

Smart Sense High-Side

Power Switch RoHS

Features

- Short circuit protection
- Current limitation
- Proportional load current sense
- CMOS compatible input
- Open drain diagnostic output
- Fast demagnetization of inductive loads
- Undervoltage and overvoltage shutdown with auto-restart and hysteresis
- Overload protection
- Thermal shutdown
- Overvoltage protection including load dump (with external GND-resistor)
- Reverse battery protection (with external GND-resistor)
- Loss of ground and loss of V_{bb} protection
- Electrostatic discharge (ESD) protection

Application

- μ C compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads
- All types of resistive, inductive and capacitve loads
- Replaces electromechanical relays, fuses and discrete circuits

General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, proportional sense of load current, monolithically integrated in Smart SIPMOS[®] technology. Providing embedded protective functions.

Block Diagram

Product Summary

-				
Operating voltage	$V_{bb(on)}$	5.0 34	V	
On-state resistance	R _{on}	30	$m\Omega$	
Load current (ISO)	I _{L(ISO)}	12.6	Α	
Current limitation	L(SCr)	24	Α	

Package

- AEC qualified
- Green product (RoHS compliant)

Pin	Symbol	Function
1	ST	Diagnostic feedback: open drain, invers to input level
2	GND	Logic ground
3	IN	Input, activates the power switch in case of logical high signal
4	Vbb	Positive power supply voltage, the tab is shorted to this pin
5	IS	Sense current output, proportional to the load current, zero in the case of current limitation of load current
6&7	OUT (Load, L)	Output, protected high-side power output to the load. Both output pins have to be connected in parallel for operation according this spec (e.g. k_{ILIS}). Design the wiring for the max. short circuit current

Maximum Ratings at $T_j = 25$ °C unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 4)	V _{bb}	43	V
Supply voltage for full short circuit protection <i>T</i> j Start=-40+150°C	V _{bb}	34	V
Load dump protection ¹) $V_{\text{LoadDump}} = V_A + V_S$, $V_A = 13.5V_R P_A^{(2)} = 2 \Omega$, $R_L = 1 \Omega$, $t_d = 200 \text{ ms}$, $IN = I \text{ low or high}$	V _{Load dump} ³⁾	60	V
Load current (Short circuit current, see page 5)	L	self-limited	A
Operating temperature range Storage temperature range	T_{j} T_{stg}	-40+150 -55+150	°C
Power dissipation (DC), $T_C \le 25 \ ^{\circ}C$	P _{tot}	85	W
Inductive load switch-off energy dissipation, single pulse $V_{bb} = 12V$, $T_{j,start} = 150^{\circ}C$, $T_{C} = 150^{\circ}C$ const. $I_{L} = 12.6 \text{ A}$, $Z_{L} = 4,2 \text{ mH}$, 0 Ω : $I_{L} = 4 \text{ A}$, $Z_{L} = 330 \text{ mH}$, 0 Ω :	E _{AS} E _{AS}	0,41 3,5	J
Electrostatic discharge capability (ESD) IN: (Human Body Model) ST, IS: out to all other pins shorted: acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993 R=1.5kΩ; C=100pF	V _{ESD}	1.0 4.0 8.0	kV
Input voltage (DC)	V _{IN}	-10 +16	V
Current through input pin (DC) Current through status pin (DC) Current through current sense pin (DC) see internal circuit diagrams page 8	I _{IN} I _{ST} I _{IS}	±2.0 ±5.0 ±14	mA

¹⁾ Supply voltages higher than $V_{bb(AZ)}$ require an external current limit for the GND and status pins (a 150 Ω resistor in the GND connection is recommended).

²⁾ $R_{\rm I}$ = internal resistance of the load dump test pulse generator

³⁾ V_{Load dump} is setup without the DUT connected to the generator according to ISO 7637-1 and DIN 40839

Thermal Characteristics

Parameter and Conditions		Symbol		Values		Unit
			min	typ	max	
Thermal resistance chip - case:		<i>R</i> _{thJC}			1.47	K/W
junction - ambient (free air):		R _{thJA}			75	
SMD versior	n, device on PCB ⁴⁾ :			33		

Electrical Characteristics

Parameter and Conditions	Symbol	Values		5	Unit
at $T_j = 25 \text{ °C}$, $V_{bb} = 12 \text{ V}$ unless otherwise specified		min	typ	max	

Load Switching Capabilities and Characteristics

On-state resistance (pin 4 to 6&7) $I_L = 5 \text{ A}$ $T_j=25 \text{ °C:}$ $T_j=150 \text{ °C:}$	R _{ON}		27 54	30 60	mΩ
Output voltage drop limitation at small loadcurrents (pin 4 to 6&7), see page 14 $I_L = 0.5 \text{ A}$ $T_j = -40+150^{\circ}\text{C}$:	V _{ON(NL)}		50		mV
Nominal load current, ISO Norm (pin 4 to 6&7) $V_{ON} = 0.5 \text{ V}, T_{C} = 85 \text{ °C}$	I _{L(ISO)}	11.4	12.6		A
Nominal load current, device on PCB ⁴⁾ $T_A = 85 \text{ °C}, T_j \le 150 \text{ °C} V_{ON} \le 0.5 \text{ V},$	I _{L(NOM)}	4.0	4.5		А
Output current (pin 6&7) while GND disconnected or GND pulled up, Vbb=30 V, VIN= 0, see diagram page 9; not subject to production test, specified by design	I _{L(GNDhigh)}			8	mA
Turn-on timeINto 90%VOUT:Turn-off timeINto 10%VOUT: $R_L = 12 \Omega$, $T_j = -40+150^{\circ}C$ INto 10%VOUT:	t _{on} t _{off}	25 25	70 80	150 200	μs
Slew rate on 10 to 30% <i>V</i> OUT, <i>R</i> L = 12 Ω, <i>T</i> j =-40+150°C	d <i>V</i> /dt _{on}	0.1		1	V/µs
Slew rate off 70 to 40% <i>V</i> _{OUT} , <i>R</i> _L = 12 Ω, <i>T</i> _j =-40+150°C	-d <i>V</i> /dt _{off}	0.1		1	V/µs

⁴⁾ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70µm thick) copper area for V_{bb} connection. PCB is vertical without blown air.

Parameter and Conditions		Symbol	Values			Unit
at $T_j = 25 \text{ °C}$, $V_{bb} = 12 \text{ V}$ unless otherwise specified			min	typ	max	
Operating Parameters						
Operating voltage ⁵⁾	<i>T</i> j =-40+150°C:	V _{bb(on)}	5.0		34	V
Undervoltage shutdown	<i>T</i> j =-40+150°C:	V _{bb(under)}	3.2		5.0	V
Undervoltage restart	Tj =-40+25°C: Tj =+150°C:	V _{bb(u rst)}		4.5	5.5 6.0	V
Undervoltage restart of charge p see diagram page 13	oump Tj =-40+25°C: Tj =25150°C:	V _{bb(ucp)}		4.7	6.5 7.0	V
Undervoltage hysteresis $\Delta V_{bb}(under) = V_{bb}(u rst) - V_{bb}(under)$		$\Delta V_{ m bb(under)}$		0.5		V
Overvoltage shutdown	<i>T</i> j =-40+150°C:	V _{bb(over)}	34		43	V
Overvoltage restart	<i>T</i> j =-40+150°C:	V _{bb(o rst)}	33			V
Overvoltage hysteresis	<i>T</i> _j =-40+150°C:	$\Delta V_{\text{bb(over)}}$		1		V
Overvoltage protection ⁶⁾ <i>I</i> bb=40 mA	<i>T</i> j =-40°C: <i>T</i> j =+25+150°C	V _{bb(AZ)}	41 43	 47	 52	V
Standby current (pin 4) <i>V</i> IN=0	<i>T</i> j=-40+25°C: <i>T</i> j= 150°C:	I _{bb(off)}	-	4 12	15 25	μA
Off state output current (include VIN=0,	d in <i>I</i> _{bb(off)}) <i>T</i> j =-40+150°C:	I _{L(off)}			10	μA
Operating current (Pin 2)7), VIN=5	V	I _{GND}		1.2	3	mA

⁵⁾ At supply voltage increase up to V_{bb} = 4.7 V typ without charge pump, $V_{OUT} \approx V_{bb}$ - 2 V

⁶⁾ Supply voltages higher than $V_{bb(AZ)}$ require an external current limit for the GND and status pins (a 150 Ω resistor in the GND connection is recommended). See also $V_{ON(CL)}$ in table of protection functions and circuit diagram page 9.

⁷⁾ Add I_{ST} , if $I_{ST} > 0$, add I_{IN} , if $V_{IN} > 5.5$ V

Parameter and Conditions		Symbol	Values			Unit
at $T_j = 25 \text{ °C}$, $V_{bb} = 12 \text{ V}$ unless	otherwise specified		min	typ	max	
Protection Functions ⁸⁾						
Initial peak short circuit cu	rrent limit (pin 4 to 6&7)	I _{L(SCp)}				
	<i>T</i> j =-40°C: <i>T</i> j =25°C: <i>T</i> j =+150°C:		48 40 31	56 50 37	65 58 45	A
Repetitive short circuit shu	Itdown current limit	I _{L(SCr)}				
$T_{j} = T_{jt}$ (see timing diagram	s, page 12)			24		А
Output clamp (inductive load at VOUT = Vbb - VON(CL); /L=	·	V _{ON(CL)}	41 43	 47	 52	V
Thermal overload trip temp	perature	T _{jt}	150			°C
Thermal hysteresis		ΔT_{jt}		10		K
Reverse battery (pin 4 to 2)	9)	-V _{bb}			32	V
Reverse battery voltage de $l_{\rm L} = -5$ A	rop (Vout > Vbb) <i>T</i> j=150 °C:	-V _{ON(rev)}		600		mV
Diagnostic Characteristi	cs					
Current sense ratio ¹⁰⁾ , stat	ic on-condition,					
VIS = 05 V, V _{bb(on)} = 6.5 ¹¹)27V,					
$k_{\rm ILIS} = I_{\rm L} / I_{\rm IS}$	$T_{\rm j}$ = -40°C, $I_{\rm L}$ = 5 A:	<i>k</i> ILIS	4550	5000	6000	
	T_{i} = -40°C. h = 0.5 A:		3300	5000	8000	

	I_{j} = -40°C, I_{L} = 0.5 A:		3300	5000	8000	
	<i>T</i> _j = 25+150°C, <i>I</i> _L = 5 A:		4550	5000	5550	
,	$T_{\rm j}$ = 25+150°C, $I_{\rm L}$ = 0.5 A:		4000	5000	6500	
Current sense output	voltage limitation					
<i>T</i> _j = -40+150°C	$I_{\rm IS} = 0, I_{\rm L} = 5 {\rm A}:$	$V_{\rm IS(lim)}$	5.4	6.1	6.9	V
Current sense leakage	e/offset current					
<i>T</i> j = -40+150°C	$V_{IN}=0, V_{IS}=0, I_{L}=0$:	I _{IS(LL)}	0		1	μA
	$V_{IN}=5 V, V_{IS}=0, I_{L}=0$:	I _{IS(LH)}	0		15	
<i>V</i> IN=5 V, <i>V</i> I	S = 0, $VOUT = 0$ (short circuit):	<i>I</i> IS(SH) ¹²⁾	0		10	

⁸⁾ Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

⁹⁾ Requires 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 2 and circuit page 9).

¹⁰⁾ This range for the current sense ratio refers to all devices. The accuracy of the k_{ILIS} can be raised at least by a factor of two by matching the value of k_{ILIS} for every single device. In the case of current limitation the sense current l_{IS} is zero and the diagnostic feedback potential V_{ST} is High. See figure 2b, page 11.

¹¹⁾ Valid if $V_{bb(u rst)}$ was exceeded before.

¹²⁾ not subject to production test, specified by design

Parameter and Conditions	Symbol	Values			Unit	
at $T_j = 25 \text{ °C}$, $V_{bb} = 12 \text{ V}$ unless otherwise specified		min	typ	max		
Current sense settling time to $I_{IS \text{ static}} \pm 10\%$ after positive input slope ¹³⁾ , $I_L = 0 - 5$ A, $T_{j=} -40 + 150^{\circ}C$	t _{son(IS)}			300	μs	
Current sense settling time to 10% of I_{IS} static after negative input slope ¹³), $I_{L} = 5$ 0 A, $T_{j}=-40+150^{\circ}C$	t _{soff(IS)}		30	100	μs	
Current sense rise time (60% to 90%) after change of load current ¹³) , $I_L = 2.5 - 5 \text{ A}$	t _{slc(IS)}		10		μs	
Open load detection voltage ¹⁴) (off-condition) $T_{j}=-40150^{\circ}C$:	V _{OUT(OL)}	2	3	4	V	
Internal output pull down (pin 6 to 2), VOUT=5 V, Tj=-40150°C	R _O	5	15	40	kΩ	
Input and Status Feedback ¹⁵⁾						
Input resistance see circuit page 8	R _I	3,0	4,5	7,0	kΩ	
Input turn-on threshold voltage $T_j = -40+150^{\circ}C$:	V _{IN(T+)}			3.5	V	
Input turn-off threshold voltage $T_j = -40+150^{\circ}C$:	V _{IN(T-)}	1.5			V	
Input threshold hysteresis	$\Delta V_{\rm IN(T)}$		0.5		V	
Off state input current (pin 3), $V_{IN} = 0.4 \text{ V}$ $T_j = -40+150^{\circ}\text{C}$	I _{IN(off)}	1		50	μA	
On state input current (pin 3), $V_{IN} = 5 \text{ V}$ $T_j = -40+150^{\circ}\text{C}$	I _{IN(on)}	20	50	90	μA	
Delay time for status with open load after Input neg. slope (see diagram page 13)	t _{d(ST OL3)}		400		μs	
Status delay after positive input slope ¹³⁾ Tj=-40 +150°C:	t _{don(ST)}		13		μs	
Status delay after negative input slope ¹³⁾ Tj=-40 +150°C:	$t_{ m doff(ST)}$		1		μs	
Status output (open drain)						
Zener limit voltage $T_j = -40+150^{\circ}C$, $I_{ST} = +1.6$ mA:	$V_{ m ST(high)}$	5.4	6.1	6.9	V	
ST low voltage $T_j = -40+25^{\circ}C$, $I_{ST} = +1.6$ mA: $T_j = +150^{\circ}C$, $I_{ST} = +1.6$ mA:	$V_{\rm ST(low)}$			0.4 0.7		
Status leakage current, $V_{ST} = 5 \text{ V}$, $T_j=25 \dots +150^{\circ}\text{C}$:	I _{ST(high)}			2	μA	

¹³⁾ not subject to production test, specified by design

¹⁴⁾ External pull up resistor required for open load detection in off state.

 $^{^{15)}\,}$ If a ground resistor R_{GND} is used, add the voltage drop across this resistor.

Truth Table

	Input	Output	Status	Current Sense
	level	level	level	IIS
Normal	L	L	Н	0
operation	Н	Н	L	nominal
Current-	L	L	н	0
limitation	Н	Н	н	0
Short circuit to	L	L	н	0
GND	н	L ¹⁶)	н	0
Over-	L	L	Н	0
temperature	н	L	н	0
Short circuit to	L	Н	L ¹⁷⁾	0
V _{bb}	Н	Н	L	<nominal <sup="">18)</nominal>
Open load	L	L ¹⁹)	H (L ²⁰⁾)	0
	н	н	Ĺ	0
Undervoltage	L	L	Н	0
	н	L	L	0
Overvoltage	L	L	Н	0
_	н	L	L	0
Negative output voltage clamp	L	L	H	0

L = "Low" Level H = "High" Level

X = don't care Z = high impedance, potential depends on external circuit Status signal after the time delay shown in the diagrams (see fig 5. page 12...13)

¹⁶⁾ The voltage drop over the power transistor is V_{bb} - V_{OUT} >typ.3V. Under this condition the sense current I_{IS} is zero

¹⁷⁾ An external short of output to V_{bb}, in the off state, causes an internal current from output to ground. If R_{GND} is used, an offset voltage at the GND and ST pins will occur and the $V_{\text{ST low}}$ signal may be errorious.

¹⁸⁾ Low ohmic short to $V_{\rm bb}$ may reduce the output current $I_{\rm L}$ and therefore also the sense current $I_{\rm IS}$.

¹⁹⁾ Power Transistor off, high impedance

²⁰⁾ with external resistor between pin 4 and pin 6&7

Terms

Input circuit (ESD protection)

The use of ESD zener diodes as voltage clamp at DC conditions is not recommended.

Status output

ESD-Zener diode: 6.1 V typ., max 5 mA; R_{ST(ON)} < 440 Ω at 1.6 mA, The use of ESD zener diodes as voltage clamp at DC conditions is not recommended.

Current sense output

ESD-Zener diode: 6.1 V typ., max 14 mA; $R_{\rm IS}$ = 1 k Ω nominal

Inductive and overvoltage output clamp

VON clamped to 47 V typ.

Overvoltage protection of logic part

Reverse battery protection

The load $R_{\rm L}$ is inverse on, temperature protection is not active

 R_{GND} = 150 Ω , R_{I} = 4 k Ω typ, R_{ST} ≥ 500 Ω , R_{IS} ≥ 200 Ω , R_{V} ≥ 500 Ω ,

Open-load detection

OFF-state diagnostic condition: $V_{OUT} > 3 \text{ V typ.}$; IN low

GND disconnect

Any kind of load. In case of Input=high is $V_{OUT} \approx V_{IN}$ - $V_{IN(T+)}$. Due to V_{GND} >0, no V_{ST} = low signal available.

GND disconnect with GND pull up

Any kind of load. If V_{GND} > V_{IN} - $V_{IN(T+)}$ device stays off Due to V_{GND} >0, no V_{ST} = low signal available.

V_{bb} disconnect with energized inductive load

Normal load current can be handled by the PROFET itself.

V_{bb} disconnect with charged external inductive load

If other external inductive loads L are connected to the PROFET, additional elements like D are necessary.

Inductive Load switch-off energy dissipation

Energy stored in load inductance:

$$E_{\rm L} = \frac{1}{2} \cdot {\rm L} \cdot {\rm I}_{\rm L}^2$$

While demagnetizing load inductance, the energy dissipated in PROFET is

 $\label{eq:EAS} E_{AS} = E_{bb} + E_L - E_R = - V_{ON(CL)} {\boldsymbol \cdot} i_L(t) \; dt,$

with an approximate solution for $R_L > 0 \Omega$:

$$E_{\text{AS}} = \frac{I_{\text{L}} \cdot L}{2 \cdot R_{\text{L}}} (V_{\text{bb}} + |V_{\text{OUT}(\text{CL})}|) \cdot \ln (1 + \frac{I_{\text{L}} \cdot R_{\text{L}}}{|V_{\text{OUT}(\text{CL})}|})$$

Timing diagrams

Figure 1a: Switching a resistive load, change of load current in on-condition:

The sense signal is not valid during settling time after turn or change of load current.

Figure 2a: Switching a lamp

Figure 2b: Switching a lamp with current limit:

Figure 2c: Switching an inductive load:

Figure 4a: Overtemperature: Reset if $T_i < T_{jt}$

Figure 3a: Short circuit: shut down by overtempertature, reset by cooling

Heating up may require several milliseconds, depending on external conditions

 $I_{L(SCp)}$ = 50 A typ. increases with decreasing temperature.

Figure 5a: Open load: detection in ON-state, open load occurs in on-state

Figure 5b: Open load: detection in ON- and OFF-state (with R_{EXT}), turn on/off to open load

Figure 6b: Undervoltage restart of charge pump

ection in ON- and OFF-state op

charge pump starts at $V_{bb(ucp)} = 4.7 \text{ V typ.}$

Figure 7a: Overvoltage:

A ST Volver) Volver

Figure 6a: Undervoltage:

Figure 8a: Current sense versus load current:

Figure 9a: Output voltage drop versus load current:

²¹ This range for the current sense ratio refers to all devices. The accuracy of the k_{ILIS} can be raised a least by a factor of two by matching the value of k_{ILIS} for every single device.

Package Outlines

Figure 1 PG-TO-263-7-2 (Plastic Dual Small Outline Package) (RoHS-compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Please specify the package needed (e.g. green package) when placing an order

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

Revision History

Version	Date	Changes
V1.1	2008-19-08	Creation of the green datasheet. First page : Adding the green logo and the AEC qualified Adding the bullet AEC qualified and the RoHS compliant features Package page Modification of the package to be green.

Edition 2008-19-08

Published by Infineon Technologies AG 81726 Munich, Germany © Infineon Technologies AG 8/19/08. All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.