Low Noise Transistors

PNP Silicon

Features

• These are Pb-Free Devices*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	-45	Vdc
Collector – Base Voltage	V _{CBO}	-50	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous	Ι _C	-100	mAdc
Total Power Dissipation @ $T_A = 25^{\circ}C$ Derate above $T_A = 25^{\circ}C$	PD	625 5.0	mW mW/°C
Total Power Dissipation @ $T_A = 25^{\circ}C$ Derate above $T_A = 25^{\circ}C$	PD	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W	
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	83.3	°C/W	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAM

A	= Assembly Location		
Y	= Year		
WW	= Work Week		
-	= Pb-Free Package		
(Note: Microdot may be in either location)			

ORDERING INFORMATION

Device	Package	Shipping
BC560CG	TO-92 (Pb-Free)	5000 Units / Bulk
BC560CZL1G	TO-92 (Pb-Free)	2000 / Ammo Pack

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•		
Collector – Emitter Breakdown Voltage $(I_C = -10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	-45	-	_	Vdc
Collector – Base Breakdown Voltage $(I_C = -10 \ \mu Adc, I_E = 0)$	V _{(BR)CBO}	-50	-	_	Vdc
Emitter – Base Breakdown Voltage (I _E = $-10 \ \mu$ Adc, I _C = 0)	V _{(BR)EBO}	-5.0	-	-	Vdc
Collector Cutoff Current (V _{CB} = -30 Vdc, I _E = 0) (V _{CB} = -30 Vdc, I _E = 0, T _A = +125°C)	I _{CBO}			-15 -5.0	nAdc μAdc
Emitter Cutoff Current ($V_{EB} = -4.0 \text{ Vdc}, I_{C} = 0$)	I _{EBO}	_	-	-15	nAdc
ON CHARACTERISTICS					
DC Current Gain (I _C = -10 μ Adc, V _{CE} = -5.0 Vdc) (I _C = -2.0 mAdc, V _{CE} = -5.0 Vdc)	h _{FE}	100 380	270 500	_ 800	-
$ Collector - Emitter Saturation Voltage \\ (I_C = -10 mAdc, I_B = -0.5 mAdc) \\ (I_C = -10 mAdc, I_B = (Note 1) \\ (I_C = -100 mAdc, I_B = -5.0 mAdc, (Note 2) $	V _{CE(sat)}		-0.075 -0.3 -0.25	-0.25 -0.6 -	Vdc
Base – Emitter Saturation Voltage ($I_C = -100 \text{ mAdc}, I_B = -5.0 \text{ mAdc}$)	V _{BE(sat)}	-	-1.1	_	Vdc
$\begin{array}{l} \text{Base-Emitter On Voltage} \\ (I_{C} = -10 \ \mu\text{Adc}, \ V_{CE} = -5.0 \ \text{Vdc}) \\ (I_{C} = -100 \ \mu\text{Adc}, \ V_{CE} = -5.0 \ \text{Vdc}) \\ (I_{C} = -2.0 \ \text{mAdc}, \ V_{CE} = -5.0 \ \text{Vdc}) \end{array}$	V _{BE(on)}	_ _ _0.55	-0.52 -0.55 -0.62	_ _ _0.7	Vdc
SMALL-SIGNAL CHARACTERISTICS	·	•			
Current–Gain – Bandwidth Product ($I_C = -10$ mAdc, $V_{CE} = -5.0$ Vdc, f = 100 MHz)	f _T	_	250	-	MHz
Collector-Base Capacitance $(V_{CB} = -10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz})$	C _{cbo}	-	2.5	_	pF
Small–Signal Current Gain ($I_C = -2.0$ mAdc, $V_{CE} = -5.0$ V, f = 1.0 kHz)	h _{fe}	450	600	900	_
Noise Figure (I _C = -200 μ Adc, V _{CE} = -5.0 Vdc, R _S = 2.0 kΩ, f = 1.0 kHz) (I _C = -200 μ Adc, V _{CE} = -5.0 Vdc, R _S = 100 kΩ, f = 1.0 kHz, Δ f = 200 kHz)	NF ₁ NF ₂		0.5 -	2.0 10	dB

1. I_B is value for which I_C = -11 mA at V_{CE} = -1.0 V. 2. Pulse test = 300 μ s - Duty cycle = 2%.

-0.5

-1.0

IC, COLLECTOR CURRENT (mAdc) Figure 5. Base Spreading Resistance

-2.0

-5.0

-10

130

120 L -0.1

-0.2

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 ISSUE AM

ON Semiconductor and **OD** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use paperies and alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative