

Smart Highside Power Switch

Features

- Overload protection
- Current limitation
- Short circuit protection
- Thermal shutdown
- Overvoltage protection (including load dump)
- Fast demagnetization of inductive loads
- Reverse battery protection¹)
- Undervoltage and overvoltage shutdown with auto-restart and hysteresis
- Open drain diagnostic output
- Open load detection in ON-state
- CMOS compatible input
- Loss of ground and loss of Vbb protection
- Electrostatic discharge (ESD) protection

Product Summary

Overvoltage protection	V _{bb(AZ)}	65	V
Operating voltage	Vbb(on)	4.7 42	V
On-state resistance	Ron	220 r	nΩ
Load current (ISO)	<i>I</i> L(ISO)	1.8	А
Current limitation	<i>I</i> L(SCr)	2.7	А

- Application
 μC compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads
- Most suitable for inductive loads
- Replaces electromechanical relays, fuses and discrete circuits

General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS[®] technology. Providing embedded protective functions.

¹) With external current limit (e.g. resistor R_{GND} =150 Ω) in GND connection, resistors in series with IN and ST connections, reverse load current limited by connected load.

Pin	Symbol		Function
1	GND	-	Logic ground
2	IN	Ι	Input, activates the power switch in case of logical high signal
3	Vbb	+	Positive power supply voltage, the tab is shorted to this pin
4	ST	S	Diagnostic feedback, low on failure
5	OUT (Load, L)	0	Output to the load

Maximum Ratings at $T_j = 25$ °C unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 3)	V _{bb}	65	V
Load dump protection ²) $V_{\text{LoadDump}} = U_A + V_s$, $U_A = 13.5 \text{ V}$ $R_l^{3} = 2 \Omega$, $R_L = 6.6 \Omega$, $t_d = 400 \text{ ms}$, IN= low or high	V _{Load dump⁴)}	100	V
Load current (Short circuit current, see page 4)	<i>I</i>	self-limited	A
Operating temperature range	Tj	-40+150	°C
Storage temperature range	T_{stg}	-55+150	
Power dissipation (DC), $T_C \le 25 \text{ °C}$	P _{tot}	50	W
Inductive load switch-off energy dissipation, single pulse $V_{bb} = 12V$, $T_{j,start} = 150^{\circ}$ C, $T_{C} = 150^{\circ}$ C const. $I_{L} = 1.8$ A, $Z_{L} = 2.3$ H, 0 Ω :	E _{AS}	4.5	J
Electrostatic discharge capability (ESD)IN:(Human Body Model)all other pins:acc. MIL-STD883D, method 3015.7 and ESD assn. std. S5.1-1993	V _{ESD}	1 2	kV
Input voltage (DC)	V _{IN}	-0.5 +6	V
Current through input pin (DC)	/ _{IN}	±5.0	mA
Current through status pin (DC)	I _{ST}	±5.0	
see internal circuit diagrams page 6			

Thermal Characteristics

Parameter and Condition	Symbol	Values			Unit	
			min	typ	max	
Thermal resistance	chip - case:	<i>R</i> _{thJC}			2.5	K/W
ju	Inction - ambient (free air):	<i>R</i> thJA			75	
SMD			35			

²⁾ Supply voltages higher than $V_{bb(AZ)}$ require an external current limit for the GND and status pins, e.g. with a 150 Ω resistor in the GND connection and a 15 k Ω resistor in series with the status pin. A resistor for the protection of the input is integrated.

³⁾ $R_{\rm I}$ = internal resistance of the load dump test pulse generator

⁴) V_{Load dump} is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839

⁵) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70μm thick) copper area for V_{bb} connection. PCB is vertical without blown air.

Electrical Characteristics

Parameter and Conditions		Symbol	Values			Unit
at $T_j = 25 \text{ °C}$, $V_{bb} = 12 \text{ V}$ unless o	therwise specified		min	typ	max	
Load Switching Capabilitie	es and Characteristics					
On-state resistance (pin 3 to	o 5)					
<i>I</i> ∟ = 1.6 A	<i>T</i> j=25 °C:	R _{ON}		190	220	mΩ
	<i>T</i> j=150 °C:			390	440	
Nominal load current, ISO N $V_{\rm ON} = 0.5$ V, $T_{\rm C} = 85$ °C	orm (pin 3 to 5)	I _{L(ISO)}	1.6	1.8		А
Output current (pin 5) while GND pulled up, V_{bb} =30 V, page 7, T_{j} =-40+150°C		I _{L(GNDhigh)}			1	mA
Turn-on time	<i>t</i> on	12		125	μs	
Turn-off time	IN 7 to 10% V _{OUT} :	<i>t</i> off	5		85	
$R_{\rm L} = 12 \ \Omega, \ T_{\rm j} = -40+150^{\circ} C_{\rm c}$)					
Slew rate on	dV/dt _{on}			3	V/µs	
10 to 30% $V_{\rm OUT}$, $R_{\rm L}$ = 12 Ω ,	<i>T</i> _j =-40+150°C					
Slew rate off 70 to 40% V_{OUT} , $R_{L} = 12 \Omega_{c}$. <i>T</i> j =-40+150°C	-dV/dt _{off}			6	V/µs
Operating Parameters						
Operating voltage ⁶⁾	<i>T</i> _j =-40+150°C:	V _{bb(on)}	4.7		42	V
Undervoltage shutdown	<i>T</i> j =25°C:	V _{bb(under)}	2.9		4.5	V
	<i>T</i> j =-40+150°C:		2.7		4.7	
Undervoltage restart	<i>T</i> _j =-40+150°C:	V _{bb(u rst)}			4.9	V
Undervoltage restart of char see diagram page 13	ge pump	V _{bb(ucp)}		5.6	6.0	V
Undervoltage hysteresis $\Delta V_{bb(under)} = V_{bb(u rst)} - V_{bb(under)}$	r)	$\Delta V_{\text{bb(under)}}$		0.1		V
Overvoltage shutdown	<i>T</i> _j =-40+150°C:	V _{bb(over)}	42		52	V
Overvoltage restart	$T_{j} = -40 + 150^{\circ}C$:	V _{bb(o rst)}	40			V
Overvoltage hysteresis	$T_{j} = -40 + 150^{\circ}C$:	$\Delta V_{\text{bb(over)}}$		0.1		V
Overvoltage protection ⁷)	$T_{j} = -40 + 150^{\circ}C$:	V _{bb(AZ)}	65	70		V
I _{bb} =4 mA						
Standby current (pin 3)	<i>T</i> _j =-40+25°C:	I _{bb(off)}		10	15	μA
V _{IN} =0	<i>T</i> _j = 150°C:			18	25	
Leakage output current (incl	uded in <i>I</i> _{bb(off)})	I _{L(off)}			20	μA

 $T_i = -40... + 150^{\circ}C$

Operating current (Pin 1)⁸, V_{IN}=5 V,

 $V_{IN=0}$

*I*GND

--

1

2.1

mΑ

⁶⁾

At supply voltage increase up to V_{bb} = 5.6 V typ without charge pump, $V_{OUT} \approx V_{bb}$ - 2 V Meassured without load. See also $V_{ON(CL)}$ in table of protection functions and circuit diagram page 7. 7)

⁸⁾ Add I_{ST} , if $I_{ST} > 0$, add I_{IN} , if $V_{IN} > 5.5$ V

BTS 410 F2

Parameter and Conditions	Symbol		Unit		
at $T_j = 25 \text{ °C}$, $V_{bb} = 12 \text{ V}$ unless otherwise specified		min	typ	max	
Protection Functions ⁹⁾	-				
Initial peak short circuit current limit (pin 3 to 5) ¹⁰ , (max 450 μ s if $V_{ON} > V_{ON(SC)}$)	I _{L(SCp)}				
<i>T</i> _j =-40°C: <i>T</i> _j =25°C: <i>T</i> _j =+150°C:		4.0 3.5 2.0	 5.5 3.5	11 10 7.5	A
Overload shutdown current limit	I _{L(SCr)}				
V_{ON} = 8 V, $T_j = T_{jt}$ (see timing diagrams, page 11)			2.7		А
Short circuit shutdown delay after input pos. slope $V_{ON} > V_{ON(SC)}$, $T_j = -40+150^{\circ}C$:min value valid only, if input "low" time exceeds 60 µs	t _{d(SC)}			450	μs
Output clamp (inductive load switch off) at $V_{OUT} = V_{bb} - V_{ON(CL)}$ $I_L = 40$ mA, $T_j = -40+150^{\circ}$ C:	V _{ON(CL)}	61	68	73	V
<i>I</i> _L = 1 A, <i>T</i> _j =-40+150°C:				75	
Short circuit shutdown detection voltage(pin 3 to 5)	V _{ON(SC)}		8.5		V
Thermal overload trip temperature	T _{jt}	150			°C
Thermal hysteresis	ΔT_{jt}		10		K
Reverse battery (pin 3 to 1) ¹¹)	- V _{bb}			32	V
Diagnostic Characteristics					
Open load detection current (on-condition) T_{j} =-40150°C:	I _{L (OL)}	2		150	mA

⁹) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

¹⁰) Short circuit current limit for max. duration of $t_{d(SC) max}$ =450 µs, prior to shutdown

¹¹) Requires 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 2 and circuit page 7).

fechnologies	BTS				10 F2
Parameter and Conditions	Symbol		Values		
at $T_j = 25 \text{ °C}$, $V_{bb} = 12 \text{ V}$ unless otherwise specified		min	typ	max	

Input and Status Feedback¹²)

Input turn-on threshold voltage $T_j = -40+150$	$V_{\rm IN(T+)}$	1.5		2.4	V
Input turn-off threshold voltage $T_j = -40+150^\circ$	V _{IN(T-)}	1.0			V
Input threshold hysteresis	$\Delta V_{\rm IN(T)}$		0.5		V
Off state input current (pin 2), $V_{IN} = 0.4 V$	I _{IN(off)}	1		30	μA
On state input current (pin 2), $V_{IN} = 5 V$	I _{IN(on)}	10	25	70	μA
Status invalid after positive input slope	<i>t</i> _{d(ST SC)}			450	μs
(short circuit) T_{j} =-40 +150°C:					
Status invalid after positive input slope	<i>t</i> _{d(ST)}	300		1400	μs
(open load)					
Status output (open drain)					
Zener limit voltage $T_j = -40+150^{\circ}C$, $I_{ST} = +50$ uA:	$V_{\rm ST(high)}$	5.0	6		V
ST low voltage $T_j = -40+150^{\circ}C$, $I_{ST} = +1.6$ mA:	$V_{\rm ST(low)}$			0.4	

¹²⁾ If a ground resistor R_{GND} is used, add the voltage drop across this resistor.

Truth Table

	Input-	Output		Status			
	level	level	412 B2	410 D2	410 E2 /F2	410 G2	410 H2
Normal	1		H	H	н	H	H
operation	н	н	H	Н	н	н	H
Open load	L	13)	L	Н	Н	H	L
•	н	н	Н	L	L	L	Н
Short circuit	L	L	Н	Н	Н	Н	Н
to GND	Н	L	L	L	L	Н	L
Short circuit	L	Н	L	Н	Н	Н	L
to V _{bb}	Н	н	Н	H (L ¹⁴⁾)	H (L ¹⁴⁾)	H (L ¹⁴⁾)	Н
Overtem-	L	L	L	L	L	L	L
perature	н	L	L	L	L	L	L
Under-	L	L	L ¹⁵⁾	L ¹⁵)	Н	Н	Н
voltage	Н	L	L ¹⁵⁾	L ¹⁵⁾	Н	Н	Н
Overvoltage	L	L	L	L	Н	Н	Н
	Н	L	L	L	Н	Н	Н

L = "Low" Level H = "High" Level

Z = high impedance, potential depends on external circuit X = don't care Status signal after the time delay shown in the diagrams (see fig 5. page 12...13)

Terms

Input circuit (ESD protection)

ZD_{I1} 6 V typ., ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

¹³⁾ Power Transistor off, high impedance, versions BTS 410H, BTS 412B: internal pull up current source for open load detection.

¹⁴⁾ Low resistance short V_{bb} to output may be detected in ON-state by the no-load-detection ¹⁵⁾ No current sink capability during undervoltage shutdown 14)

BTS 410 F2

Status output

ESD-Zener diode: 6 V typ., max 5 mA; $R_{ST(ON)} < 250 \ \Omega$ at 1.6 mA, ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

Short circuit detection

Fault Condition: $V_{ON} > 8.5$ V typ.; IN high

Inductive and overvoltage output clamp

V_{ON} clamped to 68 V typ.

 V_{Z1} = 6.2 V typ., V_{Z2} = 70 V typ., R_{GND} = 150 Ω , R_{IN}, R_{ST} = 15 k Ω

Open-load detection

ON-state diagnostic condition: $V_{ON} < R_{ON} * I_{L(OL)}$; IN high

GND disconnect

Any kind of load. In case of Input=high is $V_{OUT} \approx V_{IN} - V_{IN(T+)}$. Due to V_{GND} >0, no V_{ST} = low signal available.

GND disconnect with GND pull up

Any kind of load. If V_{GND} - V_{IN} - $V_{IN(T+)}$ device stays off Due to V_{GND} >0, no V_{ST} = low signal available.

$V_{bb}\xspace$ disconnect with energized inductive load

Normal load current can be handled by the PROFET itself.

V_{bb} disconnect with charged external inductive load

If other external inductive loads L are connected to the PROFET, additional elements like D are necessary.

Inductive Load switch-off energy dissipation

Energy stored in load inductance:

$$E_{\rm L} = \frac{1}{2} \cdot L \cdot I_{\rm L}^2$$

While demagnetizing load inductance, the energy dissipated in PROFET is

$$E_{AS} = E_{bb} + E_L - E_R = V_{ON(CL)} \cdot i_L(t) dt,$$

with an approximate solution for $R_L > 0 \Omega$:

$$E_{\text{AS}} = \frac{I_{\text{L}} \cdot L}{2 \cdot R_{\text{L}}} \cdot (V_{\text{bb}} + |V_{\text{OUT}(\text{CL})}|) \cdot \ln (1 + \frac{I_{\text{L}} \cdot R_{\text{L}}}{|V_{\text{OUT}(\text{CL})}|})$$

Maximum allowable load inductance for a single switch off

 $L = f(I_L); T_{j,start} = 150^{\circ}C, T_C = 150^{\circ}C \text{ const.},$ $V_{bb} = 12 \text{ V}, R_L = 0 \Omega$

L [mH]

Typ. transient thermal impedance chip case

Options Overview

all versions: High-side switch, Input protection, ESD protection, load dump and reverse battery protection with 150 Ω in GND connection, protection against loss of ground

ground	•		-					-
Туре втз	412 B2	410D2	410E2	410F2	410G2	410H2	307	308
Logic version	В	D	Е	F	G	Н		
Overtemperature protection with hysteresis								
$T_{j} > 150 \text{ °C}$, latch function ¹⁶) ¹⁷)		Х		Х		Х		Х
T_{j} >150 °C, with auto-restart on cooling			Х		Х		Х	
Short circuit to GND protection								
switches off when V_{ON} >3.5 V typ. and V_{bb} > 7 V typ ¹⁶⁾ (when first turned on after approx. 150 µs)						Х		Х
switches off when V_{ON} >8.5 V typ. ¹⁶⁾ (when first turned on after approx. 150 µs)	Х	Х	Х	X				
Achieved through overtemperature protection					Х		Х	
Open load detection								
in OFF-state with sensing current 30 μA typ. in ON-state with sensing voltage drop across power transistor	Х	х	х	x	х	Х	Х	Х
Undervoltage shutdown with auto restart	Х	Х	Х	Х	Х	Х	Х	Х
Overvoltage shutdown with auto restart ¹⁸)	Х	Х	Х	Х	Х	Х	-	Х
Status feedback for								
overtemperature	Х	Х	Х	Х	Х	Х	Х	Х
short circuit to GND	х	Х	Х	Х	-	Х	Х	Х
short to V _{bb}	Х	_19)	_ ¹⁹)	_19)	_19)	Х	Х	Х
open load	Х	Х	Х	Х	Х	Х	Х	Х
undervoltage	Х	Х	-	-	-	-	Х	-
overvoltage	Х	Х	-	-	-	-	-	-
Status output type								
CMOS	Х	Х						
Open drain			Х	Х	Х	Х	Х	Х
Output negative voltage transient limit (fast inductive load switch off)								
to V _{bb} - V _{ON(CL)}	Х	Х	Х	Х	Х	Х	Х	Х
Load current limit								
high level (can handle loads with high inrush currents)	Х	Х	Х					
low level (better protection of application)				Х	Х	Х	Х	Х
Protection against loss of GND	Х	Х	Х	Х	Х	Х	Х	Х

¹⁶) Latch except when $V_{bb} - V_{OUT} < V_{ON(SC)}$ after shutdown. In most cases $V_{OUT} = 0$ V after shutdown ($V_{OUT} \neq 0$ V only if forced externally). So the device remains latched unless $V_{bb} < V_{ON(SC)}$ (see page 4). No latch between turn on and $t_{d(SC)}$.

¹⁷) With latch function. Reseted by a) Input low, b) Undervoltage

¹⁸) No auto restart after overvoltage in case of short circuit

¹⁹⁾ Low resistance short V_{bb} to output may be detected in ON-state by the no-load-detection

Timing diagrams

Figure 1a: Vbb turn on:

in case of too early $\textit{V}_{\text{IN}}\text{=}\text{high}$ the device may not turn on (curve A) $\textit{t}_{d(\text{bb IN})}$ approx. 150 μs

*) if the time constant of load is too large, open-load-status may occur

Figure 3a: Turn on into short circuit,

 $t_{d(SC)}$ approx. -- μ s if V_{bb} - V_{OUT} > 8.5 V typ.

Figure 3b: Turn on into overload,

Heating up may require several seconds, $V_{\rm bb}$ - $V_{\rm OUT}$ < 8.5 V typ.

Figure 3c: Short circuit while on:

BTS 410 F2

**) current peak approx. 20 µs

Figure 4a: Overtemperature,

Reset if (IN=low) and $(T_i < T_{it})$

*) ST goes high , when V_{IN} =low and $T_j < T_{jt}$

Figure 5a: Open load: detection in ON-state, turn on/off to open load

Figure 5b: Open load: detection in ON-state, open load occurs in on-state

 $t_{d(\text{ST OL1})} = tbd \; \mu s \; typ., \; t_{d(\text{ST OL2})} = tbd \; \mu s \; typ$

12

Figure 6a: Undervoltage:

N Vbb Vour Vour ST

Figure 7a: Overvoltage:

Figure 6b: Undervoltage restart of charge pump

charge pump starts at $V_{bb(ucp)}$ =5.6 V typ.

Figure 9a: Overvoltage at short circuit shutdown:

Overvoltage due to power line inductance. No overvoltage autorestart of PROFET after short circuit shutdown. Package and Ordering Code All dimensions in mm

Infineon

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 München © Infineon Technologies AG 2001 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in lifesupport devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.