## **ANALOG** DEVICES

# Microprocessor-Compatible 12-Bit D/A Converter AD567

### FEATURES

Single Chip Construction Double-Buffered Latch for 8-Bit  $\mu$ P-Compatibility Fast Settling Time: 500ns max to  $\pm 1/2$ LSB High Stability Buried Zener Reference on Chip Monotonicity Guaranteed Over Temperature Linearity Guaranteed Over Temperature: 1/2LSB max (AD567K) Guaranteed for Operation with  $\pm 12$ V or  $\pm 15$ V Supplies

Low Power: 300mW Including Reference TTL/5V CMOS Compatible Logic Inputs Low Cost

#### PRODUCT DESCRIPTION

The AD567 is a complete high speed 12-bit digital-to-analog converter including a high stability buried zener voltage reference and double-buffered input latch on a single chip. The converter uses 12 precision high speed bipolar current steering switches and a laser trimmed thin film resistor network to provide fast settling time and high accuracy.

Microprocessor compatibility is achieved by the on-chip double-buffered latch. The design of the input latch allows direct interface to 4-, 8-, 12-, or 16-bit buses. The 12 bits of data from the first rank of latches can then be transferred to the second rank, avoiding generation of spurious analog output values. The latch responds to strobe pulses as short as 100ns, allowing use with the fastest available microprocessors.

The functional completeness and high performance in the AD567 results from a combination of advanced switch design, high speed bipolar manufacturing process, and the proven laser wafer-trimming (LWT) technology. The AD567 is trimmed at the wafer level and is specified to  $\pm 1/4$ LSB maximum linearity error (K grade) at 25°C and  $\pm 1/2$ LSB over the full operating temperature range.

The subsurface (buried) Zener diode on the chip provides a low-noise voltage reference which has long-term stability and temperature drift characteristics comparable to the best discrete reference diodes. The laser trimming process which provides the excellent linearity is also used to trim both the absolute value of the reference as well as its temperature coefficient. The AD567 is thus well suited for wide temperature range performance with  $\pm 1/2$ LSB maximum linearity error and guaranteed monotonicity over the full temperature range. Typical full scale gain T.C. is 10ppm/°C.

The AD567 is available in three performance grades. The AD567J and K are specified for use over the 0 to  $+70^{\circ}$ C temperature range and are available in either a 28-pin hermetically-

\*Covered by patent numbers: 3,803,590; 3,890,611; 3,932,863; 3,978,473; 4,020,486; and other patents pending.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.



sealed, ceramic DIP or a 28-pin molded plastic DIP (N package). The AD567S grade is specified for the -55°C to +125°C range and is available in the ceramic package.

#### **PRODUCT HIGHLIGHTS**

- 1. The AD567 is a complete current output DAC with voltage reference and digital latches on a single IC chip.
- 2. The double-buffered latch structure permits direct interface to 4-, 8-, 12-, or 16-bit data buses. All logic inputs are TTL or 5 volt CMOS compatible.
- 3. The internal buried zener reference is laser-trimmed to 10.00 volts with a ±1% maximum error. The reference voltage is also available for external application.
- 4. The chip also contains SiCr thin film application resistors which can be used either with an external op amp to provide a precision voltage output or as input resistors for an A/D converter. The resistors are matched to the internal ladder network to guarantee a low gain temperature coefficient and are laser-trimmed for minimum full scale and bipolar offset errors.
- The precision high speed current switch design\* provides high de accuracy and an optimally-damped settling characteristic. Output current settling time is 500 nanoseconds maximum to ±1/2LSB.
- 6. The single-chip construction makes the AD567 inherently more reliable than multichip hybrid designs. The AD567S grade with guaranteed linearity and monotonicity over the -55°C to +125°C range is especially recommended for high reliability needs in harsh environments. The unit is available processed to MIL-STD-883, Level B.

 Route 1 Industrial Park; P.O. Box 280; Norwood, Mass. 02062

 Tel: 617/329-4700
 TWX: 710/394-6577

 West Coast
 Mid-West
 Texas

 714/842-1717
 312/653-5000
 214/231-5094

## **SPECIFICATIONS** (T<sub>A</sub> = +25°C, V<sub>CC</sub> = +12V or +15V, V<sub>EE</sub> = -12V or -15V, unless otherwise specified)

| AODEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIN                                     | AD567J<br>TYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAX                                                                                                             | MIN                                                                                                             | AD567K<br>TYP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | мах             | UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATA INPUTS <sup>1</sup> (Pins 10–15 and 17–2)<br>TL or 5 Volt CMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Input Voltage<br>Bit ON Logic "1"<br>Bit OFF Logic "0"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +2.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +5.5                                                                                                            | +2.0                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +5.5<br>+0.8    | V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Logic Current (each bit)<br>Bit ON Logic "1"<br>Bit OFF Logic "0"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | +120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +300<br>+100                                                                                                    |                                                                                                                 | + 1 2 0<br>+ 3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +300<br>+100    | $\mu\Lambda$ $\mu\Lambda$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ere and a specific provide the standard of the second standard and the second standard and the second standard standar | enas es coliciona a                     | the state of the second s | 12                                                                                                              | IN THE OTHER DESIGNATION.                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12              | Bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RESOLUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a second and the second se  | and a second  | na international de la construction de la const | ,               | 2. Set on protect and determination of each of address of the set of the s |
| )UTPUT<br>Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Unipolar (all bits on)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1.6                                    | -2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2.4                                                                                                            | -1.6                                                                                                            | -2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.4            | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bipolar (all bits on or off)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ±0.8                                    | ±1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±1.2                                                                                                            | ±0.8                                                                                                            | ±1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ±1.2            | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Resistance (exclusive of span<br>resistors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6k                                      | 8k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10k                                                                                                             | 6k                                                                                                              | 8k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10k             | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Offset<br>Unipolar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05                                                                                                            |                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05            | % of F.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bipolar (Figure 3, $R_2 = 50\Omega$ fix<br>Capacitance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ed)                                     | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                            |                                                                                                                 | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1             | % of F.S.<br>pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Compliance Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +10                                                                                                             | -1.5                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +10             | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| T <sub>min</sub> to T <sub>max</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.5                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +10                                                                                                             | -1.3                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A V             | $(\alpha_1, \beta_2, \ldots, \beta_N)$ is the second structure of $\beta_1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ACCURACY (error relative to full scale) +25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | $\pm 1/4$ (0.006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\pm 1/2$<br>(0.012)                                                                                            |                                                                                                                 | $\pm 1/8$<br>(0.003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ±1/4<br>(0.006) | LSB<br>% of F.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| T <sub>min</sub> to T <sub>max</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | ±1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±3/4                                                                                                            |                                                                                                                 | ±1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ±1/2            | LSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -mu co rmax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | (0.012)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.018)                                                                                                         |                                                                                                                 | (0.006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.012)         | % of F.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DIFFERENTIAL NONLINEARITY<br>+25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | ±1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±3/4                                                                                                            | MONOT                                                                                                           | ±1/4<br>ONICITY GUAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ±1/2            | LSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| T <sub>min</sub> to T <sub>max</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MONOT                                   | ONICITY GUAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CANTEED                                                                                                         | MONOT                                                                                                           | SNICHT GOAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CALL CLD        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EMPERATURE COEFFICIENTS<br>With Internal Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2               | ppm/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Unipolar Zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 1<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2<br>10                                                                                                         |                                                                                                                 | 1<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10              | ppm/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bipolar Zero<br>Gain (Full Scale)<br>Differential Nonlinearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 15<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                                                                                                              |                                                                                                                 | 10<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20              | ppm/°C<br>ppm/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EMPERATURE RANGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | in the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Operating<br>Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>-65                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +70<br>+150                                                                                                     | 0<br>-65                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +70<br>+150     | °C<br>°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| POWER REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ruonadolara (n. 1937), constanto en 183 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a and an provide the second | and the local sector and the sector of the prove                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $V_{CC}$ , +11.4 to +16.5V dc<br>$V_{EE}$ , -11.4 to -16.5V dc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 3<br>-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5<br>-25                                                                                                        |                                                                                                                 | 3<br>-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5<br>-25        | mA<br>mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| POWER SUPPLY GAIN SENSITIVIT<br>V <sub>CC</sub> = +11.4 to +16.5V dc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ΓY <sup>2</sup>                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                              |                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10              | ppm of F.S./%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $V_{\rm EE} = -11.4$ to $-16.5$ V dc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25                                                                                                              |                                                                                                                 | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25              | · ppm of F.S./%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PROGRAMMABLE OUTPUT<br>RANGE (see Figures 1, 2, 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | 0 to +5<br>-2.5 to +2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .5                                                                                                              |                                                                                                                 | 0 to +5<br>-2.5 to +2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5               | V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 0 to +10<br>-5 to +5<br>-10 to +10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )                                                                                                               |                                                                                                                 | 0 to +10<br>-5 to +5<br>-10 to +10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )               | V<br>V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| EXTERNAL ADJUSTMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Gain Error with Fixed $50\Omega$<br>Resistor for R2 (Figure 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | ±0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±0.25                                                                                                           |                                                                                                                 | ±0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ±0.25           | % of F.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bipolar Zero Error with Fixed<br>50Ω Resistor for R1 (Figure 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )                                       | ±0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±0.15                                                                                                           | +0.35                                                                                                           | ±0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±0.1            | % of F.S.<br>% of F.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Gain Adjustment Range (Figure 2<br>Bipolar Zero Adjustment Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) ±0.25<br>±0.15                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 | ±0.25<br>±0.15                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | % of F.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| REFERENCE INPUT<br>Input Impedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15k                                     | 20k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25k                                                                                                             | 15k                                                                                                             | 20k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25k             | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| REFERENCE OUTPUT<br>Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.90                                    | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.10                                                                                                           | 9.90                                                                                                            | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.10           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Current (available for external loads)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 | 0.1                                                                                                             | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| POWER DISSIPATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 495                                                                                                             |                                                                                                                 | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 495             | mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### NOTES

<sup>1</sup> The digital input specifications are guaranteed but not tested over the

operating temperature range. <sup>a</sup> The power supply gain sensitivity is tested in reference to a V<sub>CC</sub>, V<sub>EE</sub> of ±15V dc ±10%.

Specifications subject to change without notice.

|                                                                                                                  |                | SD/AD567SD/8                                                 |                                          |                                     |
|------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------|------------------------------------------|-------------------------------------|
| AODEL                                                                                                            | MIN            | TYP                                                          | MAX                                      | UNITS                               |
| DATA INPUTS <sup>1</sup> (Pins 10–15 and 17–28)<br>ITL or 5 Volt CMOS<br>Input Voltage                           |                |                                                              |                                          |                                     |
| Bit ON Logic "1"<br>Bit OFF Logic "0"<br>Logic Current (each bit)                                                | +2.0           |                                                              | +5.5<br>+0.7                             | V .<br>V                            |
| Bit ON Logic "1"<br>Bit OFF Logic "0"                                                                            |                | +120<br>+35                                                  | +300<br>+100                             | μΑ<br>μΑ                            |
| ESOLUTION                                                                                                        |                |                                                              | 12                                       | Bits                                |
| OUTPUT<br>Current                                                                                                | -1.6           | -2.0                                                         | -2.4                                     | mA                                  |
| Unipolar (all bits on)<br>Bipolar (all bits on or off)<br>Resistance (exclusive of span                          | ±0.8           | ±1.0                                                         | ±1.2                                     | mA                                  |
| resistors)<br>Offset<br>Unipolar                                                                                 | 6k             | 8k<br>0.01                                                   | 10k<br>0.05                              | 52<br>% of F.S.                     |
| Bipolar (Figure 3, $R_2 = 50\Omega$ fixed)<br>Capacitance                                                        |                | 0.05                                                         | 0.15                                     | % of F.S.<br>pF                     |
| Compliance Voltage<br>T <sub>min</sub> to T <sub>max</sub><br>ACCURACY (error relative to                        | -1.5           |                                                              | +10                                      | V                                   |
| full scale) +25°C<br>T <sub>min</sub> to T <sub>max</sub>                                                        |                | ±1/4<br>(0.006)<br>±1/2                                      | ±1/2<br>(0.012)<br>±3/4                  | LSB<br>% of F.S.<br>LSB             |
| DIFFERENTIAL NONLINEARITY                                                                                        |                | (0.012)                                                      | (0.018)                                  | % of F.S.                           |
| +25°C<br>T <sub>min</sub> to T <sub>max</sub>                                                                    | MONOT          | ±1/2<br>ONICITY GUAI                                         | ±3/4<br>RANTEED                          | LSB                                 |
| TEMPERATURE COEFFICIENTS<br>With Internal Reference<br>Unipolar Zero                                             |                | 1                                                            | 2                                        | ppm/ <sup>o</sup> C                 |
| Bipolar Zero<br>Gain (Full Scale)<br>Differential Nonlinearity                                                   |                | 5<br>15<br>2                                                 | 10<br>30                                 | ppm/°C<br>ppm/°C<br>ppm/°C          |
| TEMPERATURE RANGE<br>Operating<br>Storage                                                                        | -55<br>-65     |                                                              | +125<br>+150                             | °C<br>°C                            |
| POWER REQUIREMENTS $V_{CC}$ , +11.4 to +16.5V dc $V_{EE}$ , -11.4 to -16.5V dc                                   |                | 3<br>-17                                                     | 5<br>-25                                 | mA<br>mA                            |
| POWER SUPPLY GAIN SENSITIVITY <sup>2</sup><br>$V_{CC} = +11.4$ to +16.5V dc<br>$V_{EE} = -11.4$ to -16.5V dc     |                | 3<br>15                                                      | 10<br>25                                 | ppm of F.S./%<br>ppm of F.S./%      |
| PROGRAMMABLE OUTPUT<br>RANGES (see Figures 1, 2, 3)                                                              |                | 0 to +5<br>-2.5 to +2.<br>0 to +10<br>-5 to +5<br>-10 to +10 |                                          | V<br>V<br>V<br>V<br>V               |
| EXTERNAL ADJUSTMENTS<br>Gain Error with Fixed 50Ω<br>Resistor for R2 (Figure 2)<br>Bipolar Zero Error with Fixed |                | ±0.1                                                         | ±0.25                                    | % of F.S.                           |
| 50Ω Resistor for R1 (Figure 3)<br>Gain Adjustment Range (Figure 2)<br>Bipolar Zero Adjustment Range              | ±0.25<br>±0.15 | ±0.05                                                        | ±0.15                                    | % of F.S.<br>% of F.S.<br>% of F.S. |
| REFERENCE INPUT<br>Input Impedance                                                                               | 15k            | 20k                                                          | 25k                                      | Ω                                   |
| REFERENCE OUTPUT<br>Voltage<br>Current (available for external                                                   | 9.90           | 10.00                                                        | 10.10                                    | v                                   |
| loads)                                                                                                           | 0.1            | 1.0                                                          | an annanan ann ann an an ann an an an an | mA                                  |
| POWER DISSIPATION                                                                                                |                | 300                                                          | 495                                      | mW                                  |
| PRICE (100+)                                                                                                     | 5              | AD567SD<br>AD567SD/883H                                      | \$59.00<br>3 \$68.00                     |                                     |

Specifications subject to change without notice.

#### TIMING SPECIFICATIONS

(All Models,  $T_A = 25^{\circ}C$ ,  $V_{CC} = +12V$  or +15V,  $V_{EE} = -12V \text{ or } -15V)$ 

| Symbol            | Parameter                                                     | Min | Тур | Max |    |
|-------------------|---------------------------------------------------------------|-----|-----|-----|----|
| tDW               | Data Valid to End of WR                                       | 50  | _   |     | ns |
| <sup>t</sup> CW   | $\overline{\text{CS}}$ Valid to End of $\overline{\text{WR}}$ | 100 | _   |     |    |
| tAW               | Address Valid to End of WR                                    | 100 |     |     | ns |
| twp               | Write Pulse Width                                             | 100 |     | -   | ns |
| t <sub>DH</sub>   | Data Hold Time                                                | 0   |     |     | ns |
| t <sub>SETT</sub> | Output Current Settling Time                                  |     | 400 | 500 | ns |

## **ABSOLUTE MAXIMUM RATINGS**

| $V_{\mbox{\scriptsize CC}}$ to Power Ground |
|---------------------------------------------|
| V <sub>EE</sub> to Power Ground             |
| Voltage on DAC Output (Pin 2)3V to +12V     |
| Digital Inputs (Pins 10–15, 17–28)          |
| to Power Ground                             |
| Ref In to Reference Ground                  |
| Bipolar Offset to Reference Ground±12V      |
| 10V Span R to Reference Ground±12V          |
| 20V Span R to Reference Ground±24V          |
| Ref Out                                     |
| Momentary Short to V <sub>CC</sub>          |
| Power Dissipation                           |
|                                             |

## TIMING DIAGRAMS

#### WRITE CYCLE #1





## WRITE CYCLE #2

(Load Second Rank from First Rank;  $A_2$ ,  $A_1$ ,  $A_0 = 1$ )



## **OUTLINE DIMENSIONS**

Dimensions shown in inches and (mm).



28-Pin Ceramic DIP (D Package)

H.

A2 13

A1 14

#### **PIN CONNECTIONS TOP VIEW**

PIN 1 IDENTIFIER

AD567

0.06 (3.05)

0.12 (1.53)

ŧ.

T

DB11 (MSB)

DB10 27

DB9 26 25 DB8 DB7 24 23

DB6

DB5 DB4

DB3 20

DB2 19 DB1 18

17 DB0 (LSB)

POWER GROUND

0.606 (15.4)

0.58 (14.74)

28

22

21

16 D A0

15

0.012 (0.305)

0.008 (0.203)

#### AD567 ORDERING GUIDE

28-Pin Plastic DIP (N Package)

|              |         |       | LINEARITY     |           | BIP OFFSET          | 1  |   |
|--------------|---------|-------|---------------|-----------|---------------------|----|---|
|              |         |       |               | CANE C    | DAC OUT (-2mA F.S.) | 2  | ì |
| II.          |         | TEMP  | ERROR MAX     | GAIN T.C. | 10V SPAN R          | 3  | j |
| MODEL        | PACKAGE | RANGE | @ 25°C        | MAX       | 20V SPAN R          | 4  |   |
| AD567JN      | Plastic | Com   | ±1/2LSB       | 50ppm/°C  | REF GND             | 5  |   |
| AD567KN      | Plastic | Com   | ±1/4LSB       | 20ppm/°C  | VREF OUT            | 6  |   |
| AD567JD      | Ceramic | Com   | $\pm 1/2 LSB$ | 50ppm/°C  | +V <sub>cc</sub>    | 7  |   |
| AD567KD      | Ceramic | Com   | $\pm 1/4$ LSB | 20ppm/°C  | VREF IN             | 8  |   |
| AD567SD      | Ceramic | Mil   | ±1/2LSB       | 30ppm/°C  | -V <sub>EE</sub>    | 9  |   |
| AD567SD/883B | Ceramic | Mil   | $\pm 1/2$ LSB | 30ppm/°C  | cs 🗖                | 10 |   |
|              |         |       | м             |           | WR                  | 11 |   |
|              |         |       |               |           | A3 🗖                | 12 |   |

## THE AD567 OFFERS TRUE 12-BIT PERFORMANCE OVER THE FULL TEMPERATURE RANGE

RELATIVE ACCURACY: Analog Devices defines relative accuracy as the maximum deviation of the actual, adjusted DAC output from the ideal analog output (a straight line drawn from 0 to F.S. – 1LSB) for any bit combination. The AD567 is laser trimmed to 1/4LSB (0.006% of F.S.) maximum error at +25 °C for the K version and 1/2LSB for the J and S.

MONOTONICITY: A DAC is said to be monotonic if the output either increases or remains constant for increasing digital inputs such that the output will always be a non-decreasing function of input. All versions of the AD567 are monotonic over their full operating temperature range.

DIFFERENTIAL NONLINEARITY: Monotonic behavior requires that the differential linearity error be less than 1LSB both at  $+25^{\circ}$ C and over the temperature range of interest. Differential nonlinearity is the measure of the variation in analog value, normalized to full scale, associated with a 1LSB change in digital input code. For example, for a 10 volt full scale output, a change of 1LSB in digital input code should result in a 2.44mV change in the analog output (1LSB = 10V x 1/4096 = 2.44mV). If in actual use, however, a 1LSB change in the input code results in a change of only 0.61mV (1/4LSB) in analog output, the differential linearity error would be 1.83mV, or 3/4LSB. The AD567K has a max differential linearity error of 1/2LSB, which specifies that every step will be at least 1/2LSB and at most 1 1/2LSB.

The differential nonlinearity temperature coefficient must also be considered if the device is to remain monotonic over its full operating temperature range. A differential nonlinearity temperature coefficient of 1.0ppm/°C could, under worst case conditions for a temperature change of  $+25^{\circ}$ C to  $+125^{\circ}$ C, add 0.01% (100°C x 1.0ppm/°C) of error. The resulting error could then be as much as 0.01% + 0.006% (initial error, 1/4LSB) = 0.016% of F.S. (1/2LSB represents 0.012% of F.S.). To be sure of accurate performance all versions of the AD567 are 100% tested for monotonicity over the full operating temperature range.

#### ANALOG CIRCUIT CONNECTIONS

The standard current-to-voltage conversion connections using an operational amplifier are shown here with the preferred trimming techniques. If a low offset operational amplifier (AD510L; AD517L; AD741L; AD301AL; AD OP-07) is used, excellent performance can be obtained in many situations without trimming (an op amp with less than 0.5mV max offset voltage should be used to keep offset errors below 1/2LSB). Unipolar zero will typically be within  $\pm 1/2$ LSB (plus op amp offset), and full scale accuracy will be within 0.1% (0.25% max). Substituting a 50 $\Omega$  resistor for the 100 $\Omega$  bipolar offset trimmer will give a bipolar zero error typically within  $\pm 2$ LSB (0.05%).

The AD544 is recommended for buffered voltage-output applications which require fast settling time to  $\pm 1/2$ LSB. The feedback capacitor is shown with the optimum value for each application; this capacitor is required to compensate for the 25 picofarad DAC output capacitance.



Figure 1. 0 to +10V Unipolar Voltage Output

#### FIGURE 1. UNIPOLAR CONFIGURATION

This configuration will provide a unipolar 0 to +10 volt output range. In this mode, the bipolar terminal, pin 1, should be grounded if not used for trimming.

#### STEP I ... ZERO ADJUST

Turn all bits OFF and adjust zero trimmer R1, until the output reads 0.000 volts (1LSB = 2.44mV). In most cases this trim is not needed, and pin 1 should be connected to pin 5.

#### STEP II . . . GAIN ADJUST

Turn all bits ON and adjust  $100\Omega$  gain trimmer R2, until the output is 9.9976 volts. (Full scale is adjusted to 1LSB less than nominal full scale of 10.000 volts.) If a 10.2375V full scale is desired (exactly 2.5mV/bit), insert a  $120\Omega$  resistor in series with the gain resistor at pin 3 to the op amp output.



Figure 2. ±5V Bipolar Voltage Output

#### FIGURE 2. BIPOLAR CONFIGURATION

This configuration will provide a bipolar output voltage from -5.000 to +4.9976 volts, with positive full scale occurring with all bits ON (all 1's).

STEP I . . . OFFSET ADJUST

Turn OFF all bits. Adjust  $100\Omega$  trimmer R1 to give -5.000 volts output.

#### STEP II . . . GAIN ADJUST

Turn ON All bits. Adjust  $100\Omega$  gain trimmer R2 to give a reading of +4.9976 volts.

Please note that it is not necessary to trim the op amp to obtain full accuracy at room temperature. In most bipolar situations, an op amp trim is unnecessary unless the untrimmed offset drift of the op amp is excessive.

#### **FIGURE 3 OTHER VOLTAGE RANGES**

The AD567 can also be easily configured for a unipolar 0 to +5 volt range or  $\pm 2.5$  volt and  $\pm 10$  volt bipolar ranges by using the additional 5k application resistor provided at the 20 volt span R terminal, pin 4. For a 5 volt span (0 to +5 or  $\pm 2.5$ ), the two 5k resistors are used in parallel by shorting pin 4 to pin 2 and connecting pin 3 to the op amp output and the bipolar offset either to ground for unipolar or to REF OUT for the bipolar range. For the  $\pm 10$  volt range (20 volt span) use the 5k resistors in series by connecting only pin 4 to the op amp output and the bipolar offset connected as shown. The  $\pm 10$  volt option is shown in Figure 3.



## Figure 3. ±10V Voltage Output

The internal resistor values shown in Figures 1, 2, and 3 are nominal values only, as is the output current. These values are subject to an absolute tolerance of approximately  $\pm 20\%$ . Furthermore, the resistors in the AD567 exhibit a temperature coefficient of approximately  $-50ppm/^{\circ}C$ . While these absolute tolerances may appear excessively wide, the ratios of the resistor values and tracking TC are extremely wellcontrolled. In applications where the internal feedback resistor determines the output voltage range it is the ratios which determine the accuracy. However, in applications where the desired full scale range requires use of an external resistor, sufficient trim range must be provided to compensate for the tolerance of the internal resistance.

## INTERNAL/EXTERNAL REFERENCE USE

The AD567 has an internal low-noise buried zener diode reference which is trimmed for absolute accuracy and temperature coefficient. This reference is buffered and optimized for use in a high speed DAC and will give long-term stability equal or superior to the best discrete zener reference diodes. The performance of the AD567 is specified with the internal reference driving the DAC since all trimming and testing (especially for full scale error and bipolar offset) is done in this configuration.

The AD567 can be used with an external reference, but may not have sufficient trim range to accommodate a reference which does not match the internal reference.

The internal reference has sufficient buffering to drive external circuitry in addition to the reference currents required for the DAC (typically 0.5mA to Ref In and 1.0mA to Bipolar Offset).

A minimum of 0.1mA is available for driving external loads. The AD567 reference output should be buffered with an external op amp if it is required to supply additional output current. The reference is typically trimmed to  $\pm 0.2\%$ , then tested and guaranteed to  $\pm 1.0\%$  max error. The temperature coefficient is comparable to that of the full scale TC for a particular grade.

#### **OUTPUT VOLTAGE COMPLIANCE**

The AD567 has a typical output compliance range from -1.5 to +10 volts. The current-steering output stages will be unaffected by changes in the output terminal voltage over that range. However, there is an equivalent output impedance of 8k in parallel with 25pF at the output terminal which produces an equivalent error current if the voltage deviates from analog common. This is a linear effect which does not change with input code. Operation beyond the compliance limits may cause either output stage saturation or breakdown which results in nonlinear performance. Compliance limits are not affected by the positive power supply, but are a function of output current and negative supply, as shown in Figure 4.





#### **GROUNDING RULES**

The AD567 brings out separate reference and power grounds to allow optimum connections for low noise and high speed performance. These grounds should be tied together at one point, usually the device power ground. The separate ground returns are provided to minimize current flow in low-level signal paths. In this way, logic return currents are not summed into the same return path with analog signals.

The reference ground at pin 5 is the ground point for the internal reference and is thus the "high quality" ground for the AD567; it should be connected directly to the analog reference point of the system. The power ground at pin 16 can be connected to the most convenient ground point; analog power return is preferred. If power ground contains high frequency noise beyond 200mV, this noise may feed through the converter, thus some caution will be required in applying these grounds.

It is also important to properly apply decoupling capacitors on the power supplies for the AD567 and the output amplifier. The correct method for decoupling is to connect a capacitor from each power supply pin of both the AD567 and the amplifier directly to the reference ground pin of the AD567. Any load driven by the output amplifier should also be referred to the reference ground pin.

| Output Range                                                          | Connect Pin 3 to:                                                            | Connect Pin 4 to:                                                          | Connect Pin 1 to:                                                                   |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 0 to +5V<br>0 to +10V<br>-2.5V to +2.5V<br>-5V to +5V<br>-10V to +10V | Amplifier Output<br>Amplifier Output<br>Amplifier Output<br>Amplifier Output | Pin 2<br>Amplifier Output<br>Pin 2<br>Amplifier Output<br>Amplifier Output | Pin 5<br>Pin 5<br>Pin 6 (through 50Ω)<br>Pin 6 (through 50Ω)<br>Pin 6 (through 50Ω) |

Table 1. Connections for Various Output Ranges

## DIGITAL CIRCUIT DETAILS

The bus interface logic of the AD567 consists of four independently addressable registers in two ranks. The first rank consists of three four-bit registers which can be loaded directly from a 4-, 8-, 12-, or 16-bit microprocessor bus. Once the complete 12-bit data word has been assembled in the first rank, it can be loaded into the 12-bit register of the second rank. This double-buffered organization avoids the generation of spurious analog output values. Figure 5 shows the block diagram of the AD567 logic section.

The latches are controlled by the address inputs, A0-A3, and the  $\overline{CS}$  and  $\overline{WR}$  inputs. All control inputs are active low, consistent with general practice in microprocessor systems. The  $\overline{CS}$  and  $\overline{WR}$  inputs must both be low for any operation to occur. The four address lines each enable one of the four latches, as indicated in Table 2 below.

All latches in the AD567 are level-triggered. This means that data present during the time when the control signals are valid will enter the latch. When any one of the control signals returns high, the data is latched.



Figure 5. AD567 Block Diagram

| CS | WR | A3 | A2 | A1 | <b>A0</b> | Operation                          |
|----|----|----|----|----|-----------|------------------------------------|
| 1  | Х  | Х  | Х  | Х  | Х         | No Operation                       |
| X  | 1  | Х  | Х  | Х  | Х         | No Operation                       |
| 0  | 0  | 1  | 1  | 1  | 0         | Enable 4 LSBs of First Rank        |
| 0  | 0  | 1  | 1  | 0  | 1         | Enable 4 Middle Bits of First Rank |
| 0  | 0  | 1  | 0  | 1  | 1         | Enable 4 MSBs of First Rank        |
| 0  | 0  | 0  | 1  | 1  | 1         | Loads Second Rank from First Rank  |
| 0  | 0  | 0  | 0  | 0  | 0         | All Latches Transparent            |

#### Table 2. AD567 Truth Table

## MICROPROCESSOR BUS INTERFACING

The AD567 interface logic is configured with enough flexibility to allow relatively simple interface to the various microprocessor bus structures. The required control signals,  $\overline{CS}$  and  $\overline{WR}$ , are easily derived in most systems. Usually a base address is decoded, and this active-low signal is used for  $\overline{CS}$  (Chip Select). Either I/O Write or Memory Write can be used for  $\overline{WR}$ , depending on the system design. The relative timing of these signals is not important and they are interchangeable.

The address lines determine which of the latches are being enabled. It is permissible to enable two or more latches simultaneously, as in the examples of 8-, 12-, and 16-bit interfaces. The double-buffered latch permits data to be loaded into the first rank latches of several AD567s and subsequently strobed into the second rank registers of all the DACs. All analog outputs will then update simultaneously.

#### **4-BIT PROCESSOR INTERFACE**

Many industrial control applications use four-bit microprocessors but require 12-bit accurate analog control voltages. The AD567 is well suited to these applications, due to its flexible control structure.



Figure 6. Addressing for 4-Bit Microprocessor Interface

Each AD567 occupies four locations in a 4-bit microprocessor system. A single 74LS139 2-to-4 decoder is used to provide sequential addresses for the four AD567 registers.  $\overline{CS}$  is derived from an address decoder driven from the high order address bits. The system  $\overline{WR}$  is used for the  $\overline{WR}$  input of the AD567.

## **8-BIT MICROPROCESSOR INTERFACE**

The AD567 interfaces easily to 8-bit microprocessor systems of all types. The control logic makes possible the use of rightor left-justified data formats.

Whenever a 12-bit DAC is loaded from an 8-bit bus, two bytes are required. If the program considers the data to be a 12-bit binary fraction (between 0 and 4095/4096), the data is leftjustified, with the eight most significant bits in one byte and the remaining bits in the upper half of another byte. Rightjustified data calls for the eight least significant bits to occupy one byte, with the 4 most significant bits residing in the lower half of another byte, simplifying integer arithmetic.



b. Right Justified



Figure 8 shows an addressing scheme for use with an AD567 set up for left-justified data in an 8-bit system. The base address is decoded from the high-order address bits and the resultant active-low signal is applied to  $\overline{CS}$ . The two LSBs of the address bus are connected as shown to the AD567 address inputs. The latches now reside in two consecutive locations, with location X01 loading the four LSBs and location X10 loading the eight MSBs and updating the output.



Figure 8. Left-Justified 8-Bit Bus Interface

Right-justified data can be similarly accommodated. The overlapping of data lines is reversed, and the address connections are slightly different. The AD567 still occupies two adjacent locations in the processor's memory map.



Figure 9. Right-Justified 8-Bit Bus Interface

**USING MULTIPLE AD567 DACS IN 8-BIT SYSTEMS** Many applications use multiple digital-to-analog converters driven from the same data bus. For example, automatic test equipment systems often require all analog outputs to be produced simultaneously. Vector-scan graphic systems require that the X and Y coordinates of the stroke endpoints be updated simultaneously. The AD567 can be used with a very simple address decoder to perform this function, as shown in Figure 10. The 74LS139 two-line to four-line decoder and one inverter provide a set of distinct address pulses which assign the registers of the two DACs to a block of consecutive memory locations. In this circuit, write operations to addresses X000 and X001 load the first rank registers of one DAC in a right-justified data format. Addresses X010 and X011 load the first tank of another DAC, also in a right-justified format. A write to any address from X100 to X111 will load the second rank registers of both DACs simultaneously from their respective first rank registers.



Figure 10. Addressing for Two DACs (Right-Justified) on 8-Bit Bus

USING THE AD567 WITH 12- AND 16-BIT BUSES The AD567 is easily interfaced to 12- and 16-bit data buses. In this operation, all four address lines (A0 through A3) are tied to low, and the latch is enabled by  $\overline{CS}$  and  $\overline{WR}$  going low. The AD567 thus occupies a single memory location.

This configuration renders the second rank register transparent, using the first rank of registers as the data latch. The  $\overline{CS}$  input can be driven from an active-low decoded address, and  $\overline{WR}$  can be the system  $\overline{WR}$  signal. It should be noted that any data bus activity during the period when  $\overline{CS}$  and  $\overline{WR}$  are both active will cause activity at the AD567 output. If data is not guaranteed stable during this period, the second rank register can be used to provide double buffering.



Figure 11. Connections for 12- and 16-Bit Bus Interface

#### DIGITAL INPUT CONSIDERATIONS

The threshold of the digital input circuitry is set at 1.4 volts and does not vary with supply voltage. The input lines can thus interface with any type of 5 volt logic. The configuration of the input circuit is shown in Figure 12. The input line can be modeled as a  $30k\Omega$  resistance connected to a -0.7V rail, in parallel with a 5pF capacitance to ground.



PRINTED IN U.S.A.