

1550 MHz to 2150 MHz Rx Mixer with Integrated Fractional-N PLL and VCO

ADRF6602

FEATURES

Rx mixer with integrated fractional-N PLL RF input frequency range: 1000 MHz to 3100 MHz Internal LO frequency range: 1550 MHz to 2150 MHz Input P1dB: 14.5 dBm Input IP3: 30 dBm IIP3 optimization via external pin SSB noise figure IP3SET pin open: 13.5 dB IP3SET pin at 3.3 V: 14 dB Voltage conversion gain: 6 dB Matched 200 Ω IF output impedance IF 3 dB bandwidth: 500 MHz Programmable via 3-wire SPI interface 40-lead, 6 mm × 6 mm LFCSP

APPLICATIONS

Cellular base stations

GENERAL DESCRIPTION

The ADRF6602 is a high dynamic range active mixer with integrated phase-locked loop (PLL) and voltage-controlled oscillator (VCO). The PLL/synthesizer uses a fractional-N PLL to generate an f_{LO} input to the mixer. The reference input can be divided or multiplied and then applied to the PLL phase frequency detector (PFD).

The PLL can support input reference frequencies from 12 MHz to 160 MHz. The PFD output controls a charge pump whose output drives an off-chip loop filter.

The loop filter output is then applied to an integrated VCO. The VCO output at $2 \times f_{LO}$ is applied to an LO divider, as well as to a programmable PLL divider. The programmable PLL divider is controlled by a Σ - Δ modulator (SDM). The modulus of the SDM can be programmed from 1 to 2047.

The active mixer converts the single-ended 50 Ω RF input to a 200 Ω differential IF output. The IF output can operate up to 500 MHz.

The ADRF6602 is fabricated using an advanced silicon-germanium BiCMOS process. It is available in a 40-lead, RoHS-compliant, 6 mm \times 6 mm LFCSP with an exposed paddle. Performance is specified over the -40°C to +85°C temperature range.

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1
Applications1
General Description
Functional Block Diagram1
Revision History
Specifications
RF Specifications
Synthesizer/PLL Specifications
Logic Input and Power Specifications5
Timing Characteristics
Absolute Maximum Ratings
ESD Caution
Pin Configuration and Function Descriptions7
Typical Performance Characteristics9
Register Structure
Register 0—Integer Divide Control (Default: 0x0001C0)11
Register 1—Modulus Divide Control (Default: 0x003001)11
Register 2—Fractional Divide Control (Default: 0x001802)12
Register 3—Σ-Δ Modulator Dither Control (Default: 0x10000B)12

REVISION HISTORY

1/10—Revision 0: Initial Version

SPECIFICATIONS

RF SPECIFICATIONS

 $V_s = 5 V$; ambient temperature (T_A) = 25°C; $f_{REF} = 38.4 \text{ MHz}$; $f_{PFD} = 38.4 \text{ MHz}$; high-side LO injection; $f_{IF} = 140 \text{ MHz}$; IIP3 optimized using capacitor DAC (0x0) and IP3SET (3.3 V), unless otherwise noted.

Table 1.					
Parameter	Test Conditions/Comments	Min	Тур	Мах	Unit
INTERNAL LO FREQUENCY RANGE		1550		2150	MHz
RF INPUT FREQUENCY RANGE	±3 dB RF input range	1000		3100	MHz
RF INPUT AT 1410 MHz					
Input Return Loss	Relative to 50 Ω (can be improved with external match)		-12		dB
Input P1dB			15		dBm
Second-Order Intercept (IIP2)	–5 dBm each tone (10 MHz spacing between tones)		56.5		dBm
Third-Order Intercept (IIP3)	–5 dBm each tone (10 MHz spacing between tones)		31.5		dBm
Single-Side Band Noise Figure	IP3SET = 3.3 V		14		dB
	IP3SET = open		13.5		dB
LO to IF Leakage	At 1× LO frequency, 50 Ω termination at the RF port		-47		dBm
RF INPUT AT 1760 MHz					
Input Return Loss	Relative to 50 Ω (can be improved with external match)		-12		dB
Input P1dB			15		dBm
Second-Order Intercept (IIP2)	-5 dBm each tone (10 MHz spacing between tones)		55		dBm
Third-Order Intercept (IIP3)	-5 dBm each tone (10 MHz spacing between tones)		30.0		dBm
Single-Side Band Noise Figure	IP3SET = 3.3 V		15		dB
	IP3SET = open		13.3		dB
LO to IF Leakage	At 1× LO frequency, 50 Ω termination at the RF port		-47		dBm
RF INPUT AT 2010 MHz					
Input Return Loss	Relative to 50 Ω (can be improved with external match)		-12		dB
Input P1dB			14.5		dBm
Second-Order Intercept (IIP2)	–5 dBm each tone (10 MHz spacing between tones)		57		dBm
Third-Order Intercept (IIP3)	-5 dBm each tone (10 MHz spacing between tones)		28.5		dBm
Single-Side Band Noise Figure	IP3SET = 3.3 V		16		dB
	IP3SET = open	15 13.3 -47 -12 14.5 57 28.5 16 14.7 -46 6			dB
LO to IF Leakage	At 1× LO frequency, 50 Ω termination at the RF port		-46		dBm
IF OUTPUT					
Voltage Conversion Gain	Differential 200 Ω load		6		dB
IF Bandwidth	Small-signal 3 dB bandwidth		500		MHz
Output Common-Mode Voltage	External pull-up balun or inductors required		5		V
Gain Flatness	Over frequency range, any 5 MHz/50 MHz		0.2/1.0		dB
Gain Variation	Over full temperature range		1.0		dB
Output Swing	Differential 200 Ω load		2		V p-р
Output Return Loss	Relative to 200 Ω		-12		dB
LO INPUT/OUTPUT (LOP, LON)	Externally applied 1× LO input, internal PLL disabled				
Frequency Range		250		6000	MHz
Output Level (LO as Output)	$1 \times$ LO into a 50 Ω load, LO output buffer enabled		-7		dBm
Input Level (LO as Input)			±б		dBm
Input Impedance			50		Ω

SYNTHESIZER/PLL SPECIFICATIONS

 $V_s = 5 V$; ambient temperature (T_A) = 25°C; $f_{REF} = 153.6 MHz$; $f_{PFD} = 38.4 MHz$; high-side LO injection; $f_{IF} = 140 MHz$; IIP3 optimized using capacitor DAC (0x0) and IP3SET (3.3 V), unless otherwise noted.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
SYNTHESIZER SPECIFICATIONS	Synthesizer specifications referenced to 1×LO		·		
Frequency Range	Internally generated LO	1550		2150	MHz
Figure of Merit	$P_{REF_{IN}} = 0 \text{ dBm}$		-222		dBc/Hz
Reference Spurs	$f_{REF} = 153.6 \text{ MHz}$				
	f _{REF} /4		-105		dBc
	f _{REF} /2		-105		dBc
	f _{REF}		-80		dBc
	$> f_{REF}$	- 2 - 1 - 1 - 1 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8	-85		dBc
PHASE NOISE	$f_{LO} = 1550 \text{ MHz}$ to 2150 MHz, $f_{PFD} = 38.4 \text{ MHz}$				
	1 kHz to 10 kHz offset		-90		dBc/Hz
	100 kHz offset		-103		dBc/Hz
	500 kHz offset		-122		dBc/Hz
	1 MHz offset		-130		dBc/Hz
	5 MHz offset		-142		dBc/Hz
	10 MHz offset		-148		dBc/Hz
	20 MHz offset		-150		dBc/Hz
Integrated Phase Noise	1 kHz to 40 MHz integration bandwidth		0.3		°rms
PFD Frequency		20		40	MHz
REFERENCE CHARACTERISTICS	REF_IN, MUXOUT pins				
REF_IN Input Frequency		12		160	MHz
REF_IN Input Capacitance			4		pF
MUXOUT Output Level	Vol (lock detect output selected)			0.25	V
	V _{OH} (lock detect output selected)	2.7			V
MUXOUT Duty Cycle			50		%
CHARGE PUMP					
Pump Current	Programmable to 250 μA, 500 μA, 750 μA, 1 mA		500		μA
Output Compliance Range		1		2.8	v

LOGIC INPUT AND POWER SPECIFICATIONS

 $V_s = 5 V$; ambient temperature (T_A) = 25°C; $f_{REF} = 38.4 \text{ MHz}$; $f_{PFD} = 38.4 \text{ MHz}$; high-side LO injection; $f_{IF} = 140 \text{ MHz}$; IIP3 optimized using capacitor DAC (0x0) and IP3SET (3.3 V), unless otherwise noted.

Table 3.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
LOGIC INPUTS	CLK, DATA, LE				
Input High Voltage, V _{INH}		1.4		3.3	V
Input Low Voltage, V _{INL}		0		0.7	V
Input Current, I _{INH} /I _{INL}			0.1		μΑ
Input Capacitance, C _{IN}			5		pF
POWER SUPPLIES	VCC1, VCC2, VCC_LO, VCC_MIX, and VCC_V2I pins				
Voltage Range		4.75	5	5.25	V
Supply Current	PLL only		97		mA
	External LO mode (internal PLL disabled, IP3SET pin = 3.3 V)		165		mA
	Internal LO mode (internal PLL enabled, IP3SET pin = 3.3 V)		262		mA
	Power-down mode		30		mA

TIMING CHARACTERISTICS

 $VCC2 = 5 V \pm 5\%.$

Table 4.

Parameter	Limit	Unit	Description
t1	20	ns min	LE setup time
t ₂	10	ns min	DATA to CLK setup time
t ₃	10	ns min	DATA to CLK hold time
t4	25	ns min	CLK high duration
t ₅	25	ns min	CLK low duration
t ₆	10	ns min	CLK to LE setup time
t7	20	ns min	LE pulse width

Timing Diagram

Figure 2. Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 5.

14010 51	
Parameter	Rating
Supply Voltage, VCC1, VCC2, VCC_LO, VCC_MIX, VCC_V2I	–0.5 V to +5.5 V
Digital I/O, CLK, DATA, LE	–0.3 V to +3.6 V
IFP, IFN	–0.3 V to VCC + 0.3 V
RFIN	18 dBm
θ_{JA} (Exposed Paddle Soldered Down)	35°C/W
Maximum Junction Temperature	150°C
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	–65°C to +150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VCC1	Power Supply for the 3.3 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 μ F capacitor located close to the pin.
2	DECL3P3	Decoupling Node for 3.3 V LDO. Connect a 0.1 μ F capacitor between this pin and ground.
3	СР	Charge Pump Output Pin. Connect to VTUNE through loop filter.
4, 7, 11, 15, 20, 21, 23, 24, 25, 28, 30, 31, 35	GND	Ground. Connect these pins to a low impedance ground plane.
5	Rset	Charge Pump Current. The nominal charge pump current can be set to 250 µA, 500 µA, 750 µA, or 1 mA using Bit DB11 and Bit DB10 in Register 4 and by setting Bit DB18 to 0 (internal reference current). In this mode, no external R _{SET} is required. If Bit DB18 is set to 1, the four nominal charge pump currents (I _{NOMINAL}) can be externally adjusted according to the following equation: $R_{SET} = \left(\frac{217.4 \times I_{CP}}{I_{NOMINAL}}\right) - 37.8 \Omega$
6	REF_IN	Reference Input. Nominal input level is 1 V p-p. Input range is 12 MHz to 160 MHz.
8	MUXOUT	Multiplexer Output. This output can be programmed to provide the reference output signal or the lock detect signal. The output is selected by programming the appropriate register.
9	DECL2P5	Decoupling Node for 2.5 V LDO. Connect a 0.1 μF capacitor between this pin and ground.
10	VCC2	Power Supply for the 2.5 V LDO. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 μ F capacitor located close to the pin.
12	DATA	Serial Data Input. The serial data input is loaded MSB first; the three LSBs are the control bits.
13	CLK	Serial Clock Input. The serial clock input is used to clock in the serial data to the registers. The data is latched into the 24-bit shift register on the CLK rising edge. Maximum clock frequency is 20 MHz.
14	LE	Load Enable. When the LE input pin goes high, the data stored in the shift registers is loaded into one of the eight registers. The relevant latch is selected by the three control bits of the 24-bit word.
16	PLL_EN	PLL Enable. Switch between internal PLL and external LO input. When this pin is logic high, the mixer LO is automatically switched to the internal PLL and the internal PLL is powered up. When this pin is logic low, the internal PLL is powered down and the external LO input is routed to the mixer LO inputs. The SPI can also be used to switch modes.
17, 34	VCC_LO	Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin.
18, 19	IFP, IFN	Mixer IF Outputs. These outputs should be pulled to VCC with RF chokes.
22	VCC_MIX	Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 µF capacitor located close to the pin.
26	RF _{IN}	RF Input (Single-Ended, 50 Ω).

Pin No.	Mnemonic	Description
27	VCC_V2I	Power Supply. Power supply voltage range is 4.75 V to 5.25 V. Each power supply pin should be decoupled with a 100 pF capacitor and a 0.1 μ F capacitor located close to the pin.
29	IP3SET	Connect a resistor from this pin to a +5 V supply to adjust IIP3. Normally leave open.
32, 33	NC	No Connection.
36	LODRV_EN	LO Driver Enable. Together with Pin 16 (PLL_EN), this digital input pin determines whether the LOP and LON pins operate as inputs or outputs. LOP and LON become inputs if the PLL_EN pin is low or if the PLL_EN pin is set high with the PLEN bit (DB6 in Register 5) set to 0. LOP and LON become outputs if either the LODRV_EN pin or the LDRV bit (DB3 in Register 5) is set to 1 while the PLL_EN pin is set high. External LO drive frequency must be 1× LO. This pin should not be left floating.
37, 38	LON, LOP	Local Oscillator Input/Output. The internally generated 1× LO is available on these pins. When internal LO generation is disabled, an external 1× LO can be applied to these pins.
39	VTUNE	VCO Control Voltage Input. This pin is driven by the output of the loop filter. Nominal input voltage range on this pin is 1.5 V to 2.5 V.
40	DECLVCO	Decoupling Node for VCO LDO. Connect a 100 pF capacitor and a 10 µF capacitor between this pin and ground.
EP	EPAD	Exposed Paddle. The exposed paddle should be soldered to a low impedance ground plane.

TYPICAL PERFORMANCE CHARACTERISTICS

CDAC = 0x0, IP3SET = 3.3 V, internally generated LO, $RF_{IN} = -10 dBm$, $f_{IF} = 140 MHz$, unless otherwise noted.

Phase noise measurements made at LO output, unless otherwise noted.

Figure 10. PLL Spot Phase Noise at Various Offsets and Integrated Phase Noise vs. LO Frequency

Figure 12. Phase Noise vs. Offset Frequency and LO Frequency (LO Frequency Varies from 1550 MHz to 2150 MHz)

REGISTER STRUCTURE

This section provides the register maps for the ADRF6602. The three LSBs determine the register that is programmed.

REGISTER 0—INTEGER DIVIDE CONTROL (DEFAULT: 0x0001C0)

	RESERVED											INTEGER DIVIDE RATIO						CONTROL BITS					
DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	0	0	0	0	DM	ID6	ID5	ID4	ID3	ID2	ID1	ID0	C3(0)	C2(0)	C1(0)
												DM	DIVIDE N	IODE									
												0	FRACTIC										
												1	INTEGER										
												<u>.</u>											

<u> </u>													
ID6	ID5	ID4	ID3	ID2	ID1	ID0	INTEGER DIVIDE RATIO						
0	0	1	0	1	0	1	21 (INTEGER MODE ONLY)						
0	0	1	0	1	1	0	22 (INTEGER MODE ONLY)						
0	0	1	0	1	1	1	23 (INTEGER MODE ONLY)						
0	0	1	1	0	0	0	24						
0	1	1	1	0	0	0	56 (DEFAULT)						
1	1	1	0	1	1	1	119						
1	1	1	1	0	0	0	120 (INTEGER MODE ONLY)						
1	1	1	1	0	0	1	121 (INTEGER MODE ONLY)						
1	1	1	1	0	1	0	122 (INTEGER MODE ONLY)						
1	1	1	1	0	1	1	123 (INTEGER MODE ONLY)						

Figure 13. Register 0—Integer Divide Control Register Map

REGISTER 1—MODULUS DIVIDE CONTROL (DEFAULT: 0x003001)

				RESE	RVED						MODULUS VALUE										CONTROL BITS								
DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0						
0	0	0	0	0	0	0	0	0	0	MD10	MD9	MD8	MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0	C3(0)	C2(0)	C1(1)						
																ł													
										MD10	MD9	MD8	MD7	MD6	MD5	MD4	MD3	MD2	MD1	MD0	MODULUS VALUE								
										0	0	0	0	0	0	0	0	0	0	1	1								
										0	0	0	0	0	0	0	0	0	1	0	2								
										1	1	0	0	0	0	0	0	0	0	0	1536 (DEFAULT)								
										1	1	1	1	1	1	1	1	1	1	1	2047								

Figure 14. Register 1—Modulus Divide Control Register Map

REGISTER 2—FRACTIONAL DIVIDE CONTROL (DEFAULT: 0x001802)

										-				-									
				RESE	RVED					FRACTIONAL VALUE											CONTROL BITS		
DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	0	FD10	FD9	FD8	FD7	FD6	FD5	FD4	FD3	FD2	FD1	FD0	C3(0)	C2(1)	C1(0)
									FD10	FD9	FD8	FD7	FD6	FD5	FD4	FD3	FD2	FD1	FD0	FRA	CTIONA	L VALU	JE
									0	0	0	0	0	0	0	0	0	0	0	0			
									0	0	0	0	0	0	0	0	0	0	1	1			
									0	1	1	0	0	0	0	0	0	0	0	768	(DEFAU	LT)	
										F	RACTIC	NAL VA	LUE M	UST BE	LESS T	HAN MO	ODULU	s		<md< td=""><td>R</td><td></td><td></td></md<>	R		

Figure 15. Register 2—Fractional Divide Control Register Map

REGISTER 3— Σ - Δ MODULATOR DITHER CONTROL (DEFAULT: 0x10000B)

				DITHER								DITHE	R RES	TART	VALUE	Ξ						CON	TROL I	вітѕ
	DB23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	0	DITH1	DITH0	DEN	DV16	DV15	DV14	DV13	DV12	DV11	DV10	DV9	DV8	DV7	DV6	DV5	DV4	DV3	DV2	DV1	DV0	C3(0)	C2(1)	C1(1)
			1																					
DITH1	DITH0		MAGNITU																					
0	0	15 (DEFA	NULT)																					
0	1	7																						
1	0	3																						
1	1 1 (RECOMMENDED)																							
				DEN	DITH	ER EN/	ABLE																	
				0	DISA	BLE (R	ECON	IMEND	ED)															
				1	ENAE	BLE (DI	EFAUL	_T)																
						-		-						•										
				DV16	DV15	DV14	DV13	DV12	DV11	DV10	DV9	DV8	DV7	DV6	DV5	DV4	DV3	DV2	DV1	DV		THER I	RESTA	RT
				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0x	00001	(DEFAI	ULT)
																•••								
				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0x	1FFFF		

Figure 16. Register 3— Σ - Δ Modulator Dither Control Register Map

08545-008

REGISTER 4—PLL CHARGE PUMP, PFD, AND REFERENCE PATH CONTROL (DEFAULT: 0x0AA7E4)

Figure 17. Register 4—PLL Charge Pump, PFD, and Reference Path Control Register Map

REGISTER 5—PLL ENABLE AND LO PATH CONTROL (DEFAULT: 0x0000E5)

Figure 18. Register 5—PLL Enable and LO Path Control Register Map

REGISTER 6—VCO CONTROL AND VCO ENABLE (DEFAULT: 0x1E2106)

Figure 19. Register 6—VCO Control and VCO Enable Register Map

8545-010

REGISTER 7—MIXER BIAS ENABLE AND EXTERNAL VCO ENABLE (DEFAULT: 0x000007)

s	хvсо	IVCO MIXER B_EN RESERVED									CONTROL BITS												
23	DB22	DB21	DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	хусо	MBE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C3(1)	C2(1)	C1(1)
MBE MIXER BIAS ENABLE 0 DISABLE 1 ENABLE (DEFAULT)																							
XVCO EXTERNAL VCO 0 INTERNAL VCO (DEFAULT)																							
0 INTERNAL VCO (DEFAULT) 1 EXTERNAL VCO						-'/																	

Figure 20. Register 7—Mixer Bias Enable and External VCO Enable Register Map

THEORY OF OPERATION

The ADRF6602 integrates a high performance downconverting mixer with a state-of-the-art fractional-N PLL. The PLL also integrates a low noise VCO. The SPI port allows the user to control the fractional-N PLL functions and the mixer optimization functions, as well as allowing for an externally applied LO or VCO.

The mixer core within the ADRF6602 is the next generation of an industry leading family of mixers from Analog Devices, Inc. The RF input is converted to a current and then mixed down to IF using high performance NPN transistors. The mixer output currents are transformed to a differential output. The high performance active mixer core results in an exceptional IIP3 and IP1dB, with a very low output noise floor for excellent dynamic range. Over the specified frequency range, the ADRF6602 typically provides IF input P1dB of 14.5 dBm and IIP3 of 30 dBm.

Improved performance at specific frequencies can be achieved with the use of the internal capacitor DAC (CDAC), which is programmable via the SPI port, and through the use of a resistor to a +5 V supply from the IP3SET pin (Pin 29). Adjustment of the capacitor DAC allows increments in phase shift at internal nodes in the ADRF6602, thus allowing cancellation of thirdorder distortion with no change in supply current. Connecting a resistor to a +5 V supply from the IP3SET pin increases the internal mixer core current, thereby improving overall IIP2 and IIP3, as well as IP1dB. Using the IP3SET pin for this purpose increases the overall supply current.

The fractional divide function of the PLL allows the frequency multiplication value from REF_IN to LO output to be a fractional value rather than be restricted to an integer value as in traditional PLLs. In operation, this multiplication value is INT + (FRAC/MOD), where INT is the integer value, FRAC is the fractional value, and MOD is the modulus value, all programmable via the SPI port. In other fractional-N PLL designs, fractional multiplication is achieved by periodically changing the fractional value in a deterministic way. The disadvantage of this approach is often spurious components close to the fundamental signal. In the ADRF6602, a Σ - Δ modulator is used to distribute the fractional value randomly, thus significantly reducing the spurious content due to the fractional function.

PROGRAMMING THE ADRF6602

The ADRF6602 is programmed via a 3-pin SPI port. The timing requirements for the SPI port are shown in Figure 2. Eight programmable registers, each with 24 bits, control the operation of the device. The register functions are listed in Table 7.

Register	Function								
Register 0	Integer divide control for the PLL								
Register 1	Modulus divide control for the PLL								
Register 2	Fractional divide control for the PLL								
Register 3	Σ - Δ modulator dither control								
Register 4	PLL charge pump, PFD, reference path control								
Register 5	PLL enable and LO path control								
Register 6	VCO control and VCO enable								
Register 7	Mixer bias enable and external VCO enable								

Table 7. ADRF6602 Register Functions

Note that internal calibration for the PLL must be run when the ADRF6602 is initialized at a given frequency. This calibration is run automatically whenever Register 0, Register 1, or Register 2 is programmed. Because the other registers affect PLL performance, Register 0, Register 1, and Register 2 should always be programmed last and in this order: Register 0, Register 1, Register 2.

To program the frequency of the ADRF6602, the user typically programs only Register 0, Register 1, and Register 2. However, if registers other than these are programmed first, a short delay should be inserted before programming Register 0. This delay ensures that the VCO band calibration has sufficient time to complete before the final band calibration for Register 0 is initiated.

Software is available on the product page of the Analog Devices website (www.analog.com) that allows easy programming from a PC running Windows XP or Vista.

INITIALIZATION SEQUENCE

To ensure proper power-up of the ADRF6602, it is important to reset the PLL circuitry after the VCC supply rail settles to 5 V \pm 0.25 V. Resetting the PLL ensures that the internal bias cells are properly configured, even under poor supply start-up conditions.

To ensure that the PLL is reset after power-up, follow this procedure:

- 1. Disable the PLL by setting the PLEN bit to 0 (Register 5, Bit DB6).
- 2. Disable the VCO LDO internal node by setting the LVEN bit to 0 (Register 6, Bit DB18).
- 3. After a delay of >100 ms, set the PLEN and LVEN bits to 1.

After this procedure, the other registers can be programmed, in order, from Register 7 to Register 3, and then from Register 0 to Register 2, as described in the Programming the ADRF6602 section.

LO SELECTION LOGIC

The downconverting mixer in the ADRF6602 can be used without the internal PLL by applying an external differential LO to Pin 37 and Pin 38 (LON and LOP). In addition, when using an LO generated by the internal PLL, the LO signal can be accessed directly at these same pins. This function can be used for debugging purposes, or the internally generated LO can be used as the LO for a separate mixer. The operation of the LO generation and whether LOP and LON are inputs or outputs are determined by the logic levels applied at Pin 16 (PLL_EN) and Pin 36 (LODRV_EN), as well as Bit DB3 (LDRV) and Bit DB6 (PLEN) in Register 5. The combination of externally applied logic and internal bits required for particular LO functions is given in Table 8.

Table 8. LO Selection Logic

	Pins ¹	Regi	ster 5 Bits ¹	Outputs			
Pin 16 (PLL_EN)	Pin 36 (LODRV_EN)	Bit DB6 (PLEN)	Bit DB3 (LDRV)	Output Buffer	LO		
0	Х	0	Х	Disabled	External		
0	Х	1	Х	Disabled	External		
1	Х	0	Х	Disabled	External		
1	0	1	0	Disabled	Internal		
1	X	1	1	Enabled	Internal		
1	1	1	Х	Enabled	Internal		

¹ X = don't care.

APPLICATIONS INFORMATION BASIC CONNECTIONS FOR OPERATION

Figure 21 shows the schematic for the ADRF6602 evaluation board. The six power supply pins should be individually decoupled using 100 pF and 0.1 μ F capacitors located as close as possible to the device. In addition, the internal decoupling nodes (DECL3P3, DECL2P5, and DECLVCO) should be decoupled with the capacitor values shown in Figure 21.

The RF input is internally ac-coupled and needs no external bias. The IF outputs are open collector, and a bias inductor is required from these outputs to VCC.

A peak-to-peak differential swing on RF_{IN} of 1 V (0.353 V rms for a sine wave input) results in an IF output power of 3.8 dBm.

The reference frequency for the PLL should be from 12 MHz to 160 MHz and should be applied to the REF_IN pin, which should be ac-coupled and terminated with a 50 Ω resistor as

shown in Figure 21. The reference signal, or a divided-down version of the reference signal, can be brought back off chip at the multiplexer output pin (MUXOUT). A lock detect signal and a voltage proportional to the ambient temperature can also be selected on the multiplexer output pin.

The loop filter is connected between the CP and VTUNE pins. When connected in this way, the internal VCO is operational. For information about the loop filter components, see the Evaluation Board Configuration Options section.

Operation with an external VCO is also possible. In this case, the loop filter components should be referred to ground. The output of the loop filter is connected to the input voltage pin of the external VCO. The output of the VCO is brought back into the device on the LOP and LON pins, using a balun if necessary.

Figure 21. Basic Connections for Operation of the ADRF6602

EVALUATION BOARD

Figure 24 shows the schematic of the RoHS-compliant evaluation board for the ADRF6602. This board has four layers and was designed using Rogers 4350 hybrid material to minimize high frequency losses. FR4 material is also adequate if the design can accept the slightly higher trace loss of this material.

The evaluation board is designed to operate using the internal VCO of the device (the default configuration) or with an external VCO. To use an external VCO, R62 and R12 should be removed. Place 0 Ω resistors in R63 and R11. The input of the external VCO should be connected to the VTUNE SMA connector, and the external VCO output should be connected to the LO IN/OUT SMA connector. In addition to these hardware changes, internal register settings must also be changed to enable operation with an external VCO (see the Register 6-VCO Control and VCO Enable (Default: 0x1E2106) section).

Additional configuration options for the evaluation board are described in Table 9.

EVALUATION BOARD CONTROL SOFTWARE

Software to program the ADRF6602 is available for download from www.analog.com. To install the software, download and extract the zip file. Then run the following installation file:

ADRF6x0x_3p0p0_XP_install.exe

The evaluation board can be connected to the PC using a PC parallel port or a USB port. These options are selectable from the opening menu of the software interface (see Figure 22). The evaluation board is shipped with a 25-pin parallel port cable for connection to the PC parallel port.

To connect the evaluation board to a USB port, a USB adapter board (Part No. EVAL-ADF4XXXZ-USB) must be purchased from www.analog.com. This board connects to the PC using a standard USB cable with USB mini-connector at one end. An additional 25-pin male to 9-pin female adapter is required to mate the ADF4XXXZ-USB board to the 9-pin D-Sub connector on the ADRF6602 evaluation board.

Figure 22. Control Software Opening Menu

Figure 23 shows the main menu of the control software with the default settings displayed.

LO Path and Modulator Control	RF Section		Charge Pump (CP)
LO Output Driver Enabled	Divide Mode:	Fractional 💽	Current Reference Source: Internal (250uA) CP Current Multiplier: x2
Mixer LO Source - Internal VCD	REF Input Frequency: PFD Frequency: Modulus: VCO Frequency:(2xLO) LO Frequency: Channel Step Size:	38.400000 MHz 38.400000 MHz 1536 3880.000000 MHz 1940.000000 MHz 25.000000 kHz	CP current (uA) 500 uA PFD Phase Offset Valid range = 0 · 31 • 10 x 22.5°/CP current multiplier PFD Phase Offset Polarity: PFD Phase Offset Intervention PFD Phase Offset Polarity: PFD Phase Offset 112.5 degrees
Output Reference Mux Source:	nable: Control and Enabl	les	PFD
Lock Detect SDM Dither Control Dither Restart Value: 1 SDM Dither Enable: Disable	VCO Enable: 3.3V LDO Enable: Charge Pump Enable: External VCO Enable:		PFD Divider Path Edge Sensitivity: Falling Edge Sensitivity PFD Reference Path Edge Sensitivity: Rising Edge Sensitivity
VCO Amplitude Setting: 31			CAP DAC Value: 15
Currently Loaded in Registers: MSB Binary LSB Hex	All Registe	ers Updated	Currently Loaded in Registers: Hex MSB Binary LSB
0000000000000110010000 190	R0 Updated	R4 Updated	AA7A4 000010101010011110100100
0000000001100000000001 3001	R1 Updated	R5 Updated	FED 00000000000111111101101
00000000001100100000010 1902	R2 Updated	R6 Updated	1E7D06 000111100111110100000110
	The second secon	R7 Updated	7 0000000000000000000000000000000000000

Figure 23. Main Screen of the ADRF6602 Evaluation Board Software

SCHEMATICS AND ARTWORK

Figure 24. Evaluation Board Schematic

Figure 25. Evaluation Board Layout (Bottom)

Figure 26. Evaluation Board Layout (Top)

EVALUATION BOARD CONFIGURATION OPTIONS

Table 9.

Component	Description	Default Condition/ Option Settings
S1, R55, R56, R33	LO select. Switch and resistors to ground the LODRV_EN pin. The LODRV_EN pin setting, in combination with internal register settings, determines whether the LOP and LON pins function as inputs or outputs (see the LO Selection Logic section for more information).	S1 = R55 = open (not installed) R56 = R33 = 0 Ω LODRV_EN = 0 V
LO IN/OUT SMA Connector	LO input/output. An external $1 \times$ LO or $2 \times$ LO can be applied to this single-ended input connector.	LO input
REFIN SMA Connector	Reference input. The input reference frequency for the PLL is applied to this connector. Input impedance is 50 Ω .	
REFOUT SMA Connector	Multiplexer output. The REFOUT connector connects directly to the MUXOUT pin. The on-board multiplexer can be programmed to bring out the following signals: REFIN, 2× REFIN, REFIN/2, REFIN/4.	Lock detect
	Temperature sensor output voltage. Lock detect indicator.	
CP Test Point	Charge pump test point. The unfiltered charge pump signal can be probed at this test point. Note that the CP pin should not be probed during critical measurements such as phase noise.	
R37, C14, R9, R10, C15, C13, R65, C40	Loop filter. Loop filter components.	
R11, R12	Loop filter return. When the internal VCO is used, the loop filter components should be returned to Pin 40 (DECLVCO) by installing a 0 Ω resistor in R12. When an external VCO is used, the loop filter components can be returned to ground by installing a 0 Ω resistor in R11.	R12 = 0 Ω (0402) R11 = open (0402)
R62, R63, VTUNE SMA Connector	Internal vs. external VCO. When the internal VCO is enabled, the loop filter components are connected directly to the VTUNE pin (Pin 39) by installing a 0 Ω resistor in R62. To use an external VCO, R62 should be left open. A 0 Ω resistor should be installed in R63, and the voltage input of the VCO should be connected to the VTUNE SMA connector. The output of the VCO is brought back into the PLL via the LO IN/OUT SMA connector.	R62 = 0 Ω (0402) R63 = open (0402)
R2	R _{SET} pin. This pin is unused and should be left open.	R2 = open (0402)
RFIN SMA Connector	RF input. The RF input signal should be applied to the RFIN SMA connector. The RF input of the ADRF6602 is ac-coupled, so no bias is necessary.	R3 = R23 = open (0402)
Т3	IF output. The differential IF output signals from the ADRF6602 (IFP and IFN) are converted to a single-ended signal by T3.	

OUTLINE DIMENSIONS

Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADRF6602ACPZ-R7	-40°C to +85°C	40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-40-1
ADRF6602-EVALZ		Evaluation Board	

¹ Z = RoHS Compliant Part.

NOTES

©2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08545-0-1/10(0)

www.analog.com

Rev. 0 | Page 24 of 24