # 3 Description The CSD87335Q3D NexFET™ power block is an optimized design for synchronous buck applications offering high-current, high-efficiency, and highfrequency capability in a small 3.3 mm x 3.3 mm outline. Optimized for 5-V gate drive applications, this product offers a flexible solution capable of offering a high density power supply when paired with any 5-V gate drive from an external controller/driver. Figure 1. Top View ### Ordering Information(1) | Device | Media | Qty | Package | Ship | |--------------|--------------|------|--------------------|----------| | CSD87335Q3D | 13-Inch Reel | 2500 | SON 3.3 mm × 3.3 | Tape and | | CSD87335Q3DT | 7-Inch Reel | 250 | mm Plastic Package | Reel | (1) For all available packages, see the orderable addendum at the end of the data sheet. # **Table of Contents** | 1 | Features 1 | | 8.4 Normalized Curves | 12 | |---|--|----|--|------| | 2 | Applications 1 | | 8.5 Calculating Power Loss and SOA | 13 | | 3 | Description 1 | 9 | Recommended PCB Design Overview | 15 | | 4 | Revision History2 | | 9.1 Electrical Performance | 15 | | 5 | Specifications | | 9.2 Thermal Performance | 16 | | • | 5.1 Absolute Maximum Ratings | 10 | Device and Documentation Support | . 17 | | | 5.2 Recommended Operating Conditions | | 10.1 Community Resources | 17 | | | 5.3 Thermal Information | | 10.2 Trademarks | 17 | | | 5.4 Power Block Performance | | 10.3 Electrostatic Discharge Caution | 17 | | | 5.5 Electrical Characteristics | | 10.4 Glossary | 17 | | 6 | Typical Power Block Device Characteristics 5 | | Mechanical, Packaging, and Orderable Information | . 18 | | 7 | Typical Power Block MOSFET Characteristics 7 | | 11.1 Q3D Package Dimensions | 18 | | 8 | Applications and Implementation 10 | | 11.2 Land Pattern Recommendation | | | | 8.1 Application Information | | 11.3 Stencil Recommendation | 19 | | | 8.2 Power Loss Curves | | 11.4 Q3D Tape and Reel Information | 20 | | | 8.3 Safe Operating Curves (SOA) 12 | | 11.5 Pin Configuration | | # 4 Revision History | DATE | REVISION | NOTES | |---------------|----------|------------------| | February 2016 | * | Initial release. | # 5 Specifications www.ti.com ### 5.1 Absolute Maximum Ratings $T_{\Delta} = 25^{\circ}C$ (unless otherwise noted)⁽¹⁾ | | | MIN | MAX | UNIT | |---|--|-----|-----|------| | | V _{IN} to P _{GND} | | 30 | V | | Voltage | V _{SW} to P _{GND} | | 30 | V | | | V _{SW} to P _{GND} (10 ns) | | 32 | V | | | T _G to T _{GR} | -8 | 10 | V | | | B _G to P _{GND} | -8 | 10 | V | | Pulsed current rating, I _{DM} (2) | urrent rating, I _{DM} ⁽²⁾ 70 | | | | | Power dissipation, P _D | | | 6 | W | | Avalancha anaray E | Sync FET, I _D = 51 A, L = 0.1 mH | | 130 | mJ | | Avalanche energy E _{AS} Control FET, I _D = 33 A, L = 0.1 mH | | | 54 | mJ | | Operating junction and store | d storage temperature, T _J , T _{STG} –55 150 | | | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ## 5.2 Recommended Operating Conditions T_A = 25° (unless otherwise noted) | | | MIN | MAX | UNIT | |---------------------------------------|-------------------------------|-----|------|------| | Gate drive voltage, V _{GS} | | 4.5 | 8 | V | | Input supply voltage, V _{IN} | | | 27 | V | | Switching frequency, f_{SW} | $C_{BST} = 0.1 \mu F (min)$ | | 1500 | kHz | | Operating current | | | 25 | Α | | Operating temperature, T _J | | | 125 | °C | #### 5.3 Thermal Information $T_A = 25$ °C (unless otherwise stated) | | THERMAL METRIC | MIN | TYP | MAX | UNIT | |-----------------|---|-----|-----|-----|------| | D | Junction-to-ambient thermal resistance (Min Cu) ⁽¹⁾ | | | 135 | °C/W | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance (Max Cu) ⁽¹⁾⁽²⁾ | | | 73 | °C/W | | D | Junction-to-case thermal resistance (Top of package) ⁽¹⁾ | | | 29 | °C/W | | $R_{\theta JC}$ | Junction-to-case thermal resistance (P _{GND} Pin) ⁽¹⁾ | | | 2.5 | °C/W | ⁽¹⁾ R_{0JC} is determined with the device mounted on a 1 inch² (6.45 cm²), 2 oz. (0.071 mm thick) Cu pad on a 1.5 inch x 1.5 inch (3.81 cm x 3.81 cm), 0.06 inch (1.52 mm) thick FR4 board. R_{0JC} is specified by design while R_{0JA} is determined by the user's board design. ## 5.4 Power Block Performance⁽¹⁾ $T_A = 25^{\circ}$ (unless otherwise noted) | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--|---|-----|-----|-----|------| | Power loss, P _{LOSS} ⁽¹⁾ | $\begin{aligned} & \text{V}_{\text{IN}} = 12 \text{ V, V}_{\text{GS}} = 5 \text{ V, V}_{\text{OUT}} = 1.3 \text{ V,} \\ & \text{I}_{\text{OUT}} = 15 \text{ A, } f_{\text{SW}} = 500 \text{ kHz,} \\ & \text{L}_{\text{OUT}} = 950 \text{ nH, T}_{\text{J}} = 25^{\circ}\text{C} \end{aligned}$ | | 1.5 | | W | | V _{IN} Quiescent current, I _{QVIN} | T_G to $T_{GR} = 0$ V, B_G to $P_{GND} = 0$ V | | 10 | | μA | ⁽¹⁾ Measurement made with six 10 µF (TDK C3216X5R1C106KT or equivalent) ceramic capacitors placed across V_{IN} to P_{GND} pins and using a high current 5 V driver IC. ²⁾ Pulse duration ≤ 50 µs, duty cycle ≤ 1%. ⁽²⁾ Device mounted on FR4 material with 1 inch² (6.45 cm²) Cu. # TEXAS INSTRUMENTS www.ti.com # 5.5 Electrical Characteristics $T_A = 25$ °C (unless otherwise stated) | | DADAMETED | TEST COMPLETIONS | Q1 Control FET | | | Q2 | Sync FET | | LINUT | |---------------------|----------------------------------|--|----------------|-----|------|--------------|----------|------|-------| | PARAMETER | | TEST CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNIT | | STATIC | CHARACTERISTICS | | | | • | | | • | | | BV _{DSS} | Drain-to-source voltage | $V_{GS} = 0 \text{ V}, I_{DS} = 250 \mu\text{A}$ | 30 | | | 30 | | | V | | I _{DSS} | Drain-to-source leakage current | V _{GS} = 0 V, V _{DS} = 24 V | | | 1 | | | 1 | μΑ | | I _{GSS} | Gate-to-source leakage current | V _{DS} = 0 V,
V _{GS} = +10 / -8 V | | | 100 | | | 100 | nA | | V _{GS(th)} | Gate-to-source threshold voltage | $V_{DS} = V_{GS}, I_{DS} = 250 \ \mu A$ | 1.0 | | 1.9 | 0.75 | | 1.20 | V | | Z _{DS(on)} | Effective AC on-impedance | $V_{IN} = 12 \text{ V}, V_{GS} = 5 \text{ V}, \ V_{OUT} = 1.3 \text{ V}, I_{OUT} = 15 \text{ A}, \ f_{SW} = 500 \text{ kHz}, L_{OUT} = 950 \text{ nH}$ | | 6.7 | | | 1.9 | | mΩ | | 9 _{fs} | Transconductance | $V_{DS} = 3 \text{ V}, I_{DS} = 15 \text{ A}$ | | 59 | | · | 107 | | S | | DYNAMI | C CHARACTERISTICS | | | · | | | | | | | C _{ISS} | Input capacitance | | | 805 | 1050 | | 1620 | 2100 | pF | | Coss | Output capacitance | $V_{GS} = 0 \text{ V}, V_{DS} = 15 \text{ V},$
f = 1 MHz | | 412 | 536 | · | 783 | 1020 | pF | | C _{RSS} | Reverse transfer capacitance | - J - 1 WINZ | | 15 | 20 | · | 28 | 36 | pF | | R _G | Series gate resistance | | | 1.2 | 2.4 | | 0.6 | 1.2 | Ω | | Qg | Gate charge total (4.5 V) | | | 5.7 | 7.4 | · | 10.7 | 14.0 | nC | | Q _{gd} | Gate charge – gate-to-drain | V _{DS} = 15 V, | | 1.1 | | · | 1.7 | | nC | | Q _{gs} | Gate charge – gate-to-source | I _{DS} = 15 A | | 2.1 | | | 2.8 | | nC | | Q _{g(th)} | Gate charge at Vth | | | 1.1 | | | 1.4 | | nC | | Q _{OSS} | Output charge | $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}$ | | 11 | | | 19 | | nC | | t _{d(on)} | Turn on delay time | | | 8 | | | 8 | | ns | | t _r | Rise time | $V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V},$ | | 29 | | | 27 | | ns | | t _{d(off)} | Turn off delay time | $I_{DS} = 15 \text{ A}, R_G = 2 \Omega$ | | 13 | | | 17 | | ns | | t _f | Fall time | | | 4 | | | 5 | | ns | | DIODE C | CHARACTERISTICS | | | · | | , | | , | | | V_{SD} | Diode forward voltage | I _{DS} = 15 A, V _{GS} = 0 V | | 0.8 | 1.0 | | 0.8 | 1.0 | V | | Q _{rr} | Reverse recovery charge | V _{DS} = 15 V, I _F = 15 A, | | 24 | | | 40 | | nC | | t _{rr} | Reverse recovery time | di/dt = 300 A/µs | | 17 | | | 22 | | ns | Max $R_{\theta JA} = 73^{\circ} \text{C/W}$ when mounted on 1 inch² (6.45 cm²) of 2 oz. (0.071 mm thick) Cu. Max $R_{\theta JA} = 135^{\circ} C/W$ when mounted on minimum pad area of 2 oz. (0.071 mm thick) Cu. # 6 Typical Power Block Device Characteristics Test Conditions: V_{IN} = 12 V, V_{DD} = 5 V, f_{SW} = 500 kHz, V_{OUT} = 1.3 V, L_{OUT} = 950 nH, I_{OUT} = 25 A, T_{J} = 125°C, unless stated otherwise. (1) The Typical Power Block System Characteristic curves are based on measurements made on a PCB design with dimensions of 4.0" (W) × 3.5" (L) × 0.062" (H) and 6 copper layers of 1 oz. copper thickness. See Application Section for detailed explanation. SLPS574 – FEBRUARY 2016 www.ti.com # TEXAS INSTRUMENTS # **Typical Power Block Device Characteristics (continued)** Test Conditions: V_{IN} = 12 V, V_{DD} = 5 V, f_{SW} = 500 kHz, V_{OUT} = 1.3 V, L_{OUT} = 950 nH, I_{OUT} = 25 A, T_{J} = 125°C, unless stated otherwise. # 7 Typical Power Block MOSFET Characteristics $T_A = 25$ °C, unless stated otherwise. # **Typical Power Block MOSFET Characteristics (continued)** $T_A = 25$ °C, unless stated otherwise. # Typical Power Block MOSFET Characteristics (continued) # TEXAS INSTRUMENTS # 8 Applications and Implementation #### NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. ## 8.1 Application Information #### 8.1.1 Equivalent System Performance Many of today's high performance computing systems require low power consumption in an effort to reduce system operating temperatures and improve overall system efficiency. This has created a major emphasis on improving the conversion efficiency of today's Synchronous Buck Topology. In particular, there has been an emphasis in improving the performance of the critical Power Semiconductor in the Power Stage of this Application (see Figure 28). As such, optimization of the power semiconductors in these applications, needs to go beyond simply reducing $R_{\rm DS(ON)}$. Figure 28. The CSD87335Q3D is part of Tl's Power Block product family which is a highly optimized product for use in a synchronous buck topology requiring high current, high efficiency, and high frequency. It incorporates Tl's latest generation silicon which has been optimized for switching performance, as well as minimizing losses associated with Q_{GD} , Q_{GS} , and Q_{RR} . Furthermore, Tl's patented packaging technology has minimized losses by nearly eliminating parasitic elements between the Control FET and Sync FET connections (see Figure 29). A key challenge solved by Tl's patented packaging technology is the system level impact of Common Source Inductance (CSI). CSI greatly impedes the switching characteristics of any MOSFET which in turn increases switching losses and reduces system efficiency. As a result, the effects of CSI need to be considered during the MOSFET selection process. In addition, standard MOSFET switching loss equations used to predict system efficiency need to be modified in order to account for the effects of CSI. Further details behind the effects of CSI and modification of switching loss equations are outlined in Tl's Application Note SLPA009. #### **Application Information (continued)** Figure 29. The combination of TI's latest generation silicon and optimized packaging technology has created a benchmarking solution that outperforms industry standard MOSFET chipsets of similar $R_{DS(ON)}$ and MOSFET chipsets with lower $R_{DS(ON)}$. Figure 30 and Figure 31 compare the efficiency and power loss performance of the CSD87335Q3D versus industry standard MOSFET chipsets commonly used in this type of application. This comparison purely focuses on the efficiency and generated loss of the power semiconductors only. The performance of CSD87335Q3D clearly highlights the importance of considering the Effective AC On-Impedance $(Z_{DS(ON)})$ during the MOSFET selection process of any new design. Simply normalizing to traditional MOSFET $R_{DS(ON)}$ specifications is not an indicator of the actual in-circuit performance when using TI's Power Block technology. Table 1 compares the traditional DC measured $R_{DS(ON)}$ of CSD87335Q3D versus its $Z_{DS(ON)}$. This comparison takes into account the improved efficiency associated with TI's patented packaging technology. As such, when comparing TI's Power Block products to individually packaged discrete MOSFETs or dual MOSFETs in a standard package, the in-circuit switching performance of the solution must be considered. In this example, individually packaged discrete MOSFETs or dual MOSFETs in a standard package would need to have DC measured $R_{DS(ON)}$ values that are equivalent to CSD87335Q3D's $Z_{DS(ON)}$ value in order to have the same efficiency performance at full load. Mid to light-load efficiency will still be lower with individually packaged discrete MOSFETs or dual MOSFETs in a standard package. Table 1. Comparison of R_{DS(ON)} vs. Z_{DS(ON)} | Parameter | Н | IS | LS | | | |---|-----|-----|-----|-----|--| | Parameter | Тур | Max | Тур | Max | | | Effective AC On-Impedance Z _{DS(ON)} (V _{GS} = 5 V) | 6.7 | - | 1.9 | - | | | DC Measured R _{DS(ON)} (V _{GS} = 4.5 V) | 6.7 | 8.1 | 3.1 | 3.9 | | The CSD87335Q3D NexFET™ power block is an optimized design for synchronous buck applications using 5 V gate drive. The Control FET and Sync FET silicon are parametrically tuned to yield the lowest power loss and highest system efficiency. As a result, a new rating method is needed which is tailored towards a more systems centric environment. System level performance curves such as Power Loss, Safe Operating Area, and normalized graphs allow engineers to predict the product performance in the actual application. #### 8.2 Power Loss Curves MOSFET centric parameters such as $R_{DS(ON)}$ and Q_{gd} are needed to estimate the loss generated by the devices. In an effort to simplify the design process for engineers, Texas Instruments has provided measured power loss performance curves. Figure 2 plots the power loss of the CSD87335Q3D as a function of load current. This curve is measured by configuring and running the CSD87335Q3D as it would be in the final application (see Figure 32). The measured power loss is the CSD87335Q3D loss and consists of both input conversion loss and gate drive loss. Equation 1 is used to generate the power loss curve. $$(V_{IN} \times I_{IN}) + (V_{DD} \times I_{DD}) - (V_{SW AVG} \times I_{OUT}) = Power Loss$$ (1) The power loss curve in Figure 2 is measured at the maximum recommended junction temperatures of 125°C under isothermal test conditions. #### 8.3 Safe Operating Curves (SOA) The SOA curves in the CSD87335Q3D data sheet provides guidance on the temperature boundaries within an operating system by incorporating the thermal resistance and system power loss. to Figure 5 outline the temperature and airflow conditions required for a given load current. The area under the curve dictates the safe operating area. All the curves are based on measurements made on a PCB design with dimensions of 4" (W) \times 3.5" (L) \times 0.062" (T) and 6 copper layers of 1 oz. copper thickness. #### 8.4 Normalized Curves The normalized curves in the CSD87335Q3D data sheet provides guidance on the Power Loss and SOA adjustments based on their application specific needs. These curves show how the power loss and SOA boundaries will adjust for a given set of systems conditions. The primary Y-axis is the normalized change in power loss and the secondary Y-axis is the change is system temperature required in order to comply with the SOA curve. The change in power loss is a multiplier for the Power Loss curve and the change in temperature is subtracted from the SOA curve. #### **Normalized Curves (continued)** Figure 32. Typical Application ## 8.5 Calculating Power Loss and SOA The user can estimate product loss and SOA boundaries by arithmetic means (see *Design Example*). Though the Power Loss and SOA curves in this data sheet are taken for a specific set of test conditions, the following procedure will outline the steps the user should take to predict product performance for any set of system conditions. #### 8.5.1 Design Example **Operating Conditions:** - Output Current = 15 A - Input Voltage = 14 V - Output Voltage = 1.4 V - Switching Frequency = 750 kHz - Inductor = 600 nH #### 8.5.2 Calculating Power Loss - Power Loss at 15 A = 1.92 W (Figure 2) - Normalized Power Loss for input voltage ≈ 1.01 (Figure 7) - Normalized Power Loss for output voltage ≈ 1.01 (Figure 8) - Normalized Power Loss for switching frequency ≈ 1.08 (Figure 6) - Normalized Power Loss for output inductor ≈ 1.01 (Figure 9) - Final calculated Power Loss = 1.92 W x 1.01 x 1.01 x 1.08 x 1.01 ≈ 2.14 W ## 8.5.3 Calculating SOA Adjustments - SOA adjustment for input voltage ≈ 0.14°C (Figure 7) - SOA adjustment for output voltage ≈ 0.17°C (Figure 8) - SOA adjustment for switching frequency ≈ 1.32°C (Figure 6) - SOA adjustment for output inductor ≈ 0.18°C (Figure 9) - Final calculated SOA adjustment = 0.14 + 0.17 + 1.32 + 0.18 ≈ 1.81°C # TEXAS INSTRUMENTS ## Calculating Power Loss and SOA (continued) In the design example above, the estimated power loss of the CSD87335Q3D would increase to 2.14 W. In addition, the maximum allowable board and/or ambient temperature would have to decrease by 1.81°C. Figure 33 graphically shows how the SOA curve would be adjusted accordingly. - 1. Start by drawing a horizontal line from the application current to the SOA curve. - 2. Draw a vertical line from the SOA curve intercept down to the board/ambient temperature. - 3. Adjust the SOA board/ambient temperature by subtracting the temperature adjustment value. In the design example, the SOA temperature adjustment yields a reduction in allowable board/ambient temperature of 1.81°C. In the event the adjustment value is a negative number, subtracting the negative number would yield an increase in allowable board/ambient temperature. Figure 33. Power Block SOA www.ti.com SLPS574 – FEBRUARY 2016 # 9 Recommended PCB Design Overview There are two key system-level parameters that can be addressed with a proper PCB design: Electrical and Thermal performance. Properly optimizing the PCB layout will yield maximum performance in both areas. A brief description on how to address each parameter is provided. #### 9.1 Electrical Performance The Power Block has the ability to switch voltages at rates greater than 10 kV/µs. Special care must be then taken with the PCB layout design and placement of the input capacitors, Driver IC, and output inductor. - The placement of the input capacitors relative to the Power Block's VIN and PGND pins should have the highest priority during the component placement routine. It is critical to minimize these node lengths. As such, ceramic input capacitors need to be placed as close as possible to the VIN and PGND pins (see Figure 34). The example in Figure 34 uses 6 x 10 μF ceramic capacitors (TDK Part # C3216X5R1C106KT or equivalent). Notice there are ceramic capacitors on both sides of the board with an appropriate amount of vias interconnecting both layers. In terms of priority of placement next to the Power Block, C5, C7, C19, and C8 should follow in order. - The Driver IC should be placed relatively close to the Power Block Gate pins. T_G and B_G should connect to the outputs of the Driver IC. The T_{GR} pin serves as the return path of the high-side gate drive circuitry and should be connected to the Phase pin of the IC (sometimes called LX, LL, SW, PH, etc.). The bootstrap capacitor for the Driver IC will also connect to this pin. - The switching node of the output inductor should be placed relatively close to the Power Block VSW pins. Minimizing the node length between these two components will reduce the PCB conduction losses and actually reduce the switching noise level. In the event the switch node waveform exhibits ringing that reaches undesirable levels, the use of a Boost Resistor or RC snubber can be an effective way to easily reduce the peak ring level. The recommended Boost Resistor value will range between 1.0 Ohms to 4.7 Ohms depending on the output characteristics of Driver IC used in conjunction with the Power Block. The RC snubber values can range from 0.5 Ohms to 2.2 Ohms for the R and 330 pF to 2200 pF for the C. Please refer to TI App Note SLUP100 for more details on how to properly tune the RC snubber values. The RC snubber should be placed as close as possible to the Vsw node and PGND (see Figure 34). (1) - (1) Keong W. Kam, David Pommerenke, "EMI Analysis Methods for Synchronous Buck Converter EMI Root Cause Analysis", University of Missouri Rolla # TEXAS INSTRUMENTS #### 9.2 Thermal Performance The Power Block has the ability to utilize the GND planes as the primary thermal path. As such, the use of thermal vias is an effective way to pull away heat from the device and into the system board. Concerns of solder voids and manufacturability problems can be addressed by the use of three basic tactics to minimize the amount of solder attach that will wick down the via barrel: - Intentionally space out the vias from each other to avoid a cluster of holes in a given area. - Use the smallest drill size allowed in your design. The example in Figure 34 uses vias with a 10 mil drill hole and a 16 mil capture pad. - Tent the opposite side of the via with solder-mask. In the end, the number and drill size of the thermal vias should align with the end user's PCB design rules and manufacturing capabilities. Figure 34. Recommended PCB Layout (Top Down) # 10 Device and Documentation Support #### 10.1 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of TI E2E™ Online Community T's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. #### 10.2 Trademarks NexFET, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. #### 10.3 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. ## 10.4 Glossary SLYZ022 — TI Glossarv. This glossary lists and explains terms, acronyms, and definitions. # 11 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. ## 11.1 Q3D Package Dimensions | DIM | MILLIN | METERS | INCHES | | | | |-----|-----------|--------|-----------|-------|--|--| | DIM | MIN | | MIN | MAX | | | | А | 1.400 | 1.500 | 0.055 | 0.059 | | | | b | 0.280 | 0.400 | 0.011 | 0.016 | | | | b1 | 0.310 |) NOM | 0.012 | NOM | | | | С | 0.150 | 0.250 | 0.006 | 0.010 | | | | c1 | 0.150 | 0.250 | 0.006 | 0.010 | | | | d | 0.940 | 1.040 | 0.037 | 0.041 | | | | d1 | 0.160 | 0.260 | 0.006 | 0.010 | | | | d2 | 0.150 | 0.250 | 0.006 | 0.010 | | | | d3 | 0.250 | 0.350 | 0.010 | 0.014 | | | | d4 | 0.175 | 0.275 | 0.007 | 0.011 | | | | D1 | 3.200 | 3.400 | 0.126 | 0.134 | | | | D2 | 2.650 | 2.750 | 0.104 | 0.108 | | | | E | 3.200 | 3.400 | 0.126 | 0.134 | | | | E1 | 3.200 | 3.400 | 0.126 | 0.134 | | | | E2 | 1.750 | 1.850 | 0.069 | 0.073 | | | | е | 0.650 TYP | | 0.026 | TYP | | | | L | 0.400 | 0.500 | 0.016 | 0.020 | | | | θ | 0.00 | - | _ | _ | | | | K | 0.30 | 0 TYP | 0.012 TYP | | | | #### 11.2 Land Pattern Recommendation NOTE: Dimensions are in mm (inches). ## 11.3 Stencil Recommendation NOTE: Dimensions are in mm (inches). For recommended circuit layout for PCB designs, see application note SLPA005 – Reducing Ringing Through PCB Layout Techniques. # TEXAS INSTRUMENTS # 11.4 Q3D Tape and Reel Information NOTES: 1. 10-sprocket hole-pitch cumulative tolerance ±0.2 - 2. Camber not to exceed 1 mm in 100 mm, noncumulative over 250 mm - 3. Material: black static-dissipative polystyrene - 4. All dimensions are in mm, unless otherwise specified. - 5. Thickness: 0.30 ±0.05 mm - 6. MSL1 260°C (IR and convection) PbF reflow compatible # 11.5 Pin Configuration | Position | Designation | |----------|------------------| | Pin 1 | V _{IN} | | Pin 2 | V _{IN} | | Pin 3 | T _G | | Pin 4 | T _{GR} | | Pin 5 | B_G | | Pin 6 | V _{SW} | | Pin 7 | V _{SW} | | Pin 8 | V _{SW} | | Pin 9 | P _{GND} | # PACKAGE OPTION ADDENDUM 2-Mar-2016 #### **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | J | Samples | |------------------|--------|--------------|--------------------|------|----------------|--------------------------|-------------------|--------------------|--------------|--------|---------| | | (1) | | Drawing | | Qty | (2) | (6) | (3) | | (4/5) | | | CSD87335Q3D | ACTIVE | LSON-CLIP | DQZ | 8 | 2500 | Pb-Free (RoHS
Exempt) | CU NIPDAU CU SN | Level-1-260C-UNLIM | -55 to 150 | 87335D | Samples | | CSD87335Q3DT | ACTIVE | LSON-CLIP | DQZ | 8 | 250 | Pb-Free (RoHS
Exempt) | CU NIPDAU CU SN | Level-1-260C-UNLIM | -55 to 150 | 87335D | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. # **PACKAGE OPTION ADDENDUM** 2-Mar-2016 | n no event shall TI's liability aris | ing out of such information exceed the total | purchase price of the TI part(s) at | t issue in this document sold by | TI to Customer on an annual basis. | |--------------------------------------|--|-------------------------------------|----------------------------------|------------------------------------| | | | | | | #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. #### Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity