

869 MHz to 1990 MHz Quadrature Modulators ADL5590/ADL5591

FEATURES

Operating frequencies ADL5590: 869 MHz to 960 MHz ADL5591: 1805 MHz to 1990 MHz Output compression point P1dB: 16 dBm **Output third-order intercept point OIP3** ADL5590: 29 dBm @ 900 MHz ADL5591: 30 dBm @ 1900 MHz Noise floor: -157 dBm/Hz **Sideband suppression** ADL5590: <-50 dBc @ 900 MHz ADL5591: <-47 dBc @ 1900 MHz Baseband common-mode bias: 1.5 V LO leakage ADL5590: -50 dBc @ 900 MHz, Pout = 5 dBm ADL5591: -44 dBc @ 1900 MHz, Pout = 5 dBm Single supply: 4.75 V to 5.25 V Package: 36-lead, 6 mm × 6 mm LFCSP

APPLICATIONS

Wireless infrastructure Optimized for GSM transmitters

GENERAL DESCRIPTION

This family of monolithic RF quadrature modulators is designed for use from 869 MHz to 960 MHz and from 1805 MHz to 1990 MHz. Excellent phase accuracy and amplitude balance enable high performance, direct RF modulation for communications systems.

The ADL5590 and ADL5591 can be used as direct RF modulators in digital communications systems such as those using the Global System for Mobile Communications (GSM) network. In addition, the parts are compatible with enhanced data rates for GSM evolution (EDGE).

This family is fabricated using an advanced silicon-germanium bipolar process from Analog Devices, Inc., and is available in a 36-lead, exposed paddle LFCSP. The devices operate from -40° C to $+85^{\circ}$ C.

FUNCTIONAL BLOCK DIAGRAM

Rev. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	. 1
Applications	. 1
General Description	. 1
Functional Block Diagram	. 1
Revision History	. 2
Specifications	. 3

Absolute Maximum Ratings	.5
ESD Caution	.5
Pin Configuration and Function Descriptions	.6
Basic Connections	.7
Outline Dimensions	.8
Ordering Guide	.8

REVISION HISTORY

5/07—Revision 0: Initial Version

SPECIFICATIONS

 $V_s = 5 V$; $T_A = 25^{\circ}C$; LO = 2 dBm; baseband I/Q amplitude = 1 V p-p differential sine waves in quadrature with a 1.5 V dc bias; baseband I/Q frequency (f_{BB}) = 1 MHz, unless otherwise noted.

Table 1. Parameter	Conditions	Min	Typ	Max	Unit
	Conditions	win	Тур	Max	Unit
Operating Frequency Range ADL5590		869		960	MHz
ADE3390		1805		900 1990	MHz
ADL5590 @ f _{RF} = 880 MHz		1805		1990	
Output Power	$V_{IQ} = 1.0 \text{ V p-p}$ differential	3.75	5.9	8.0	dBm
vs. Frequency	$f_{RF} = 869 \text{ MHz to } 894 \text{ MHz}$	5.75	±0.1	0.0	dB
vs. Temperature	0°C to 85°C		±0.1 0.01		dB/°C
vs. remperature	-25°C to 0°C		0.01		dB/°C
Sideband Suppression	-25 C 10 0 C		-50		dB/ C
LO Leakage			-50 -50		dBc
Output Return Loss			2.8		dB
Output P1 dB			2.8 16		dBm
Output IP3	$f_{1_{BB}} = 3.5 \text{ MHz}, f_{2_{BB}} = 4.5 \text{ MHz}, P_{OUT} = 0 \text{ dBm per tone}$		29		dBm
Output IP2	$f_{1BB} = 3.5 \text{ MHz}, f_{2BB} = 4.5 \text{ MHz}, P_{00T} = 0 \text{ dBm per tone}$ $f_{1BB} = 3.5 \text{ MHz}, f_{2BB} = 4.5 \text{ MHz}, P_{00T} = 0 \text{ dBm per tone}$		29 66		dBm
Output IP2 Output Noise Density	$P_{OUT} = 5 \text{ dBm}, 6 \text{ MHz carrier offset}$		-155		dBc/Hz
Output Noise Floor	Baseband inputs biased to 1.5 V		-156.6		dBc/Hz
Modulation Spectrum	Relative to carrier in 30 kHz, $P_{OUT} = 3 \text{ dBm}$, 8 PSK		-150.0		UDITI/TIZ
modulation spectrum	250 kHz carrier offset		-42.5		dBc
	400 kHz carrier offset		-42.5 -71.1		dBc
	600 kHz carrier offset		-71.1		dBc
	1.2 MHz carrier offset		-78.3 -79.1		dBc
PMS Error Voctor Magnitudo	$P_{OUT} = 3 \text{ dBm}, 8 \text{ PSK}$		0.5		ивс %
RMS Error Vector Magnitude Peak Error Vector Magnitude	$P_{OUT} = 3 \text{ dBm}, 8 \text{ PSK}$		1.5		%
ADL5590 @ $f_{RF} = 940 \text{ MHz}$	$P_{00T} = 5 \text{ dbiii, 8 P SK}$		1.5		90
Output Power	$V_{IQ} = 1.0 \text{ V p-p}$ differential	3.5	5.7	7.75	dBm
vs. Frequency	$f_{RF} = 925 \text{ MHz to 960 MHz}$	5.5		1.15	dB
	0°C to 85°C		±0.1		
vs. Temperature			0.01		dB/°C
	-25°C to 0°C		0.01		dB/°C
Sideband Suppression			-50		dBc
LO Leakage			-50		dBc dB
Output Return Loss			3.2		
Output P1 dB	f1 25 MUE f2 45 MUE D 0 dDm nortons		16 29		dBm dBm
Output IP3	$f1_{BB} = 3.5 \text{ MHz}, f2_{BB} = 4.5 \text{ MHz}, P_{OUT} = 0 \text{ dBm per tone}$				
Output IP2	$f_{1_{BB}} = 3.5 \text{ MHz}, f_{2_{BB}} = 4.5 \text{ MHz}, P_{OUT} = 0 \text{ dBm per tone}$		70 156 6		dBm dBm/Hz
Output Noise Floor	Baseband inputs biased to 1.5 V		-156.6		
Modulation Spectrum	Relative to carrier in 30 kHz, $P_{OUT} = 3 \text{ dBm}$, 8 PSK 250 kHz carrier offset		-42.5		dBc
	400 kHz carrier offset		-42.5 -71.1		dBc
	600 kHz carrier offset		-71.1 -78.5		dBc
	1.2 MHz carrier offset		-78.3 -79.1		dBc
RMS Error Vector Magnitude	$P_{OUT} = 3 \text{ dBm}, 8 \text{ PSK}$		-79.1		ивс %
Peak Error Vector Magnitude	$P_{OUT} = 3 \text{ dBm}, 8 \text{ PSK}$ $P_{OUT} = 3 \text{ dBm}, 8 \text{ PSK}$		0.4 1.4		%
			1.4		%
ADL5591 @ $f_{RF} = 1850 \text{ MHz}$	$f_{RF} = 1850 \text{ MHz}$	2.0	F A	7.0	dD
Output Power	$V_{IQ} = 1.0 \text{ V p-p}$ differential	3.0	5.0	7.0	dBm
vs. Frequency	$f_{RF} = 1805 \text{ MHz to } 1880 \text{ MHz}$		±0.1		dB
vs. Temperature	0°C to 85°C		0.011		dB/°C
	-25°C to 0°C		0.011		dB/°C
Sideband Suppression			-47		dBc
LO Leakage		1	-44		dBc

Parameter	Conditions	Min	Тур	Max	Unit
Output Return Loss			5.4		dB
Output P1 dB			16		dBm
Output IP3					dBm
Output IP2	$f1_{BB} = 3.5 \text{ MHz}, f2_{BB} = 4.5 \text{ MHz}, P_{OUT} = -1 \text{ dBm per tone}$		60		dBm
Output Noise Density	$P_{OUT} = 5 \text{ dBm}, 6 \text{ MHz carrier offset}$		-156		dBc/Hz
Output Noise Floor	Baseband inputs biased to 1.5 V -157				dBm/Hz
Modulation Spectrum	Relative to carrier in 30 kHz, $P_{OUT} = 3 \text{ dBm}$, 8 PSK				
	250 kHz carrier offset		-42.5		dBc
	400 kHz carrier offset		-71.3		dBc
	600 kHz carrier offset		-79.4		dBc
	1.2 MHz carrier offset		-80.2		dBc
RMS Error Vector Magnitude	$P_{OUT} = 3 \text{ dBm}, 8 \text{ PSK}$		0.5		%
Peak Error Vector Magnitude	$P_{OUT} = 3 \text{ dBm}, 8 \text{ PSK}$		1.7		%
ADL5591 @ f _{RF} = 1960 MHz					
Output Power	$V_{IQ} = 1.0 V p-p$ differential	2.5	4.7	6.5	dBm
vs. Frequency	$f_{\text{RF}} = 1930 \text{ MHz to } 1990 \text{ MHz}$		±0.1	0.0	dB
vs. Temperature	0°C to 85°C		+0.011		dB/°C
vs. remperature	-25°C to 0°C		+0.011		dB/°C
Sideband Suppression			-48		dB/ C
			-40 -44		dBc
LO Leakage					dBC
Output Return Loss			6.0		
Output P1dB	f1 25 MUE f2 45 MUE D 1 dDes newtons		16		dBm
Output IP3	$f_{1_{BB}} = 3.5 \text{ MHz}, f_{2_{BB}} = 4.5 \text{ MHz}, P_{OUT} = -1 \text{ dBm per tone}$		30		dBm
Output IP2	$f1_{BB} = 3.5 \text{ MHz}, f2_{BB} = 4.5 \text{ MHz}, P_{OUT} = -1 \text{ dBm per tone}$		60		dBm
Output Noise Density	$P_{OUT} = 5 \text{ dBm}, 6 \text{ MHz carrier offset}$		-156		dBc/Hz
Output Noise Floor	Baseband inputs biased to 1.5 V		157		dBm/Hz
Modulation Spectrum	Relative to carrier in 30 kHz, $P_{OUT} = 3 \text{ dBm}$, 8 PSK				
	250 kHz carrier offset		-42.5		dBc
	400 kHz carrier offset		-71.4		dBc
	600 kHz carrier offset		-79.7		dBc
	1.2 MHz carrier offset		-80.5		dBc
RMS Error Vector Magnitude	$P_{OUT} = 3 \text{ dBm}, 8 \text{ PSK}$		0.5		%
Peak Error Vector Magnitude	$P_{OUT} = 3 \text{ dBm}, 8 \text{ PSK}$		1.6		%
LO INPUTS	LOIP, LOIN				
LO Drive Level ¹		-1	+2	+5	dBm
Input Return Loss	ADL5590 @ f _{RF} = 880 MHz		7.5		dB
	ADL5591 @ f _{RF} = 1850 MHz		10.7		dB
BASEBAND INPUTS	Pins IBBP, IBBN, QBBP, QBBN				
l and Q Input Bias Level			1.5		V
Bandwidth (3 dB)			250		MHz
Differential Input Impedance			9		kΩ
POWER SUPPLIES	Pin VPS1 to Pin VPS5				
Voltage	Full specification	4.75		5.25	V
-	Degraded specification	4.5		5.5	V
Supply Current					
ADL5590			170		mA
ADL5591			170		mA

¹ LO drive in excess of 5 dBm can be provided to further reduce noise at 6 MHz carrier offset.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage, VPS1 to VPS5	5.5 V
IBBP, IBBN, QBBP, QBBN	0 V, 3 V
LOIP	10 dBm
Internal Power Dissipation	1155 mW
θ_{JA} (Exposed Paddle Soldered Down)	40°C/W
Maximum Junction Temperature	132°C
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C
Maximum Soldering Temperature	260°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. ADL5590/ADL5591 Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 2, 5, 7 to 12, 14, 16 to 19, 22, 24, 27 to 30, 32, 34 to 36	GND	Ground. Connect to ground plane via a low impedance path.
3, 13, 15, 31, 33	VPS1, VPS2, VPS3, VPS4, VPS5	Positive Supply Voltage. All pins should be connected to the same supply. To ensure adequate external bypassing, connect 0.1 µF capacitors between each pin and ground.
4, 6	LOIP, LOIN	Local Oscillator Input. 50 Ω single-ended local oscillator input. Pins must be ac-coupled. AC-couple LOIN to ground and drive LO through LOIP.
20, 21, 25, 26	IBBP, IBBN, QBBN, QBBP	Baseband Inputs. Differential in-phase and quadrature baseband inputs. These high impedance inputs must be dc-biased to approximately 1.5 V dc. These inputs are not self-biased and must be externally biased.
23	VOUT	RF Output. Single-ended, 50 Ω , internally biased RF output. Pin must be ac-coupled to the load.
-	Exposed Paddle	Exposed Paddle. Connect to ground plane via a low impedance path.

BASIC CONNECTIONS

Figure 3. Basic Connections for Operation

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADL5590ACPZ-R71	-40°C to +85°C	36-Lead LFCSP_VQ, 7" Tape and Reel	CP-36-1
ADL5591ACPZ-R7 ¹	–40°C to +85°C	36-Lead LFCSP_VQ, 7" Tape and Reel	CP-36-1

 1 Z = RoHS Compliant Part.

©2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D06661-0-5/07(0)

www.analog.com

Rev. 0 | Page 8 of 8