

bq20z90

SLUS778-JULY 2007

# SBS 1.1-COMPLIANT GAS GAUGE ENABLED WITH IMPEDANCE TRACK™ TECHNOLOGY FOR USE WITH THE bq29330

# FEATURES

- Patented Impedance Track<sup>™</sup> Technology Accurately Measures Available Charge in Li-Ion and Li-Polymer Batteries
- Better than 1% Error Over Lifetime of the Battery
- Instant Accuracy No Learning Cycle Required
- Automatically adjusts for battery aging, battery self discharge and temperature inefficiencies
- Supports the Smart Battery Specification SBS V1.1
- Works With the TI bq29330 Analog Front-End (AFE) Protection IC to Provide Complete Pack Electronics Solution
- Full Array of Programmable Voltage, Current, and Temperature Protection Features
- Integrated Time Base Removes Need for External Crystal with Optional Crystal Input
- Electronics for 7.2-V, 10.8-V or 14.4-V Battery Packs With 50% Fewer External Components
- Based on a Powerful Low-Power RISC CPU Core With High-Performance Peripherals
- Integrated Field Programmable FLASH
  Memory Eliminates the Need for External
  Configuration Memory
- Measures Charge Flow Using a High-Resolution, 16-Bit Integrating Delta-Sigma Converter
  - Better Than 0.65 nVh of Resolution
  - Self-Calibrating
- Uses 16-Bit Delta-Sigma Converter for Accurate Voltage and Temperature Measurements
- Extensive Data Reporting Options For Improved System Interaction
- Optional Pulse Charging Feature for Improved Charge Times
- Drives 3-, 4- or 5-Segment LED Display for Remaining Capacity Indication
- Supports SHA-1 Authentication
  Please be aware that an important notic

- Lifetime Data Logging
- 30-Pin TSSOP (DBT)

# APPLICATIONS

- Notebook PCs
- Medical and Test Equipment
- Portable Instrumentation

# DESCRIPTION

bq20z90 SBS-compliant gas gauge IC, The Track™ incorporating patented Impedance technology, is designed for battery-pack or in-system installation. The bg20z90 measures and maintains an accurate record of available charge in Li-ion or Li-polvmer batteries using its integrated high-performance analog peripherals. The bg20z90 monitors capacity change, battery impedance, open-circuit voltage, and other critical parameters of the battery pack, and reports the information to the system host controller over a serial-communication bus. It is designed to work with the bq29330 analog front-end (AFE) protection IC to maximize functionality and safety, and minimize component count and cost in smart battery circuits.

The Impedance Track technology continuously analyzes the battery impedance, resulting in superior gas-gauging accuracy. This enables remaining capacity to be calculated with discharge rate, temperature, and cell aging all accounted for during each stage of every cycle.

### **AVAILABLE OPTIONS**

|                  | PACI                       | KAGE                              |
|------------------|----------------------------|-----------------------------------|
| T <sub>A</sub>   | 30-PIN TSSOP (DBT)<br>Tube | 30-PIN TSSOP (DBT)<br>Tape & Reel |
| –40°C to<br>85°C | bq20z90DBT <sup>(1)</sup>  | bq20z90DBTR <sup>(2)</sup>        |

(1) A single tube quantity is 50 units.

(2) A single reel quantity is 2000 units

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. IMPEDANCE TRACK is a trademark of Texas Instruments.



# SYSTEM PARTITIONING DIAGRAM





## **TERMINAL FUNCTIONS**

| TE  | TERMINAL |                    |                                                                                                                                                         |
|-----|----------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO. | NAME     | I/O <sup>(1)</sup> | DESCRIPTION                                                                                                                                             |
| 1   | NC       | -                  | Not used— leave floating                                                                                                                                |
| 2   | XALERT   | I                  | Input from bq29330 XALERT output.                                                                                                                       |
| 3   | SDATA    | I/O                | Data transfer to and from bq29330                                                                                                                       |
| 4   | SCLK     | I/O                | Communication clock to the bq29330                                                                                                                      |
| 5   | CLKOUT   | 0                  | 32.768-kHz output for the bq29330. This pin should be directly connected to the AFE.                                                                    |
| 6   | TS1      | I                  | 1 <sup>st</sup> Thermistor voltage input connection to monitor temperature                                                                              |
| 7   | TS2      | I                  | 2 <sup>nd</sup> Thermistor voltage input connection to monitor temperature                                                                              |
| 8   | PRES     | I                  | Active low input to sense system insertion and typically requires additional ESD protection                                                             |
| 9   | PFIN     | I                  | Active low input to detect secondary protector output status and allows the bq20z90 to report the status of the 2 <sup>nd</sup> level protection output |
| 10  | SAFE     | 0                  | Active high output to enforce additional level of safety protection; e.g., fuse blow.                                                                   |
| 11  | SMBD     | I/OD               | SMBus data open-drain bidirectional pin used to transfer address and data to and from the bq20z90                                                       |
| 12  | NC       | -                  | Not used— leave floating                                                                                                                                |
| 13  | SMBC     | I/OD               | SMBus clock open-drain bidirectional pin used to clock the data transfer to and from the bq20z90                                                        |
| 14  | DISP     | I                  | Display control for the LEDs. This pin is typically connected to bq29330 REG via a 100-k $\Omega$ resistor and a push-button switch to VSS.             |
| 15  | NC       | -                  | Not used— leave floating                                                                                                                                |
| 16  | LED1     | 0                  | LED1 display segment that drives an external LED depending on the firmware configuration                                                                |
| 17  | LED2     | 0                  | LED2 display segment that drives an external LED depending on the firmware configuration                                                                |
| 18  | LED3     | 0                  | LED3 display segment that drives an external LED depending on the firmware configuration                                                                |
| 19  | LED4     | 0                  | LED4 display segment that drives an external LED depending on the firmware configuration                                                                |
| 20  | LED5     | 0                  | LED5 display segment that drives an external LED depending on the firmware configuration                                                                |
| 21  | VSS      | -                  | Connected I/O pin to VSS                                                                                                                                |
| 22  | SRP      | IA                 | Connections to the top of a small-value sense resistor to monitor the battery charge- and discharge-current flow                                        |
| 23  | SRN      | IA                 | Connections to the bottom of a small-value sense resistor to monitor the battery charge- and discharge-current flow                                     |
| 24  | MRST     | I                  | Master reset input that forces the device into reset when held low. Must be held high for normal operation                                              |
| 25  | VSS      | Р                  | Negative Supply Voltage                                                                                                                                 |
| 26  | VCC      | Р                  | Positive Supply Voltage                                                                                                                                 |
| 27  | RBI      | Р                  | Backup power to the bq20z90 data registers during periods of low operating voltage. RBI accepts a storage capacitor or a battery input.                 |
| 28  | NC       | -                  | Not used— leave floating                                                                                                                                |
| 29  | VCELL+   | I                  | Input from bq29330 used to read a scaled value of individual cell voltages                                                                              |
| 30  | VCELL-   | I                  | Input from bq29330 used to read a scaled value of individual cell voltages                                                                              |

(1) I = Input, IA = Analog input, I/O = Input/output, I/OD = Input/Open-drain output, O = Output, OA = Analog output, P = Power



## **ABSOLUTE MAXIMUM RATINGS**

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                                                |                                       | RANGE                             |
|------------------------------------------------|---------------------------------------|-----------------------------------|
| $V_{CC}$ relative to $V_{SS}$                  | Supply voltage range                  | –0.3 V to 2.75 V                  |
| $V_{(\text{IOD})}$ relative to $V_{\text{SS}}$ | Open-drain I/O pins                   | –0.3 V to 6 V                     |
| $V_{\rm I}$ relative to $V_{\rm SS}$           | Input voltage range to all other pins | –0.3 V to V <sub>CC</sub> + 0.3 V |
| T <sub>A</sub>                                 | Operating free-air temperature range  | −40°C to 85°C                     |
| T <sub>stg</sub>                               | Storage temperature range             | –65°C to 150°C                    |

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

# **ELECTRICAL CHARACTERISTICS**

 $V_{CC}$  = 2.4 V to 2.6 V,  $T_A$  = –40°C to 85°C (unless otherwise noted)

|                    | PARAMETER                                                      | TEST CONDITIONS           | MIN                   | TYP                | MAX                   | UNIT |
|--------------------|----------------------------------------------------------------|---------------------------|-----------------------|--------------------|-----------------------|------|
| $V_{CC}$           | Supply voltage                                                 |                           | 2.4                   | 2.5                | 2.6                   | V    |
|                    | Operating mode surrant                                         | No flash programming      |                       | 400 <sup>(1)</sup> |                       |      |
| I <sub>CC</sub>    | Operating mode current                                         | bq20z90 + bq29330         |                       | 475                |                       | μA   |
|                    | Low power storage mode surrent                                 | Sleep mode                |                       | 8 <sup>(1)</sup>   |                       |      |
| I(SLP)             | Low-power storage mode current                                 | bq20z90 + bq29330         |                       | 51                 |                       | μA   |
| V                  | Output voltage low SMBC, SMBD, SDATA, SCLK, SAFE               | $I_{OL} = 0.5 \text{ mA}$ |                       |                    | 0.4                   | V    |
| V <sub>OL</sub>    | LED1 – LED5                                                    | $I_{OL} = 10 \text{ mA}$  |                       |                    | 0.4                   | V    |
| V <sub>OH</sub>    | Output high voltage, SMBC, SMBD, SDATA, SCLK, SAFE             | $I_{OH} = -1 \text{ mA}$  | V <sub>CC</sub> – 0.5 |                    |                       | V    |
| $V_{\text{IL}}$    | Input voltage low SMBC, SMBD, SDATA, SCLK, XALERT, PRES, PFIN  |                           | -0.3                  |                    | 0.8                   | V    |
|                    | DISP                                                           |                           | -0.3                  |                    | 0.8                   | V    |
| V <sub>IH</sub>    | Input voltage high SMBC, SMBD, SDATA, SCLK, XALERT, PRES, PFIN |                           | 2                     |                    | 6                     | V    |
|                    | DISP                                                           |                           | 2                     |                    | V <sub>CC</sub> + 0.3 | V    |
| CIN                | Input capacitance                                              |                           |                       | 5                  |                       | pF   |
| V <sub>(Al1)</sub> | Input voltage range VCELL+, VCELL-,TS1, TS2                    |                           | - 0.2                 |                    | 0.8XV <sub>CC</sub>   | V    |
| V <sub>(Al2)</sub> | Input voltage range SRN, SRP                                   |                           | - 0.20                |                    | 0.20                  | v    |
| Z <sub>(AI2)</sub> | Input impedance VCELL+, VCELL-, TS1, TS2                       | 0 V–1 V                   | 8                     |                    |                       | MΩ   |
| Z <sub>(AI1)</sub> | Input impedance SRN, SRP                                       | 0 V–1 V                   | 2.5                   |                    |                       | MΩ   |

(1) This value does not include the bq29330



# **POWER-ON RESET**

 $V_{CC}$  = 2.4V to 2.6 V,  $T_A$  = -40°C to 85°C (unless otherwise noted)

|                  | PARAMETER                    | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
|------------------|------------------------------|-----------------|-----|-----|-----|------|
| $V_{IT-}$        | Negative-going voltage input |                 | 1.7 | 1.8 | 1.9 | V    |
| V <sub>HYS</sub> | Power-on reset hysteresis    |                 | 50  | 125 | 200 | mV   |



# **INTEGRATING ADC (Coulomb Counter) CHARACTERISTICS**

 $V_{CC}$  = 2.4V to 2.6 V,  $T_A$  = -40°C to 85°C (unless otherwise noted)

|                     | PARAMETER                                        | TEST CONDITIONS              | MIN TYP | MAX    | UNIT |
|---------------------|--------------------------------------------------|------------------------------|---------|--------|------|
| V <sub>(SR)</sub>   | Input voltage range, $V_{(SRN)}$ and $V_{(SRP)}$ | $V_{(SR)} = V(SRN) - V(SRP)$ | -0.2    | 0.2    | V    |
| V <sub>(SROS)</sub> | Input offset                                     |                              | 10      |        | μV   |
| INL                 | Integral nonlinearity error                      |                              | 0.007%  | 0.034% |      |

### **OSCILLATOR**

 $V_{CC}$  = 2.4 V to 2.6 V,  $T_A$  = –40°C to 85°C (unless otherwise noted)

| PARAMETER                                             | TEST CONDITIONS                      | MIN   | TYP    | MAX   | UNIT |
|-------------------------------------------------------|--------------------------------------|-------|--------|-------|------|
| HIGH FREQUENCY OSCILLATOR                             |                                      |       |        |       |      |
| f <sub>(OSC)</sub> Operating Frequency                |                                      |       |        | 4.194 | MHz  |
| f <sub>(EIO)</sub> Frequency Error <sup>(1)(2)</sup>  |                                      | -3%   | 0.25%  | 3%    |      |
| (EIO) Frequency Endition                              | $T_A = 20^{\circ}C$ to $70^{\circ}C$ | -2%   | 0.25%  | 2%    |      |
| t <sub>(SXO)</sub> Start-up Time <sup>(3)</sup>       |                                      |       | 2.5    | 5     | ms   |
| LOW FREQUENCY OSCILLATOR                              |                                      |       |        |       |      |
| f <sub>(LOSC)</sub> Operating Frequency               |                                      |       | 32.768 |       | KHz  |
| f Eroquopov Error <sup>(2)(4)</sup>                   |                                      | -2.5% | 0.25%  | 2.5%  |      |
| f <sub>(LEIO)</sub> Frequency Error <sup>(2)(4)</sup> | $T_A = 20^{\circ}C$ to $70^{\circ}C$ | -1.5% | 0.25%  | 1.5%  |      |

The frequency error is measured from 4.194 MHz. (1)

(2)

The frequency drift is included and measured from the trimmed frequency at  $V_{CC} = 2.5 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ . The start-up time is defined as the time it takes for the oscillator output frequency to be within 1% of the specified frequency. (3)

(4) The frequency error is measured from 32.768 kHz.



## **OSCILLATOR** (continued)

 $V_{CC}$  = 2.4 V to 2.6 V,  $T_A$  = -40°C to 85°C (unless otherwise noted)

| PARAMETER                                        | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
|--------------------------------------------------|-----------------|-----|-----|-----|------|
| t <sub>(LSXO)</sub> Start-up time <sup>(5)</sup> |                 |     |     | 500 | μs   |

(5) The start-up time is defined as the time it takes for the oscillator output frequency to be  $\pm 3\%$ .

# DATA FLASH MEMORY CHARACTERISTICS

 $V_{CC}$  = 2.4 V to 2.6 V,  $T_A$  = –40°C to 85°C (unless otherwise noted)

|                         | PARAMETER                      | TEST CONDITIONS    | MIN    | TYP | MAX | UNIT   |
|-------------------------|--------------------------------|--------------------|--------|-----|-----|--------|
| t <sub>DR</sub>         | Data retention                 | See <sup>(1)</sup> | 10     |     |     | Years  |
|                         | Flash programming write-cycles | See <sup>(1)</sup> | 20,000 |     |     | Cycles |
| t <sub>(WORDPROG)</sub> | Word programming time          | See <sup>(1)</sup> |        |     | 2   | ms     |
| I(DDdPROG)              | Flash-write supply current     | See <sup>(1)</sup> |        | 5   | 10  | mA     |

(1) Assured by design. Not production tested

## **REGISTER BACKUP**

 $V_{CC}$  = 2.4 V to 2.6 V,  $T_A$  = –40°C to 85°C (unless otherwise noted)

|                   | PARAMETER                                | TEST CONDITIONS                                                         | MIN | TYP | MAX  | UNIT |
|-------------------|------------------------------------------|-------------------------------------------------------------------------|-----|-----|------|------|
| I <sub>(RB)</sub> | RB data-retention input current          | $V_{(RB)} > V_{(RBMIN)}, V_{CC} < V_{IT}$                               |     |     | 1500 | nA   |
|                   |                                          | $V_{(RB)} > V_{(RBMIN)}, V_{CC} < V_{IT-}, T_A = 0^{\circ}C$<br>to 50°C |     | 40  | 160  |      |
| V <sub>(RB)</sub> | RB data-retention voltage <sup>(1)</sup> |                                                                         | 1.7 |     |      | V    |

(1) Specified by design. Not production tested.

# **SMBus TIMING SPECIFICATIONS**

 $V_{CC} = 2.4$  V to 2.6 V,  $T_A = -40^{\circ}$ C to 85°C (unless otherwise noted)

|                       | PARAMETER                               | TEST CONDITIONS                                                | MIN | TYP  | MAX  | UNIT |
|-----------------------|-----------------------------------------|----------------------------------------------------------------|-----|------|------|------|
| f <sub>SMB</sub>      | SMBus operating frequency               | Slave mode, SMBC 50% duty cycle                                | 10  |      | 100  |      |
| f <sub>MAS</sub>      | SMBus master clock frequency            | Master mode, no clock low slave extend                         |     | 51.2 |      | kHz  |
| t <sub>BUF</sub>      | Bus free time between start and stop    |                                                                | 4.7 |      |      |      |
| t <sub>HD:STA</sub>   | Hold time after (repeated) start        |                                                                | 4   |      |      |      |
| t <sub>SU:STA</sub>   | Repeated start setup time               |                                                                | 4.7 |      |      | μs   |
| t <sub>SU:STO</sub>   | Stop setup time                         |                                                                | 4   |      |      |      |
|                       | Data hald time                          | Receive mode                                                   | 0   |      |      |      |
| t <sub>HD:DAT</sub>   | Data hold time                          | Transmit mode                                                  | 300 |      |      | ns   |
| t <sub>SU:DAT</sub>   | Data setup time                         |                                                                | 250 |      |      |      |
| t <sub>TIMEOUT</sub>  | Error signal/detect                     | See <sup>(1)</sup>                                             | 25  |      | 35   | ms   |
| t <sub>LOW</sub>      | Clock low period                        |                                                                | 4.7 |      |      |      |
| t <sub>HIGH</sub>     | Clock high period                       | See <sup>(2)</sup>                                             | 4   |      | 50   | μs   |
| t <sub>LOW:SEXT</sub> | Cumulative clock low slave extend time  | See <sup>(3)</sup>                                             |     |      | 25   |      |
| t <sub>LOW:MEXT</sub> | Cumulative clock low master extend time | See <sup>(4)</sup>                                             |     |      | 10   | ms   |
| t <sub>F</sub>        | Clock/data fall time                    | (V <sub>ILMAX</sub> – 0.15 V) to (V <sub>IHMIN</sub> + 0.15 V) |     |      | 300  |      |
| t <sub>R</sub>        | Clock/data rise time                    | 0.9 VCC to (VILMAX – 0.15 V)                                   |     |      | 1000 | ns   |

(1)

The bq20z90 times out when any clock low exceeds  $t_{TIMEOUT}$ .  $t_{HIGH:MAX}$  is minimum bus idle time. SMBC = 1 for t > 50 µs causes reset of any transaction involving the bq20z90 that is in progress. (2)

t<sub>LOW:SEXT</sub> is the cumulative time a slave device is allowed to extend the clock cycles in one message from initial start to the stop. (3)

t<sub>LOW:MEXT</sub> is the cumulative time a master device is allowed to extend the clock cycles in one message from initial start to the stop. (4)

# **SMBus TIMING DIAGRAM**



SCLK<sub>ACK</sub> is the acknowledge-related clock pulse generated by the master.



# FEATURE SET

# Primary (1st Level) Safety Features

The bq20z90 supports a wide range of battery and system protection features that can easily be configured. The primary safety features include:

- Battery cell over/under voltage protection
- Battery pack over/under voltage protection
- 2 independent charge overcurrent protection
- 3 independent discharge overcurrent protection
- Short circuit protection
- Over temperature protection
- AFE Watchdog
- Host Watchdog

## Secondary (2nd Level) Safety Features

The secondary safety features of the bq20z90 can be used to indicate more serious faults via the SAFE (pin 10) pin. This pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or discharging. The secondary safety features include:

- Safety over voltage
- Battery cell imbalance
- 2nd level protection IC input
- Safety over current
- Safety over temperature
- Open thermistor
- Charge FET and Zero-Volt Charge FET fault
- Discharge FET fault
- Fuse blow failure detection
- AFE Communication error
- AFE Verification error
- Internal flash data error

### Charge Control Features

The bq20z90 charge control features include:

- Report the appropriate charging current needed for constant current charging and the appropriate charging voltage needed for constant voltage charging to a smart charger using SMBus broadcasts.
- Determine the chemical state of charge of each battery cell using Impedance Track<sup>™</sup>. Using cell balancing algorithm, gradually decrease the differences in the cells' state of charge in a fully charged state. This prevents high cells from overcharging, causing excessive degradation and also increases the usable pack energy by preventing early charge termination.
- Support Pre-charging/Zero-volt charging
- Support Fast charging
- Support Pulse charging
- Support Charge Inhibit and Charge Suspend modes
- Report charging faults and also indicate charging status via charge and discharge alarms.

### Gas Gauging

The bq20z90 uses the Impedance Track<sup>™</sup> Technology to measure and calculate the available charge in battery cells. The achievable accuracy is better than 1% error over the lifetime of the battery and there is no full charge-discharge learning cycle required.



See Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm application note (SLUA364) for further details.

# LED Display

The bq20z90 can drive a 3-, 4-, or 5- segment LED display for remaining capacity indication. The LED drive current can be adjusted to 3mA, 4mA and 5mA digitally.

# LifeTime Data Logging Features

The bq20z90 offers a lifetime data logging array, where all important measurements are stored for warranty and analysis purposes. The data monitored include:

- Lifetime maximum temperature
- Lifetime minimum temperature
- Lifetime maximum battery cell voltage
- Lifetime minimum battery cell voltage
- Lifetime maximum battery pack voltage
- Lifetime minimum battery pack voltage
- Lifetime maximum charge current
- Lifetime maximum discharge current
- Lifetime maximum charge power
- Lifetime maximum discharge power
- Lifetime maximum average discharge current
- Lifetime maximum average discharge power
- Lifetime average temperature

#### Authentication

The bq20z90 supports authentication by the host using SHA-1.

#### **Power Modes**

The bq20z90 supports 3 different power modes to reduce power consumption:

- In Normal Mode, the bq20z90 performs measurements, calculations, protection decisions, and data updates in 1 second intervals. Between these intervals, the bq20z90 is in a reduced power stage.
- In Sleep Mode, the bq20z90 performs measurements, calculations, protection decisions, and data updates in adjustable time intervals. Between these intervals, the bq20z90 is in a reduced power stage.
- In Shutdown Mode the bq20z90 is completety disabled.

### CONFIGURATION

#### **Oscillator Function**

The bq20z90 fully integrates the system and processor oscillators and, therefore, requires no pins or components for this feature.

#### **System Present Operation**

The bq20z90 periodically verifies the PRES pin and detects that the battery is present in the system via a low state on a PRES input. When this occurs, bq20z90 enters normal operating mode. When the pack is removed from the system and the PRES input is high, the bq20z90 enters the battery-removed state, disabling the charge, discharge and ZVCHG FETs. The PRES input is ignored and can be left floating when non-removal mode is set in the data flash.

### **BATTERY PARAMETER MEASUREMENTS**

The bq20z90 uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement, and a second delta-sigma ADC for individual cell and battery voltage, and temperature measurement.



#### **Charge and Discharge Counting**

The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage drop across a small-value sense resistor between the SRP and SRN pins. The integrating ADC measures bipolar signals from -0.25 V to 0.25 V. The bq20z90 detects charge activity when  $V_{SR} = V_{(SRP)} V_{(SRN)}$  is positive and discharge activity when  $V_{SR} = V_{(SRP)} V_{(SRN)}$  is negative. The bq20z90 continuously integrates the signal over time, using an internal counter. The fundamental rate of the counter is 0.65 nVh.

#### Voltage

The bq20z90 updates the individual series cell voltages through the bq29330 at one second intervals. The bq20z90 configures the bq29330 to connect the selected cell, cell offset, or bq29330 VREF to the CELL pin of the bq29330, which is required to be connected to VIN of the bq20z90. The internal ADC of the bq20z90 measures the voltage, scales it, and calibrates itself appropriately. This data is also used to calculate the impedance of the cell for the Impedance Track<sup>™</sup> gas-gauging.

#### Current

The bq20z90 uses the SRP and SRN inputs to measure and calculate the battery charge and discharge current using a 5 m $\Omega$  to 20 m $\Omega$  typ. sense resistor.

#### Wake Function

The bq20z90 can exit sleep mode, if enabled, by the presence of a programmable level of current signal across SRP and SRN.

#### **Auto Calibration**

The bq20z90 provides an auto-calibration feature to cancel the voltage offset error across SRP and SRN for maximum charge measurement accuracy. The bq20z90 performs auto-calibration when the SMBus lines stay low continuously for a minimum of a programmable amount of time.

#### Temperature

The bq20z90 TS1 and TS2 inputs, in conjunction with two identical NTC thermistors (default are Semitec 103AT), measure the battery environmental temperature. The bq20z90 can also be configured to use its internal temperature sensor.

#### COMMUNICATIONS

The bq20z90 uses SMBus v1.1 with Master Mode and package error checking (PEC) options per the SBS specification.

#### SMBus On and Off State

The bq20z90 detects an SMBus off state when SMBC and SMBD are logic-low for  $\geq$  2 seconds. Clearing this state requires either SMBC or SMBD to transition high. Within 1 ms, the communication bus is available.

#### SBS Commands

| SBS Cmd | Mode | Name                   | Format       | Size in<br>Bytes | Min<br>Value | Max<br>Value | Default Value | Unit            |
|---------|------|------------------------|--------------|------------------|--------------|--------------|---------------|-----------------|
| 0x00    | R/W  | ManufacturerAccess     | hex          | 2                | 0x0000       | Oxffff       | —             |                 |
| 0x01    | R/W  | RemainingCapacityAlarm | unsigned int | 2                | 0            | 65535        | 300           | mAh or<br>10mWh |
| 0x02    | R/W  | RemainingTimeAlarm     | unsigned int | 2                | 0            | 65535        | 10            | min             |
| 0x03    | R/W  | BatteryMode            | hex          | 2                | 0x0000       | 0xe383       | —             |                 |
| 0x04    | R/W  | AtRate                 | signed int   | 2                | -32768       | 32767        | —             | mA or 10mW      |
| 0x05    | R    | AtRateTimeToFull       | unsigned int | 2                | 0            | 65534        | _             | min             |
| 0x06    | R    | AtRateTimeToEmpty      | unsigned int | 2                | 0            | 65534        | —             | min             |

#### Table 1. SBS COMMANDS



### Table 1. SBS COMMANDS (continued)

| SBS Cmd | Mode | Name                  | Format       | Size in<br>Bytes | Min<br>Value | Max<br>Value | Default Value | Unit            |
|---------|------|-----------------------|--------------|------------------|--------------|--------------|---------------|-----------------|
| 0x07    | R    | AtRateOK              | unsigned int | 2                | 0            | 65535        | _             |                 |
| 0x08    | R    | Temperature           | unsigned int | 2                | 0            | 65535        | _             | 0.1°K           |
| 0x09    | R    | Voltage               | unsigned int | 2                | 0            | 65535        | _             | mV              |
| 0x0a    | R    | Current               | signed int   | 2                | -32768       | 32767        | —             | mA              |
| 0x0b    | R    | AverageCurrent        | signed int   | 2                | -32768       | 32767        | —             | mA              |
| 0x0c    | R    | MaxError              | unsigned int | 1                | 0            | 100          | —             | %               |
| 0x0d    | R    | RelativeStateOfCharge | unsigned int | 1                | 0            | 100          | —             | %               |
| 0x0e    | R    | AbsoluteStateOfCharge | unsigned int | 1                | 0            | 100+         | —             | %               |
| 0x0f    | R/W  | RemainingCapacity     | unsigned int | 2                | 0            | 65535        | —             | mAh or<br>10mWh |
| 0x10    | R    | FullChargeCapacity    | unsigned int | 2                | 0            | 65535        | —             | mAh or<br>10mWh |
| 0x11    | R    | RunTimeToEmpty        | unsigned int | 2                | 0            | 65534        | —             | min             |
| 0x12    | R    | AverageTimeToEmpty    | unsigned int | 2                | 0            | 65534        | —             | min             |
| 0x13    | R    | AverageTimeToFull     | unsigned int | 2                | 0            | 65534        | —             | min             |
| 0x14    | R    | ChargingCurrent       | unsigned int | 2                | 0            | 65534        | —             | mA              |
| 0x15    | R    | ChargingVoltage       | unsigned int | 2                | 0            | 65534        | —             | mV              |
| 0x16    | R    | BatteryStatus         | unsigned int | 2                | 0x0000       | 0xdbff       | —             |                 |
| 0x17    | R/W  | CycleCount            | unsigned int | 2                | 0            | 65535        | —             |                 |
| 0x18    | R/W  | DesignCapacity        | unsigned int | 2                | 0            | 65535        | 4400          | mAh or<br>10mWh |
| 0x19    | R/W  | DesignVoltage         | unsigned int | 2                | 0            | 65535        | 14400         | mV              |
| 0x1a    | R/W  | SpecificationInfo     | hex          | 2                | 0x0000       | Oxffff       | 0x0031        |                 |
| 0x1b    | R/W  | ManufactureDate       | unsigned int | 2                | —            | _            | 01-Jan-1980   | ASCII           |
| 0x1c    | R/W  | SerialNumber          | hex          | 2                | 0x0000       | Oxffff       | 0x0001        |                 |
| 0x20    | R/W  | ManufacturerName      | String       | 11+1             | _            | _            | Texas Inst.   | ASCII           |
| 0x21    | R/W  | DeviceName            | String       | 7+1              | _            | _            | bq20z90       | ASCII           |
| 0x22    | R/W  | DeviceChemistry       | String       | 4+1              |              | —            | LION          | ASCII           |
| 0x23    | R/W  | ManufacturerData      | String       | 14+1             | _            | _            | _             | ASCII           |
| 0x2f    | R/W  | Authenticate          | String       | 20+1             | _            | _            | _             | ASCII           |
| 0x3c    | R    | CellVoltage4          | unsigned int | 2                | 0            | 65535        | —             | mV              |
| 0x3d    | R    | CellVoltage3          | unsigned int | 2                | 0            | 65535        | _             | mV              |
| 0x3e    | R    | CellVoltage2          | unsigned int | 2                | 0            | 65535        | _             | mV              |
| 0x3f    | R    | CellVoltage1          | unsigned int | 2                | 0            | 65535        | _             | mV              |

### Table 2. EXTENDED SBS COMMANDS

| SBS<br>Cmd | Mode | Name            | Format       | Size in<br>Bytes | Min Value | Max Value | Default<br>Value | Unit  |
|------------|------|-----------------|--------------|------------------|-----------|-----------|------------------|-------|
| 0x45       | R    | AFEData         | String       | 11+1             | —         | —         | —                | ASCII |
| 0x46       | R/W  | FETControl      | hex          | 1                | 0x00      | 0x1e      | _                |       |
| 0x4f       | R    | StateOfHealth   | unsigned int | 1                | 0         | 100       | _                | %     |
| 0x50       | R    | SafetyAlert     | hex          | 2                | 0x0000    | Oxffff    | _                |       |
| 0x51       | R    | SafetyStatus    | hex          | 2                | 0x0000    | Oxffff    | _                |       |
| 0x52       | R    | PFAlert         | hex          | 2                | 0x0000    | 0x9fff    | —                |       |
| 0x53       | R    | PFStatus        | hex          | 2                | 0x0000    | 0x9fff    | —                |       |
| 0x54       | R    | OperationStatus | hex          | 2                | 0x0000    | 0xf7f7    | _                |       |
| 0x55       | R    | ChargingStatus  | hex          | 2                | 0x0000    | Oxffff    | _                |       |



# Table 2. EXTENDED SBS COMMANDS (continued)

| SBS<br>Cmd | Mode | Name                   | Format       | Size in<br>Bytes | Min Value  | Max Value | Default<br>Value | Unit  |  |
|------------|------|------------------------|--------------|------------------|------------|-----------|------------------|-------|--|
| 0x57       | R    | ResetData              | hex          | 2                | 0x0000     | Oxffff    | —                |       |  |
| 0x58       | R    | WDResetData            | unsigned int | 2                | 0          | 65535     | —                |       |  |
| 0x5a       | R    | PackVoltage            | unsigned int | 2                | 0          | 65535     |                  | mV    |  |
| 0x5d       | R    | AverageVoltage         | unsigned int | 2                | 0          | 65535     | —                | mV    |  |
| 0x60       | R/W  | UnSealKey              | hex          | 4                | 0x00000000 | 0xfffffff | —                |       |  |
| 0x61       | R/W  | FullAccessKey          | hex          | 4                | 0x00000000 | Oxfffffff | —                |       |  |
| 0x62       | R/W  | PFKey                  | hex          | 4                | 0x00000000 | 0xfffffff | —                |       |  |
| 0x63       | R/W  | AuthenKey3             | hex          | 4                | 0x00000000 | 0xfffffff | —                |       |  |
| 0x64       | R/W  | AuthenKey2             | hex          | 4                | 0x00000000 | 0xfffffff | —                |       |  |
| 0x65       | R/W  | AuthenKey1             | hex          | 4                | 0x00000000 | 0xfffffff | —                |       |  |
| 0x66       | R/W  | AuthenKey0             | hex          | 4                | 0x00000000 | Oxfffffff | —                |       |  |
| 0x70       | R/W  | ManufacturerInfo       | String       | 8+1              | —          | _         | —                | ASCII |  |
| 0x71       | R/W  | SenseResistor          | unsigned int | 2                | 0          | 65535     | —                | μΩ    |  |
| 0x77       | R/W  | DataFlashSubClassID    | hex          | 2                | 0x0000     | Oxffff    | —                |       |  |
| 0x78       | R/W  | DataFlashSubClassPage1 | hex          | 32               | —          | _         | —                |       |  |
| 0x79       | R/W  | DataFlashSubClassPage2 | hex          | 32               | —          | _         | —                |       |  |
| 0x7a       | R/W  | DataFlashSubClassPage3 | hex          | 32               | —          | _         | —                |       |  |
| 0x7b       | R/W  | DataFlashSubClassPage4 | hex          | 32               | —          | _         | —                |       |  |
| 0x7c       | R/W  | DataFlashSubClassPage5 | hex          | 32               | —          | _         | —                |       |  |
| 0x7d       | R/W  | DataFlashSubClassPage6 | hex          | 32               | —          | _         | —                |       |  |
| 0x7e       | R/W  | DataFlashSubClassPage7 | hex          | 32               | —          | —         | —                |       |  |
| 0x7f       | R/W  | DataFlashSubClassPage8 | hex          | 32               | _          | _         | _                |       |  |



# **PACKAGING INFORMATION**

| Orderable Device  | Status<br>(1) | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan<br>(2)            | Lead/Ball Finish<br>(6) | MSL Peak Temp       | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|-------------------|---------------|--------------|--------------------|------|----------------|----------------------------|-------------------------|---------------------|--------------|-------------------------|---------|
| BQ20Z90DBT-V150   | NRND          | TSSOP        | DBT                | 30   | 60             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-2-260C-1 YEAR | -40 to 85    | BQ20Z90                 |         |
| BQ20Z90DBT-V150G4 | NRND          | TSSOP        | DBT                | 30   | 60             | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-2-260C-1 YEAR | -40 to 85    | BQ20Z90                 |         |
| BQ20Z90DBTR-V150  | NRND          | TSSOP        | DBT                | 30   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-2-260C-1 YEAR | -40 to 85    | BQ20Z90                 |         |
| HPA00742DBTR      | NRND          | TSSOP        | DBT                | 30   | 2000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU               | Level-2-260C-1 YEAR | -40 to 85    | BQ20Z90                 |         |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

<sup>(6)</sup> Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.



www.ti.com

15-Apr-2017

**Important Information and Disclaimer:**The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DBT (R-PDSO-G30)

PLASTIC SMALL OUTLINE



B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-153.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated