

1-Series, 2-Series, 3-Series, and 4-Series Li-Ion Battery Pack Manager

Check for Samples: bq40z50

FEATURES

- Fully Integrated 1-Series, 2-Series, 3-Series, and 4-Series Li-Ion or Li-Polymer Cell Battery **Pack Manager and Protection**
- Next-Generation Patented Impedance Track[™] Technology Accurately Measures Available Charge in Li-Ion and Li-Polymer Batteries
- **High Side N-CH Protection FET Drive**
- Integrated Cell Balancing While Charging or At • Rest
- **Full Array of Programmable Protection Features**
 - Voltage
 - Current
 - Temperature
 - Charge Timeout
 - CHG/DSG FETs
 - AFE
- **Sophisticated Charge Algorithms**
 - JEITA
 - Enhanced Charging
 - Adaptive Charging
 - Cell Balancing
- **Diagnostic Lifetime Data Monitor**
- LED Display
- Supports Two-Wire SMBus v1.1 Interface
- **SHA-1** Authentication
- Compact Package: 32-Lead QFN

APPLICATIONS

- Notebook/Netbook PCs
- **Medical and Test Equipment**
- **Portable Instrumentation**

DESCRIPTION

The ba40z50 device. incorporating patented Impedance Track[™] technology, is a fully integrated, single-chip, pack-based solution that provides a rich array of features for gas gauging, protection, and authentication for 1-series, 2-series, 3-series, and 4series cell Li-Ion and Li-Polymer battery packs.

its integrated high-performance analog Using peripherals, the bq40z50 device measures and maintains an accurate record of available capacity, voltage, current, temperature, and other critical parameters in Li-Ion or Li-Polymer batteries, and reports this information to the system host controller over an SMBus v1.1 compatible interface.

The bg40z50 provides software-based 1st- and 2ndlevel safety protection against overvoltage. undervoltage, overcurrent. short-circuit current. overload, and overtemperature conditions, as well as other pack- and cell-related faults.

SHA-1 authentication, with secure memory for authentication keys, enables identification of genuine battery packs.

The compact 32-lead QFN package minimizes solution cost and size for smart batteries while providing maximum functionality and safety for battery gauging applications.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Impedance Track is a trademark of Texas Instruments.

bq40z50

www.ti.com

SLUSBS8-DECEMBER 2013

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

	DADT		PACKAGE	KAGE PACKAGE ORDERING INFORMATION		FORMATION ⁽¹⁾
T _A	PART NUMBER	PACKAGE	DESIGNATOR	MARKING	TUBE ⁽²⁾	TAPE AND REEL ⁽³⁾
-40°C to 85°C	bq40z50	RSM-32	RSM	bq40z50	bq40z50RSMT	bq40z50RSMR

(1) For the most current package and ordering information, see the Package Option Addendum at the end of the document, or see the TI website at www.ti.com.

A single tube quantity is 50 units.

A single reel quantity is 2000 units. (3)

THERMAL INFORMATION

		bq40z50	
	THERMAL METRIC ⁽¹⁾	RSM (QFN)	UNITS
		32 Pins	
θ _{JA, High K}	Junction-to-ambient thermal resistance ⁽²⁾	47.4	
$\theta_{JC(top)}$	Junction-to-case(top) thermal resistance ⁽³⁾	40.3	
θ_{JB}	Junction-to-board thermal resistance ⁽⁴⁾	14.7	°C/W
Ψυτ	Junction-to-top characterization parameter ⁽⁵⁾	0.8	C/VV
Ψјв	Junction-to-board characterization parameter ⁽⁶⁾	14.4	
$\theta_{JC(bottom)}$	Junction-to-case(bottom) thermal resistance ⁽⁷⁾	3.8	

For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. (1)

(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-(3) standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted (5) from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted (6)from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7). The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific

(7) JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

bq40z50

www.ti.com

SLUSBS8-DECEMBER 2013

TYPICAL IMPLEMENTATION

Figure 1. bq40z50 Implementation

Pinout Diagram

Figure 2. bq40z50 Pinout Diagram

PIN FUNCTIONS

PIN NAME	PIN NUMBER	TYPE ⁽¹⁾	DESCRIPTION
PBI	1	Р	Power supply backup input pin
VC4	2	IA	Sense voltage input terminal for most positive cell, and balance current input for most positive cell

(1) P = Power Connection, O = Digital Output, AI = Analog Input, I = Digital Input, I/OD = Digital Input/Output

SLUSBS8-DECEMBER 2013

PIN FUNCTIONS (continued)

VC3 VC2 VC1	3	IA	Sense voltage input terminal for second most positive cell, balance current input for second most positive cell, and return balance current for most positive cell
	4		second most positive cell, and return balance current for most positive cell
		IA	Sense voltage input terminal for third most positive cell, balance current input for third most positive cell, and return balance current for second most positive cell
VCI	5	IA	Sense voltage input terminal for least positive cell, balance current input for least positive cell, and return balance current for third most positive cell
SRN	6	Ι	Analog input pin connected to the internal coulomb counter peripheral for integrating a small voltage between SRP and SRN where SRP is the top of the sense resistor.
NC	7	_	Not internally connected. Connect to VSS.
SRP	8	Ι	Analog input pin connected to the internal coulomb counter peripheral for integrating a small voltage between SRP and SRN where SRP is the top of the sense resistor.
VSS	9	Р	Device ground
TS1	10	IA	Temperature sensor 1 thermistor input pin
TS2	11	IA	Temperature sensor 2 thermistor input pin
TS3	12	IA	Temperature sensor 3 thermistor input pin
TS4	13	IA	Temperature sensor 4 thermistor input pin
NC	14	_	Not internally connected.
BTP_INT	15	0	Battery Trip Point (BTP) interrupt output
PRES or SHUTDN	16	Ι	Host system present input for removable battery pack or emergency system shutdown input for embedded pack
DISP	17	_	Display control for LEDs
SMBD	18	I/OD	SMBus data pin
SMBC	19	I/OD	SMBus clock pin
LEDCNTLA	20	_	LED display segment that drives the external LEDs depending on the firmware configuration
LEDCNTLB	21	_	LED display segment that drives the external LEDs depending on the firmware configuration
LEDCNTLC	22	_	LED display segment that drives the external LEDs depending on the firmware configuration
PTC	23	IA	Safety PTC thermistor input pin. To disable, connect both PTC and PTCEN to VSS.
PTCEN	24	IA	Safety PTC thermistor enable input pin. Connect to BAT. To disable, connect both PTC and PTCEN to VSS.
FUSE	25	0	Fuse drive output pin
VCC	26	Р	Secondary power supply input.
PACK	27	IA	Pack sense input pin
DSG	28	0	NMOS Discharge FET drive output pin
NC	29	_	Not internally connected.
PCHG	30	0	PMOS Precharge FET drive output pin
CHG	31	0	NMOS Charge FET drive output pin
BAT	32	Р	Primary power supply input pin

SLUSBS8-DECEMBER 2013

www.ti.com

PIN EQUIVALENT DIAGRAMS

Figure 3. Pin Equivalent Diagram 1

bq40z50

SLUSBS8-DECEMBER 2013

TEXAS INSTRUMENTS

www.ti.com

Figure 4. Pin Equivalent Diagram 2

SLUSBS8-DECEMBER 2013

Figure 5. Pin Equivalent Diagram 3

ABSOLUTE MAXIMUM RATINGS

Over ope	erating free-	air temperatur	e range (unl	less otherwise	noted) ⁽¹⁾
0.0.000			S		

DESCRIPTION	PINS	VALUE		
Supply voltage range, V_{CC}	BAT, VCC, PBI	–0.3 to 30 V		
	PACK, SMBC, SMBD, PRES or SHUTDN, BTP_INT, DISP	–0.3 to 30 V		
Input voltage range, V _{IN}	TS1, TS2, TS3, TS4	–0.3 to V _{REG} + 0.3 V		
	PTC, PTCEN, LEDCNTLA, LEDCNTLB, LEDCNTLC	–0.3 to V _{BAT} + 0.3 V		
	SRP, SRN	–0.3 to 0.3 V		
	VC4	VC3 - 0.3 to VC3 + 8.5 V, or VSS + 30 V		
	VC3	VC2 - 0.3 to VC2 + 8.5 V, or VSS + 30 V		
	VC2	VC1 - 0.3 to VC1 + 8.5 V, or VSS + 30 V		
	VC1	VSS - 0.3 to VSS + 8.5 V, or VSS + 30 V		
	CHG, DSG	–0.3 to 32 V		
Output voltage range, V _O	PCHG, FUSE	–0.3 to 30 V		
Maximum VSS current, I _{SS}		50 mA		
	НВМ	2 kV		
ESD Rating	CDM	500 V		
	MM	200 V		
Functional Temperature, T _{FUNC}		–40 to 110°C		
Storage temperature range, TSTC	3	–65 to 150°C		
Lead temperature (soldering, 10	s), T _{SOLDER}	300°C		

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

			MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage	BAT, VCC, PBI	2.2		26	V
V _{SHUTDOWN-}	Shutdown voltage	V _{PACK} < V _{SHUTDOWN-}	1.8	2.0	2.2	V

TEXAS INSTRUMENTS

www.ti.com

SLUSBS8-DECEMBER 2013

RECOMMENDED OPERATING CONDITIONS (continued)

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 2.2 V to 26 V (unless otherwise noted)

			MIN	TYP	MAX	UNIT
V _{SHUTDOWN+}	Start-up voltage	V _{PACK} > V _{SHUTDOWN-} + V _{HYS}	2.05	2.25	2.45	V
V _{HYS}	Shutdown voltage hysteresis	V _{SHUTDOWN+} – V _{SHUTDOWN-}		250		mV
		PACK, SMBC, SMBD , PRES, BTP_IN, DISP			26	
		TS1, TS2, TS3, TS4			V _{REG}	
		PTC, PTCEN, LEDCNTLA, LEDCNTLB, LEDCNTLC			V _{BAT}	
N/	Input voltage range	SRP, SRN	-0.2		0.2	V
V _{IN}		VC4	V _{VC3}		V _{VC3} + 5	v
		VC3	V _{VC2}		V _{VC2} + 5	
		VC2	V _{VC1}		V _{VC1} + 5	
		VC1	V _{VSS}		V_{VSS} + 5	
Vo	Output voltage range	CHG, DSG, PCHG, FUSE			26	V
C _{PBI}	External PBI capacitor		2.2			μF
T _{OPR}	Operating temperature		-40		85	°C

SUPPLY CURRENT

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 20 V (unless otherwise noted)

P	ARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
INORMAL	NORMAL mode	CHG on. DSG on, no Flash write	336			μA
	I _{SLEEP} SLEEP mode	CHG off, DSG on, no SBS communication	75		۵	
ISLEEP		CHG off, DSG off, no SBS communication		52		μA
I _{SHUTDOWN}	SHUTDOWN mode			1.6		μA

POWER SUPPLY CONTROL

PAR	AMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
V _{SWITCHOVER-}	BAT to V _{CC} switchover voltage	V _{BAT} < V _{SWITCHOVER-}	1.95	2.1	2.2	V
V _{SWITCHOVER+}	V _{CC} to BAT switchover voltage	V _{BAT} > V _{SWITCHOVER-} + V _{HYS}	2.9	3.1	3.25	V
V _{HYS}	Switchover voltage hysteresis	V _{SWITCHOVER+} - V _{SWITCHOVER-}		1000		mV
		BAT pin, BAT = 0 V, VCC = 25 V, PACK = 25 V			1	
luvo	Input Leakage	PACK pin, BAT = 25 V, VCC = 0 V, PACK = 0 V			1	μA
I _{LKG}	current	BAT and PACK pins, BAT = 0 V, VCC = 0 V, PACK = 0 V, PBI = 25 V			1	μπ
R _{PD}	Internal pulldown resistance	PACK	30	40	50	kΩ

AFE POWER-ON RESET

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
V _{REGIT-}	Negative-going voltage input	V _{REG}	1.51	1.55	1.59	V
V _{HYS}	Power-on reset hysteresis	V _{REGIT+} – V _{REGIT-}	70	100	130	mV
t _{RST}	Power-on reset time		200	300	400	μs

AFE WATCHDOG RESET AND WAKE TIMER

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
t _{WDT}		t _{WDT} = 500	372	500	628	
	AFE watchdog	t _{WDT} = 1000	744	1000	1256	
	timeout	t _{WDT} = 2000	1488	2000	2512	ms
		t _{WDT} = 4000	2976	4000	5024	
		t _{WAKE} = 250	186	250	314	
	AFE wake timer	t _{WAKE} = 500	372	500	628	
t _{WAKE}	AFE wake umer	t _{WAKE} = 1000	744	1000	1256	ms
		t _{WAKE} = 512	1488	2000	2512	
t _{FETOFF}	FET off delay after reset	t _{FETOFF} = 512	409	512	614	ms

CURRENT WAKE COMPARATOR

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PA	RAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
		$V_{WAKE} = \pm 0.625 \text{ mV}$	±0.3	±0.625	±0.9	
V	Wake voltage	$V_{WAKE} = \pm 1.25 \text{ mV}$	±0.6	±1.25	±1.8	mV
V _{WAKE}	threshold	$V_{WAKE} = \pm 2.5 \text{ mV}$	±1.2	±2.5	±3.6	IIIV
		$V_{WAKE} = \pm 5 \text{ mV}$	±2.4	±5.0	±7.2	
V _{WAKE(DRIFT)}	Temperature drift of V _{WAKE} accuracy			0.5		%/°C
t _{WAKE}	Time from application of current to wake interrupt				700	μs
t _{WAKE(SU)}	Wake comparator startup time			500	1000	μs

VC1, VC2, VC3, VC4, BAT, PACK

	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
K Scaling factor		VC1-VSS, VC2-VC1, VC3-VC2, VC4-VC3	0.1980	0.2000	0.2020	
	Scaling factor	BAT-VSS, PACK-VSS	0.049	0.050	0.051	—
		V _{REF2}	0.490	0.500	0.510	

SLUSBS8-DECEMBER 2013

www.ti.com

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
<i>\</i> /		VC1–VSS, VC2–VC1, VC3–VC2, VC4–VC3	-0.2		5	
V _{IN} Input	Input voltage range	BAT-VSS, PACK-VSS	-0.2		20	v
I _{LKG}	Input leakage current	VC1, VC2, VC3, VC4, cell balancing off, cell detach detection off, ADC multiplexer off			1	μA
R_{CB}	Internal cell balance resistance	$R_{\text{DS}(\text{ON})}$ for internal FET switch at 2 V < V_{\text{DS}} < 4 V			200	Ω
I _{CD}	Internal cell detach check current	VCx > VSS + 0.8 V	30	50	70	μA

SMBD, SMBC

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
VIH	Input voltage high	SMBC, SMBD, V_{REG} = 1.8 V	1.3			V
VIL	Input voltage low	SMBC, SMBD, V_{REG} = 1.8 V			0.8	V
V _{OL}	Output low voltage	SMBC, SMBD, V_{REG} = 1.8 V, I_{OL} = 1.5 mA			0.4	V
C _{IN}	Input capacitance			5		pF
I _{LKG}	Input leakage current				1	μA
R _{PD}	Pulldown resistance		0.7	1.0	1.3	MΩ

PRES, BTP_INT, DISP

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
VIH	High-level input		1.3	-i	-i	V
V _{IL}	Low-level input				0.55	V
V _{OH} O	Output uplicans high	$V_{BAT} > 5.5 \text{ V}, I_{OH} = -0 \ \mu\text{A}$	3.5			
	Output voltage high	V _{BAT} > 5.5 V, I _{OH} = -10 μA	1.8			v
V _{OL}	Output voltage low	I _{OL} = 1.5 mA			0.4	V
CIN	Input capacitance			5		pF
I _{LKG}	Input leakage current				1	μA
R _O	Output reverse resistance	Between PRES or BTP_INT or DISP and PBI	8			kΩ

LEDCNTLA, LEDCNTLB, LEDCNTLC

	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
VIH	High-level input		1.45			V
V _{IL}	Low-level input				0.55	V
V _{OH}	Output voltage high	V _{BAT} > 3.0 V, I _{OH} = -22.5 mA	V _{BAT} – 1.6			V
V _{OL}	Output voltage low	I _{OL} = 1.5 mA			0.4	V
I _{SC}	High level output current protection		-30	-45	-60	mA
I _{OL}	Low level output current	V _{BAT} > 3.0 V, V _{OH} = 0.4 V	15.75	22.5	29.25	mA

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
ILEDCNTLX	Current matching between LEDCNTLx	$V_{BAT} = V_{LEDCNTLx} + 2.5 V$		+/-1		%
C _{IN}	Input capacitance			20		pF
I _{LKG}	Input leakage current				1	μA
f _{LEDCNTLx}	Frequency of LED pattern			124		Hz

COULOMB COUNTER

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
Input voltage range		-0.1		0.1	V
Full scale range		-V _{REF1} /10		V _{REF1} /10	V
Integral nonlinearity ⁽¹⁾	16-bit, best fit over input voltage range		±5.2	±22.3	LSB
Offset error	16-bit, Post-calibration		±5	±10	μV
Offset error drift	15-bit + sign, Post-calibration		0.2	0.3	µV/°C
Gain error	15-bit + sign, over input voltage range		±0.2	±0.8	%FSR
Gain error drift	15-bit + sign, over input voltage range			150	PPM /°C
Effective input resistance		2.5			MΩ

(1) 1 LSB = $V_{REF1}/(10 \times 2^N) = 1.215/(10 \times 2^{15}) = 3.71 \ \mu V$

CC DIGITAL FILTER

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
Conversion time	Single conversion		250		ms
Effective resolution	Single conversion	15			Bits

ADC

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
	Internal reference (V _{REF1})	-0.2		1	V
Input voltage range	External reference (V _{REG})	-0.2		0.8 x V _{REG}	V
Full scale range	$V_{FS} = V_{REF1}$ or V_{REG}	-V _{FS}		V _{FS}	V
Integral nonlinearity ⁽¹⁾	16-bit, best fit, –0.1 V to 0.8 x V_{REF1}			±6.6	LSB
	16-bit, best fit, -0.2 V to -0.1 V			±13.1	
Offset error ⁽²⁾	16-bit, Post-calibration, $V_{FS} = V_{REF1}$		±67	±157	μV
Offset error drift	16-bit, Post-calibration, $V_{FS} = V_{REF1}$		0.6	3	μV/°C
Gain error	16-bit, -0.1 V to 0.8 x V _{FS}		±0.2	±0.8	%FSR
Gain error drift	16-bit, -0.1 V to 0.8 x V _{FS}			150	PPM/°C
Effective input resistance		8			MΩ

(1) 1 LSB = $V_{REF1}/(2^N)$ = 1.225/(2¹⁵) = 37.4 µV (when t_{CONV} = 31.25 ms) (2) For VC1–VSS, VC2–VC1, VC3–VC2, VC4–VC3, VC4–VSS, PACK–VSS, and V_{REF1}/2, the offset error is multiplied by (1/ADC multiplexer scaling factor (K)).

SLUSBS8-DECEMBER 2013

ADC DIGITAL FILTER

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT	
	Single conversion		31.25			
Conversion time	Single conversion		15.63			
Conversion time	Single conversion		7.81		ms	
	Single conversion		1.95			
Resolution	No missing codes	16			Bits	
	With sign, t _{CONV} = 31.25 ms	14	15			
Effective resolution	With sign, t _{CONV} = 15.63 ms	13	14		Bits	
Effective resolution	With sign, $t_{CONV} = 7.81 \text{ ms}$	11	12		DIIS	
	With sign, $t_{CONV} = 1.95 \text{ ms}$	9	10		-	

CHG, DSG FET DRIVE

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PA	RAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
	Output voltage	Ratio_{DSG} = (V_{DSG} - V_{BAT})/V_{BAT}, 2.2 V < V_{BAT} < 4.92 V, 10 M\Omega between PACK and DSG	2.133	2.333	2.433	
	ratio	Ratio _{CHG} = (V _{CHG} – V _{BAT})/V _{BAT} , 2.2 V < V _{BAT} < 4.92 V, 10 MΩ between BAT and CHG	2.133	2.333	2.433	
V	Output voltage,	$V_{DSG(ON)}$ = V_{DSG} – $V_{BAT},$ V_{BAT} ≥ 4.92 V, 10 M Ω between PACK and DSG, V_{BAT} = 18 V	10.5	11.5	12	V
V _(FETON)	CHG and DSG on	$V_{CHG(ON)}$ = V_{CHG} – $V_{BAT},$ V_{BAT} ≥ 4.92 V, 10 M Ω between BAT and CHG, V_{BAT} = 18 V	10.5	11.5	12	V
V _(FETOFF)	Output voltage,	$V_{DSG(OFF)}$ = V_{DSG} – $V_{PACK},$ 10 M Ω between PACK and DSG	-0.4		0.4	V
	CHG and DSG off	$V_{CHG(OFF)} = V_{CHG} - V_{BAT}$, 10 M Ω between BAT and CHG	-0.4		0.4	
	Diss time	V_{DSG} from 0% to 35% $V_{DSG(ON)(TYP)}$, $V_{BAT} \ge 2.2$ V, $C_L = 4.7$ nF between DSG and PACK, 5.1 k Ω between DSG and C_L , 10 M Ω between PACK and DSG		200	500	
t _R	Rise time	V_{CHG} from 0% to 35% $V_{CHG(ON)(TYP)}$, V_{BAT} ≥ 2.2 V, C_L = 4.7 nF between CHG and BAT, 5.1 kΩ between CHG and C_L , 10 MΩ between BAT and CHG		200	500 500	μs
t _F		V_{DSG} from $V_{DSG(ON)(TYP)}$ to 1 V, $V_{BAT} \ge 2.2$ V, C_L = 4.7 nF between DSG and PACK, 5.1 k Ω between DSG and C_L , 10 M Ω between PACK and DSG		40	300	
	Fall time	V_{CHG} from $V_{CHG(ON)(TYP)}$ to 1 V, $V_{BAT} \ge 2.2$ V, $C_L = 4.7$ nF between CHG and BAT, 5.1 k Ω between CHG and C_L , 10 M Ω between BAT and CHG		40	200	μs

PCHG FET DRIVE

PA	RAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
V _(FETON)	Output voltage, PCHG on	$V_{PCHG(ON)}$ = VV_{CC} – $V_{PCHG},$ 10 $M\Omega$ between V_{CC} and PCHG	6	7	8	V
V _(FETOFF)	Output voltage, PCHG off	$V_{PCHG(OFF)}$ = VV_{CC} – $V_{PCHG},$ 10 $M\Omega$ between V_{CC} and PCHG	-0.4		0.4	V
t _R	Rise time	V_{PCHG} from 10% to 90% $V_{PCHG(ON)(TYP)}$, $VV_{CC} \ge 8$ V, C_L = 4.7 nF between PCHG and V_{CC} , 5.1 k Ω between PCHG and C_L , 10 M Ω between V_{CC} and CHG		40	200	μs

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
t _F	Fall time	V_{PCHG} from 90% to 10% $V_{PCHG(ON)(TYP)}$, $V_{CC} \ge 8$ V, C_L = 4.7 nF between PCHG and V_{CC} , 5.1 k Ω between PCHG and C_L , 10 M Ω between V_{CC} and CHG		40	200	μs

FUSE DRIVE

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PAF	RAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
V	Output voltage	$V_{BAT} \ge 8 \text{ V}, \text{ C}_{L} = 1 \text{ nF}, \text{ I}_{AFEFUSE} = 0 \mu\text{A}$	6	7	8.65	V
V _{OH} hig	high	V_{BAT} < 8 V, C_{L} = 1 nF, $I_{AFEFUSE}$ = 0 μ A	V _{BAT} – 0.1		V _{BAT}	V
V _{IH}	High-level input		1.5	2.0	2.5	V
I _{AFEFUSE(PU)}	Internal pullup current	V _{BAT} ≥ 8 V, V _{AFEFUSE} = VSS		150	330	nA
R _{AFEFUSE}	Output impedance		2	2.6	3.2	kΩ
C _{IN}	Input capacitance			5		pF
t _{DELAY}	Fuse trip detection delay		128		256	μs
t _{RISE}	Fuse output rise time	$V_{BAT} \ge 8 \text{ V}, \text{ C}_{L} = 1 \text{ nF}, \text{ V}_{OH} = 0 \text{ V} \text{ to 5 V}$		5	20	μs

INTERNAL TEMPERATURE SENSOR

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
	Internal	V _{TEMPP}	-1.9	-2.0	-2.1	
V _{TEMP}	temperature sensor voltage drift	V _{TEMPP} – V _{TEMPN} , assured by design	0.177	0.178	0.179	mV/°C

TS1, TS2, TS3, TS4

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PAR	AMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
V _{IN}	Input voltage range	TS1, TS2, TS3, TS4, V _{BIAS} = V _{REF1}	-0.2		0.8 x V _{REF1}	V
		TS1, TS2, TS3, TS4, $V_{BIAS} = V_{REG}$	-0.2		0.8 x V _{REG}	v
R _{NTC(PU)}	Internal pullup resistance	TS1, TS2, TS3, TS4	14.4	18	21.6	kΩ
R _{NTC(DRIFT)}	Resistance drift over temperature	TS1, TS2, TS3, TS4	-360	-280	-200	PPM/°C

PTC, PTCEN

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PARAME	TER	TEST CONDITION	MIN	TYP	MAX	UNIT
R _{PTC(TRIP)} PTC resist	trip tance		1.2	2.5	3.95	MΩ

Copyright © 2013, Texas Instruments Incorporated

SLUSBS8-DECEMBER 2013

www.ti.com

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PARAMETER		TEST CONDITION	MIN	TYP	MAX	UNIT
V _{PTC(TRIP)}	PTC trip voltage	$V_{PTC(TRIP)} = V_{PTCEN} - V_{PTC}$	200	500	890	mV
I _{PTC}	Internal PTC current bias	$T_A = -40^{\circ}C$ to 110°C	200	290	350	nA
t _{PTC(DELAY)}	PTC delay time	$T_A = -40^{\circ}C \text{ to } 110^{\circ}C$	40	80	145	ms

INTERNAL 1.8-V LDO

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

P	ARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
V _{REG}	Regulator voltage		1.6	1.8	2.0	V
$\Delta V_{O(TEMP)}$	Regulator output over temperature	$\Delta V_{REG} / \Delta T_A$, I _{REG} = 10 mA		±0.25		%
$\Delta V_{O(LINE)}$	Line regulation	$\Delta V_{REG} / \Delta V_{BAT}$, V_{BAT} = 10 mA	-0.6		0.5	%
$\Delta V_{O(LOAD)}$	Load regulation	$\Delta V_{REG}/\Delta I_{REG}$, I_{REG} = 0 mA to 10 mA	-1.5		1.5	%
I _{REG}	Regulator output current limit	$V_{REG} = 0.9 \text{ x } V_{REG(NOM)}, V_{IN} > 2.2 \text{ V}$	20			mA
I _{SC}	Regulator short- circuit current limit	$V_{REG} = 0 \times V_{REG(NOM)}$	25	40	55	mA
PSRR _{REG}	Power supply rejection ratio	$\Delta V_{BAT} / \Delta V_{REG}$, I _{REG} = 10 mA ,V _{IN} > 2.5 V, f = 10 Hz		40		dB
V _{SLEW}	Slew rate enhancement voltage threshold	V _{REG}	1.58	1.65		V

HIGH-FREQUENCY OSCILLATOR

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

l	PARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
f _{HFO}	Operating frequency			16.78		MHz
f _{HFO(ERR)}	Frequency error	$T_A = -20^{\circ}C$ to 70°C, includes frequency drift	-2.5	±0.25	2.5	
		$T_A = -40^{\circ}C$ to 85°C, includes frequency drift	-3.5	±0.25	3.5	%
t _{HFO(SU)}	Start-up time	$T_A = -20^{\circ}$ C to 85°C, oscillator frequency within +/-3% of nominal			4	ms
		oscillator frequency within +/-3% of nominal			100	μs

LOW-FREQUENCY OSCILLATOR

P	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
f _{LFO}	Operating frequency			262.144		kHz
	F	$T_A = -20^{\circ}C$ to 70°C, includes frequency drift	-1.5	±0.25	1.5	%
^T LFO(ERR)	Frequency error	$T_A = -40^{\circ}C$ to 85°C, includes frequency drift	-2.5	±0.25	2.5	
f _{LFO(FAIL)}	Failure detection frequency		30	80	100	kHz

VOLTAGE REFERENCE 1

Typical values stated where $T_A = 25^{\circ}$ C and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}$ C to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PA	ARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
V _{REF1}	Internal reference voltage	$T_A = 25^{\circ}C$, after trim	1.21	1.215	1.22	V
M	Internal reference voltage drift	$T_A = 0^{\circ}C$ to 60°C, after trim		±50		
VREF1(DRIFT)		$T_A = -40^{\circ}C$ to 85°C, after trim		±80		PPM/°C

VOLTAGE REFERENCE 2

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

PA	RAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
V _{REF2}	Internal reference voltage	$T_A = 25^{\circ}C$, after trim	1.22	1.225	1.23	V
N/	Internal reference voltage drift	$T_A = 0^{\circ}C$ to 60°C, after trim		±50		
VREF2(DRIFT)		$T_A = -40^{\circ}$ C to 85°C, after trim		±80		PPM/°C

INSTRUCTION FLASH

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

Р	ARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
	Data retention		10			Years
	Flash programming write cycles		1000			Cycles
t _{PROGWORD}	Word programming time	$T_A = -40^{\circ}C$ to $85^{\circ}C$			40	μs
t _{MASSERASE}	Mass-erase time	$T_A = -40^{\circ}C$ to $85^{\circ}C$			40	ms
t _{PAGEERASE}	Page-erase time	$T_A = -40^{\circ}C$ to $85^{\circ}C$			40	ms
I _{FLASHREAD}	Flash-read current	$T_A = -40^{\circ}C$ to $85^{\circ}C$			2	mA
I _{FLASHWRITE}	Flash-write current	$T_A = -40^{\circ}C$ to $85^{\circ}C$			5	mA
IFLASHERASE	Flash-erase current	$T_A = -40^{\circ}C$ to $85^{\circ}C$			15	mA

DATA FLASH

Р	ARAMETER	TEST CONDITION	MIN	ТҮР	MAX	UNIT
	Data retention		10			Years
	Flash programming write cycles		20000			Cycles
t _{PROGWORD}	Word programming time	$T_A = -40^{\circ}C$ to $85^{\circ}C$			40	μs
t _{MASSERASE}	Mass-erase time	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$			40	ms
t _{PAGEERASE}	Page-erase time	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$			40	ms
I _{FLASHREAD}	Flash-read current	$T_A = -40^{\circ}C$ to $85^{\circ}C$			1	mA
I _{FLASHWRITE}	Flash-write current	$T_A = -40^{\circ}C$ to $85^{\circ}C$			5	mA
I _{FLASHERASE}	Flash-erase current	$T_A = -40^{\circ}C \text{ to } 85^{\circ}C$			15	mA

Texas Instruments

www.ti.com

SLUSBS8-DECEMBER 2013

OCD, SCC, SCD1, SCD2 CURRENT PROTECTION THRESHOLDS

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT	
M	OCD detection	$V_{OCD} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 1	-16.6		-100	mV	
V _{OCD}	threshold voltage range	$V_{OCD} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 0	-8.3		-50	mv	
ΔV _{OCD}	OCD detection threshold voltage program step	$V_{OCD} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 1		-5.56			
		$V_{OCD} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 0		-2.78		mV	
Veee	SCC detection	$V_{SCC} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 1	44.4		200		
	threshold voltage range	$V_{SCC} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 0	22.2	22.2 100		mV	
$\begin{array}{lll} & SCC \mbox{ detection} \\ \Delta V_{SCC} & threshold \mbox{ voltage} \\ program \mbox{ step} \end{array}$		CONTROL[RSN3] = 1					
	0	$V_{SCC} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 0		11.1		mV	
	SCD1 detection threshold voltage range	$V_{SCD1} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 1	-44.4	-44.4		mV	
V _{SCD1}		$V_{SCD1} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 0	-22.2		-100	111V	
A)/	SCD1 detection	$V_{SCD1} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 1		-22.2			
∆V _{SCD1}	threshold voltage program step	$V_{SCD1} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 0		-11.1		mV	
\/	SCD2 detection	$V_{SCD2} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 1	-44.4		-200		
V _{SCD2}	threshold voltage range	$V_{SCD2} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 0	-22.2		-100	mV	
A \ <i>i</i>	SCD2 detection	$V_{SCD2} = V_{SRP} - V_{SRN}$, AFE PROTECTION CONTROL[RSNS] = 1		-22.2			
ΔV _{SCD2}	threshold voltage program step	$V_{SCD2} = V_{SRP} - V_{SRN}$ AFE PROTECTION CONTROL[RSNS] = 0		-11.1		mV	
V _{OFFSET}	OCD, SCC, and SCDx offset error	Post-trim	-2.5		2.5	mV	
V	OCD, SCC, and SCDx	-10		10	%		
V _{SCALE}	scale error	e error Post-trim			5	70	

OCD, SCC, SCD1, SCD2 CURRENT PROTECTION TIMING

F	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
t _{OCD}	OCD detection delay time		1		31	ms
∆t _{OCD}	OCD detection delay time program step			2		ms
t _{SCC}	SCC detection delay time		0		915	μs
∆t _{SCC}	SCC detection delay time program step			61		μs

SLUSBS8-DECEMBER 2013

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 2.2 V to 26 V (unless otherwise noted)

Р	ARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT	
	SCD1 detection	AFE PROTECTION CONTROL[SCDDx2] = 0	0		915		
t _{SCD1}	delay time	AFE PROTECTION CONTROL[SCDDx2] = 1	0		1850	μs	
Δt _{SCD1} SCD1 detection delay time program step		AFE PROTECTION CONTROL[SCDDx2] = 0	AFE PROTECTION CONTROL[SCDDx2] = 0 61				
		AFE PROTECTION CONTROL[SCDDx2] = 1	121			μs	
teene	SCD2 detection	AFE PROTECTION CONTROL[SCDDx2] = 0	0		458	μs	
	delay time	AFE PROTECTION CONTROL[SCDDx2] = 1	0	0 91			
	SCD2 detection	AFE PROTECTION CONTROL[SCDDx2] = 0 30.5					
∆t _{SCD2}	delay time program step	AFE PROTECTION CONTROL[SCDDx2] = 1	61			μs	
t _{DETECT}	Current fault detect time	V_{SRP} – V_{SRN} = V_{T} – 3 mV for OCD, SCD1, and SC2, V_{SRP} – V_{SRN} = V_{T} + 3 mV for SCC			160	μs	
t _{ACC}	Current fault delay time accuracy	Max delay setting	-10		10	%	

SMBus

	PARAMETER	TEST CONDITION	MIN	TYP	TYP MAX	
f _{SMB}	SMBus operating frequency	SLAVE mode, SMBC 50% duty cycle	10		100	kHz
f _{MAS}	SMBus master clock frequency	MASTER mode, no clock low slave extend		51.2		kHz
t _{BUF}	Bus free time between start and stop		4.7			μs
t _{HD(START)}	Hold time after (repeated) start		4.0			μs
t _{SU(START)}	Repeated start setup time		4.7			μs
t _{SU(STOP)}	Stop setup time		4.0			μs
t _{HD(DATA)}	Data hold time		300			ns
t _{SU(DATA)}	Data setup time		250			ns
t _{TIMEOUT}	Error signal detect time		25		35	ms
t _{LOW}	Clock low period		4.7			μs
t _{HIGH}	Clock high period		4.0		50	μs
t _R	Clock rise time	10% to 90%			1000	ns
t _F	Clock fall time	90% to 10%			300	ns
t _{LOW(SEXT)}	Cumulative clock low slave extend time				25	ms
t _{LOW(MEXT)}	Cumulative clock low master extend time				10	ms

bq40z50

SLUSBS8-DECEMBER 2013

TEXAS INSTRUMENTS

www.ti.com

Figure 6. SMBus Timing Diagram

SMBus XL

	PARAMETER	TEST CONDITION		TYP	MAX	UNIT
f _{SMBXL}	SMBus XL operating frequency	SLAVE mode	40		400	kHz
t _{BUF}	Bus free time between start and stop		4.7			μs
t _{HD(START)}	Hold time after (repeated) start		4.0			μs
t _{SU(START)}	Repeated start setup time		4.7			μs
t _{SU(STOP)}	Stop setup time		4.0			μs
t _{TIMEOUT}	Error signal detect time		5		20	ms
t _{LOW}	Clock low period				20	μs
t _{HIGH}	Clock high period				20	μs

FEATURE SET

Primary (1st Level) Safety Features

The bq40z50 supports a wide range of battery and system protection features that can easily be configured. The primary safety features include:

- Cell Overvoltage Protection
- Cell Undervoltage Protection
- Cell Undervoltage Protection Compensated
- Overcurrent in Charge Protection
- Overcurrent in Discharge Protection
- Overload in Discharge Protection
- Short Circuit in Charge Protection
- Short Circuit in Discharge Protection
- Overtemperature in Charge Protection
- Overtemperature in Discharge Protection
- Undertemperature in Charge Protection
- Undertemperature in Discharge Protection
- Overtemperature FET protection
- Precharge Timeout Protection
- Host Watchdog Timeout Protection
- Fast Charge Timeout Protection
- Overcharge Protection
- Overcharging Voltage Protection
- Overcharging Current Protection
- Over Precharge Current Protection

Secondary (2nd Level) Safety Features

The secondary safety features of the bq40z50 can be used to indicate more serious faults via the FUSE pin. This pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or discharging. The secondary safety features provide protection against:

- Safety Overvoltage Permanent Failure
- Safety Undervoltage Permanent Failure
- Safety Overtemperature Permanent Failure
- Safety FET Overtemperature Permanent Failure
- Qmax Imbalance Permanent Failure
- Impedance Imbalance Permanent Failure
- Capacity Degradation Permanent Failure
- Cell Balancing Permanent Failure
- Fuse Failure Permanent Failure
- PTC Permanent Failure
- Voltage Imbalance at Rest Permanent Failure
- Voltage Imbalance Active Permanent Failure
- Charge FET Permanent Failure
- Discharge FET Permanent Failure
- AFE Register Permanent Failure
- AFE Communication Permanent Failure
- Second Level Protector Permanent Failure
- Instruction Flash Checksum Permanent Failure
- Open Cell Connection Permanent Failure

- Data Flash Permanent Failure
- Open Thermistor Permanent Failure

Charge Control Features

The bq40z50 charge control features include:

- Supports JEITA temperature ranges. Reports charging voltage and charging current according to the active temperature range
- Handles more complex charging profiles. Allows for splitting the standard temperature range into two subranges and allows for varying the charging current according to the cell voltage
- Reports the appropriate charging current needed for constant current charging and the appropriate charging voltage needed for constant voltage charging to a smart charger using SMBus broadcasts
- Reduces the charge difference of the battery cells in fully charged state of the battery pack gradually using a
 voltage-based cell balancing algorithm during charging. A voltage threshold can be set up for cell balancing to
 be active. This prevents fully charged cells from overcharging and causing excessive degradation and also
 increases the usable pack energy by preventing premature charge termination.
- Supports pre-charging/zero-volt charging
- Supports charge inhibit and charge suspend if battery pack temperature is out of temperature range
- Reports charging fault and also indicates charge status via charge and discharge alarms

Gas Gauging

The bq40z50 uses the Impedance Track algorithm to measure and calculate the available capacity in battery cells. The bq40z50 accumulates a measure of charge and discharge currents and compensates the charge current measurement for the temperature and state-of-charge of the battery. The bq40z50 estimates self-discharge of the battery and also adjusts the self-discharge estimation based on temperature. The device also has TURBO BOOST mode support, which enables the bq40z50 to provide the necessary data for the MCU to determine what level of peak power consumption can be applied without causing a system reset or transient battery voltage level spike to trigger termination flags. See the *bq40z50 Technical Reference Manual* (SLUUA43) for further details.

Battery Trip Point (BTP)

Required for WIN8 OS, the battery trip point (BTP) feature indicates when the RSOC of a battery pack has depleted to a certain value set in a DF register. This feature allows a host to program two capacity-based thresholds that govern the triggering of a BTP interrupt on the BTP_INT pin and the setting or clearing of the *OperationStatus[BTP_INT]* on the basis of *RemainingCapacity()*.

An internal weak pull-up is applied when the BTP feature is active. Depending on the system design, an external pull-up may required to put on the BTP_INT pin. See PRES, BTP_INT, DISP for details.

Lifetime Data Logging Features

The bq40z50 offers lifetime data logging for several critical battery parameters. The following parameters are updated every 10 hours if a difference is detected between values in RAM and data flash:

- Maximum and Minimum Cell Voltages
- Maximum Delta Cell Voltage
- Maximum Charge Current
- Maximum Discharge Current
- Maximum Average Discharge Current
- Maximum Average Discharge Power
- Maximum and Minimum Cell Temperature
- Maximum Delta Cell Temperature
- Maximum and Minimum Internal Sensor Temperature
- Maximum FET Temperature
- Number of Safety Events Occurrences and the Last Cycle of the Occurrence
- Number of Valid Charge Termination and the Last Cycle of the Valid Charge Termination

- Number of Qmax and Ra Updates and the Last Cycle of the Qmax and Ra Updates
- Number of Shutdown Events
- Cell Balancing Time for Each Cell (This data is updated every 2 hours if a difference is detected.)
- Total FW Runtime and Time Spent in Each Temperature Range (This data is updated every 2 hours if a difference is detected.)

Authentication

The bq40z50 supports authentication by the host using SHA-1.

LED Display

The bq40z50 can drive a 3-, 4-, or 5- segment LED display for remaining capacity indication and/or a permanent fail (PF) error code indication.

Power Modes

The bq40z50 supports three power modes to reduce power consumption:

- In NORMAL mode, the bq40z50 performs measurements, calculations, protection decisions, and data updates in 250-ms intervals. Between these intervals, the bq40z50 is in a reduced power stage.
- In SLEEP mode, the bq40z50 performs measurements, calculations, protection decisions, and data updates in adjustable time intervals. Between these intervals, the bq40z50 is in a reduced power stage. The bq40z50 has a wake function that enables exit from SLEEP mode when current flow or failure is detected.
- In SHUTDOWN mode, the bq40z50 is completely disabled.

Configuration

Oscillator Function

The bq40z50 fully integrates the system oscillators and does not require any external components to support this feature.

System Present Operation

The bq40z50 checks the PRES pin periodically (1 s). If PRES input is pulled to ground by the external system, the bq40z50 detects this as system present.

Emergency Shutdown

For battery maintenance, the emergency shutdown feature enables a push button action connecting the SHUTDN pin to shutdown an embedded battery pack system before removing the battery. A high-to-low transition of the SHUTDN pin signals the bq40z50 to turn off both CHG and DSG FETs, disconnecting the power from the system to safely remove the <u>battery pack</u>. The CHG and DSG FETs can be turned on again by another high-to-low transition detected by the SHUTDN pin or when a data flash configurable timeout is reached.

1-Series, 2-Series, 3-Series, or 4-Series Cell Configuration

In a 1-series cell configuration, VC4 is shorted to VC, VC2 and VC1. In a 2-series cell configuration, VC4 is shorted to VC3 and VC2. In a 3-series cell configuration, VC4 is shorted to VC3.

Cell Balancing

The device supports cell balancing by bypassing the current of each cell during charging or at rest. If the device's internal bypass is used, up to 10 mA can be bypassed and multiple cells can be bypassed at the same time. Higher cell balance current can be achieved by using an external cell balancing circuit. In external cell balancing mode, only one cell at a time can be balanced.

The cell balancing algorithm determines the amount of charge needed to be bypassed to balance the capacity of all cells.

BATTERY PARAMETER MEASUREMENTS

Charge and Discharge Counting

The bq40z50 uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement, and a second delta-sigma ADC for individual cell and battery voltage and temperature measurement.

The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage drop across a small-value sense resistor between the SRP and SRN pins. The integrating ADC measures bipolar signals from –0.1 V to 0.1 V. The bq40z50 detects charge activity when $V_{SR} = V_{(SRP)} - V_{(SRN)}$ is positive, and discharge activity when $V_{SR} = V_{(SRP)} - V_{(SRN)}$ is negative. The bq40z50 continuously integrates the signal over time, using an internal counter. The fundamental rate of the counter is 0.26 nVh.

Voltage

The bq40z50 updates the individual series cell voltages at 0.25-second intervals. The internal ADC of the bq40z50 measures the voltage, and scales and calibrates it appropriately. This data is also used to calculate the impedance of the cell for the Impedance Track gas gauging.

Current

The bq40z50 uses the SRP and SRN inputs to measure and calculate the battery charge and discharge current using a 1-m Ω to 3-m Ω typ. sense resistor.

Temperature

The bq40z50 has an internal temperature sensor and inputs for four external temperature sensors. All five temperature sensor options can be individually enabled and configured for cell or FET temperature usage. Two configurable thermistor models are provided to allow the monitoring of cell temperature in addition to FET temperature, which use a different thermistor profile.

Communications

The bq40z50 uses SMBus v1.1 with MASTER mode and packet error checking (PEC) options per the SBS specification.

SMBus On and Off State

The bq40z50 detects an SMBus off state when SMBC and SMBD are low for two or more seconds. Clearing this state requires that either SMBC or SMBD transition high. The communication bus will resume activity within 1 ms.

SBS Commands

See the *bq40z50 Technical Reference Manual* (SLUUA43) for further details.

SLUSBS8-DECEMBER 2013

APPLICATION SCHEMATIC

23-Jan-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
BQ40Z50RSMR	ACTIVE	VQFN	RSM	32	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ40Z50	Samples
BQ40Z50RSMT	ACTIVE	VQFN	RSM	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ40Z50	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM

23-Jan-2014

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ40Z50RSMR	VQFN	RSM	32	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2
BQ40Z50RSMT	VQFN	RSM	32	250	180.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

23-Jan-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ40Z50RSMR	VQFN	RSM	32	3000	367.0	367.0	35.0
BQ40Z50RSMT	VQFN	RSM	32	250	210.0	185.0	35.0

MECHANICAL DATA

- - This drawing is subject to change without notice. Β. C. QFN (Quad Flatpack No-Lead) Package configuration.
 - ${
 m ar{\Delta}}$ The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

RSM (S-PVQFN-N32)

PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: All linear dimensions are in millimeters

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated