

AC '97 SoundMAX[®] Codec

AD1881

SoundMAX is a registered trademark and PHAT is a trademark of Analog Device, Inc.

REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1999

AD1881–SPECIFICATIONS

STANDARD TEST CONDITIONS UNLESS OTHERWISE NOTED

Temperature
Digital Supply (VDD)
Analog Supply (V _{CC})
Sample Rate (Fs)
Input Signal

25 °C 3.3/5.0 V 5.0 V 48 kHz 1008 Hz DAC Test Conditions Calibrated -3 dB Attenuation Relative to Full-Scale Input 0 dB 10 kΩ Output Load ADC Test Conditions Calibrated 0 dB Gain Input -3.0 dB Relative to Full-Scale

ANALOG INPUT

Parameter	Min	Тур	Max	Units
Input Voltage (RMS Values Assume Sine Wave Input)				
LINE_IN, AUX, CD, VIDEO, PHONE_IN, PC_BEEP		1		V rms
		2.83		V p-p
MIC with $\neq 20$ dB Gain (M2) = 1)		0.1		V rms
		0.283		V p-p
MIC with 0 /B Gain $(M20 = 0)$		1		V rms
		2.83		V p-p
Input Impedance*		20		kΩ
Input Capacitance*		5	7.5	pF
		\sim	<u> </u>	
MASTER VOLUME				\sim
Parameter	Min	Гур	Max	Units
Step Size (0 dB to -94.5 dB); LINE_OUT_L, LINE_OUT_R	$11 \leq$	1.5		dB
Output Attenuation Range Span*		-94.5		dB
Step Size (0 dB to -46.5 dB); MONO_OUT		1.5		dB
Output Attenuation Range Span*		-46.5	J	dB
Mute Attenuation of 0 dB Fundamental*		10.5	80	dB

PROGRAMMABLE GAIN AMPLIFIER-ADC

Parameter	Min	Тур	Max	Units
Step Size (0 dB to 22.5 dB)		1.5		dB
PGA Gain Range Span		22.5		dB

ANALOG MIXER-INPUT GAIN/AMPLIFIERS/ATTENUATORS

Parameter	Min	Тур	Max	Units
Signal-to-Noise Ratio (SNR)				
CD to LINE_OUT	90			dB
Other to LINE_OUT		90		dB
Step Size (+12 dB to -34.5 dB): (All Steps Tested)				
MIC, LINE_IN, AUX, CD, VIDEO, PHONE_IN, DAC		1.5		dB
Input Gain/Attenuation Range: MIC, LINE, AUX, CD, VIDEO, PHONE_IN, DAC		46.5		dB
Step Size (0 dB to -45 dB): (All Steps Tested) PC_BEEP		3.0		dB
Input Gain/Attenuation Range: PC_BEEP		45		dB

*Guaranteed, not tested.

Specifications subject to change without notice.

Parameter	Min Typ	Max	Units
Passband	0	$0.4 \times F_S$	Hz
Passband Ripple		± 0.09	dB
Transition Band	$0.4 \times F_s$	$0.6 \times F_S$	Hz
Stopband	$0.6 \times F_s$	∞	Hz
Stopband Rejection	-74		dB
Group Delay		$12/F_S$	sec
Group Delay Variation Over Passband		0.0	μs

ANALOG-TO-DIGITAL CONVERTERS

Parameter	Min	Тур	Max	Units
Resolution		16		Bits
Total Harmonic Distortion (THD)			0.02	%
			-74	dB
Dynamic Range (-60 dB Input THD+N Referenced to Full Scale, A-Weighted)	85	87		dB
Signal-to-Intermedulation Distortion* (CCIF Method) ADC Crosstalk*		85		dB
Line Inputs (Input L, Ground R, Read R, Input R, Ground L, Read L)		-100	-90	dB
NWE IN to Other S		-90	-85	dB
Sain Error (Full-Scale Span Relative to Nonoinal Input Voltage)			± 10	%
Interchannel Gain Mismatch (Difference of Gain Errors)			± 0.5	dB
ADC Offset Error			±5	mV
DIGITAL-TO-ANALOG CONVERTERS				** **
Parameter	Min	Тур	Max	Units
Resolution		16		Bits
Total Harmonic Distortion (THD) LINE_OUT, LNLVL_OUT			0.02	%
	-		-14	dB
Dynamic Range (-60 dB Input THD+N Referenced to Full Scale, A-Weighted)	85	90		dB
Signal-to-Intermodulation Distortion* (CCIF Method)		85		dB
Gain Error (Full-Scale Span Relative to Nominal Input Voltage)			± 10	%
Interchannel Gain Mismatch (Difference of Gain Errors)			± 0.5	dB
DAC Crosstalk* (Input L, Zero R, Measure R_OUT; Input R, Zero L, Measure L_OUT)			-80	dB
Total Audible Out-of-Band Energy (Measured from 0.6 × Fs to 20 kHz)*				dB

ANALOG OUTPUT

Parameter	Min	Тур	Max	Units
Full-Scale Output Voltage		1		V rms
(LINE_OUT, LNLVL_OUT)		2.83		V p-p
Output Impedance*			500	Ω
External Load Impedance*	10			kΩ
Output Capacitance*		15		pF
External Load Capacitance			100	pF
V _{REF}	2.0	2.2	2.4	V
VREF_OUT		2.2		V
V _{REF OUT} Current Drive			5	mA
Mute Click (Muted Output Minus Unmuted Midscale DAC Output)		±5		mV

*Guaranteed, not tested. Specifications subject to change without notice.

STATIC DIGITAL SPECIFICATIONS

Parameter	Min Ty	p Max	Units
High Level Input Voltage (VIH): Digital Inputs	$0.65 \times DV_{DD}$		V
Low Level Input Voltage (V_{IL})		$0.35 \times DV_{DD}$	V
High Level Output Voltage (V_{OH}), $I_{OH} = -0.5 \text{ mA}$	$0.9 \times DV_{DD}$		V
Low Level Output Voltage (V_{OL}), I_{OL} = +0.5 mA		$0.1 \times DV_{DD}$	V
Input Leakage Current	-10	10	μA
Output Leakage Current	-10	10	μA

POWER SUPPLY

Parameter		Min	Тур	Max	Units
Power Supply Range – Analog		4.75		5.25	V
Power Supply Range - Digital (5/3.3 V)		4.75/3.0		5.25/3.6	V
Power Dissipation - 5 V / 5 V			520		mW
Power Dissipation - 5 V + 3 3 V			330		mW
Analog Supply Current – 5 V			40		mA
Digital Supply Current -5 V	\frown		63		mA
Ibigital Supply Current - S.3V	\bigcirc		40		mA
Power Supply Rejection (100 mV p-p Sig	nd @ 1 kHz)*		40		dB
(At Both Analog and Digital Supply Pr	is, Both ADCs and DACs)	7			
CLOCK SPECIFICATIONS*	$\sum \left(\left(\right) \right) \left(\left(\right) \right)$				
Parameter		Min	Typ	Matr	Units
Input Clock Frequency		<u> </u>	24.576	$\neg \neg \neg$	MHz
Recommended Clock Duty Cycle		45	50	55	26
		$\neg \mid \mid$	~		
POWER-DOWN MODE					<u> </u>
I OWER-DOWN MODE		DT1 (0.0	\sim		\square
Parameter	Set Bits	DV _{DD} (3.3	V)	AV_{IDD} (5 V)	1
Farameter	Set bits	Тур		Тур	Units
ADC	PRO	31		26	InA
DAC	PR1	31		24	mA
ADC and DAC	PR1, PR0	6		18	mA
ADC + DAC + Mixer (Analog CD On)	LPMIX, PR1, PR0	6		10	mA
Mixer	PR2	35		16	mA
ADC + Mixer	PR2, PR0	31		10	mA
DAC + Mixer	PR2, PR1	31		8	mA
ADC + DAC + Mixer	PR2, PR1, PR0	6		2	mA
Analog CD Only (AC-Link On)	LPMIX, PR5, PR1, PR0	6		10	mA
Analog CD Only (AC-Link Off) Standby	LPMIX, PR1, PR0 PR5, PR4, P43, PR2, PR1, PR0	0		10	mA
				0.13	

*Guaranteed, not tested.

Specifications subject to change without notice.

	Symbol	Min	Тур	Max	Units
RESET Active Low Pulsewidth	t _{RST LOW}	50			ns
RESET Inactive to BIT_CLK Startup Delay	t _{RST2CLK}		833		μs
SYNC Active High Pulsewidth	tSYNC HIGH	80			ns
SYNC Low Pulsewidth	tSYNC LOW		19.5		μs
SYNC Inactive to BIT_CLK Startup Delay	tsyNC2CLK	162.8			ns
BIT_CLK Frequency	DITION		12.288		MHz
BIT_CLK Period	t _{CLK} PERIOD		81.4		ns
BIT_CLK Output Jitter ¹	GLICIEROD			750	ps
BIT_CLK High Pulsewidth	t _{CLK} HIGH	36.62	40.69	44.76	ns
BIT_CLK Low Pulsewidth	tclk_LOW	36.62	40.69	44.76	ns
SYNC Frequency	-CERCEOW	50100	48.0	11.70	kHz
SYNC Period	tsync period		20.8		ЦS
Setup to Falling Edge of BIT_CLK	t _{SETUP}	5	20.0		ns
Hold from Palling Edge of BIT_CLK	tHOLD	5			ns
BT_CLK Rise Time	tRISECLK	2	4	10	ns
BIT_CLK Fall Time	t _{FALLCLK}	2	4	10	ns
\$YNC Rise Time	tRISESYNC	2	4	10	ns
SYNC Fall Time	t _{FALLSYNC}	2	4	10	ns
SDATA_IN Rise Time	t _{RISEDIN}	2	4	10	ns
SDATA IN Fail The	T TFALLDIN	2	4	10	ns
SDATA_OUT Rise Time	tRISEDOUT	2	4	10	ns
SDATA_OUT Fall Time	TFALLPOUT	-2	4	10	ns
End of Slot 2 to BIT_CLK, SDATA IN Low	ts2_PDOWN	510	1	10	ms
Setup to Trailing Edge of RESET (Applies to SYNC, SDATA_OUT)	t _{SETUP2RST}	15		10	
Rising Edge of RESET to HI-Z Delay (ATE Test Mode)	toFF			125	ns
Propagation Delay	- COFF	\Box		15	
NOTES			//		TIS
¹ Output jitter is directly dependent on crystal input jitter.		~ /		-	
Specifications subject to change without notice.		I I			$ \rightarrow $
		L		L	-
			L	\sim	<u> </u>

ABSOLUTE MAXIMUM RATINGS*

Parameter	Min	Max	Units
Power Supplies			
Digital (V _{DD})	-0.3	6.0	V
Analog (V _{CC})	-0.3	6.0	V
Input Current (Except Supply Pins)		± 10.0	mA
Analog Input Voltage (Signal Pins)	-0.3	$V_{CC} + 0.3$	V
Digital Input Voltage (Signal Pins)	-0.3	$V_{DD} + 0.3$	V
Ambient Temperature (Operating)	0	+70	°C
Storage Temperature	-65	+150	°C

*Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum paring conditions for extended periods may affect device reliability.

ORDERING GUIDE

AD1881

Model	Temperature	Package	Package
	Range	Description	Option*
AD1881JST	0°C to +70°C	48-Lead LQFP	ST-48

*ST = Thin Quad Flatpack.

ENVIRONMENTAL CONDITIONS

- Ambient Temperature Rating
 - $T_{AMB} = T_{CASE} (PD \times \theta_{CA})$
 - T_{CASE} = Case Temperature in °C
 - P_D = Power Dissipation in W
 - θ_{CA} = Thermal Resistance (Case-to-Ambient)
 - θ_{JA} = Thermal Resistance (Junction-to-Ambient)
 - θ_{IC} = Thermal Resistance (Junction-to-Case)
- θ_{CA} Package θ_{JC} θ_{JA} LQFP 76.2°C/W 17°C/W 59.2°C/W CAUTION ESD (electrostatic discharge) static chai as 4000 V ser sitiv dev ctr eadily ge as nigl WARNIN accumulate on the human body and test equipment and can discharge without detection Although the AD1881 features proprietary ESD protect bermanent damage may circuit ion y occur on devices subjected to high energy electrostatic discha rges. Therefore, prop er ESD ESD SENSITIVE DE precautions are recommended to avoid performance degradation or l oss of ctional PIN CONFIGURATION 48-Lead LQFP Z. EAPD/CHAIN LINLVL_OUT CHAN CLK 50 MONO_OUT **LINLUL** AVDD2 AVSS2 S S NON S 48 47 46 45 44 43 42 41 40 39 38 37 DVDD1 1 36 LINE_OUT_R PIN 1 IDENTIFIER 35 LINE_OUT_L XTL_IN 2 3 XTL OUT 34 CX3D DVSS1 4 33 RX3D 32 FILT_L 31 FILT_R SDATA_OUT 5 AD1881 BIT_CLK 6 TOP VIEW (Not to Scale) DVSS2 7 30 AFILT2 29 AFILT1 SDATA_IN 8 28 VREFOUT 27 VREF DVDD2 9 SYNC 10 RESET 11 26 AVSS1 PC_BEEP 12 25 AVDD1 13 14 15 16 17 18 19 20 21 22 23 24 CD_R MIC1 AUX L 1 VIDEO_L LINE_IN_R z VIDEO_R D D GND_REF MIC2 AUX

8

-7-

PIN FUNCTION DESCRIPTIONS

Digital I/O			
Pin Name	LQFP	I/O	Description
XTL_IN	2	I	Crystal (or Clock) Input, 24.576 MHz.
XTL_OUT	3	0	Crystal Output.
SDATA_OUT	5	I	AC-Link Serial Data Output, AD1881 Input Stream.
BIT_CLK	6	O/I*	AC-Link Bit Clock. 12.288 MHz Serial Data Clock. Daisy Chain Output Clock.
SDATA IN	8	0	AC-Link Serial Data Input. AD1881 Output Stream.
SYNC	10	I	AC-Link Frame Sample Sync 48 kHz Fixed Rate.
RESET	11	I	AC-Link Reset. AD1881 Master H/W Reset.

*Input if configured as a slave device.

Daisy Chain Connections Pin Name LQFP Description Type CS0 I 45 Daisy Chain Codec Select LSB, ADC/DAC Right Bit Streams. Daisy Chain Codec Select MSB, ADC/DAC Left Bit Streams. I C 46 0 External Amp Power-Down Control Signal, Default LO, Active HI F API Daisy Chain Data Input for Data from Slave Codecs SDATA_IN. CHAIN IN 47 T IN CLE 48 10 24 76 MHz Buffered Clock Input/Output for Slave Codecs. Analog I/O including microphones and speakers. These signals conne ct the 88 to analo g sources an d sinks, onent Pin Name LOFP I/O scription PC BEEP 12 C B PC Speaker Beep Passthrough. ep PHONE_IN Phone. From Telephony Subsystem Speakerphone or Handse 13 I AUX L 14 I Auxiliary Input Left Channel Auxiliary Input Right Channel. AUX R 15 I VIDEO L 16 I Video Audio Left Channel. Video Audio Right Channel. VIDEO_R 17 I CD L 18 I CD Audio Left Channel. CD_GND_REF CD Audio Analog Ground Reference for Differential CD In 19 I CD R 20 I CD Audio Right Channel. MIC1 21 I Microphone 1. Desktop Microphone Input. 22 MIC2 I Microphone 2. Second Microphone Input. LINE IN L 23 I Line In Left Channel. LINE_IN_R 24 I Line In Right Channel. LINE_OUT_L 35 0 Line Out Left Channel. LINE_OUT_R 36 0 Line Out Right Channel. 37 0 Monaural Output to Telephony Subsystem Speakerphone. MONO_OUT LNLVL_OUT_L 39 0 Line-Level Output Left Channel. LNLVL_OUT_R 41 0 Line-Level Output Right Channel.

Filter/Reference

These signals are connected to resistors, capacitors, or specific voltages.

Pin Name	LQFP	I/O	Description
VREF	27	0	Voltage Reference Filter.
VREFOUT	28	0	Voltage Reference Output 5 mA Drive (Intended for MIC Bias).
AFILT1	29	0	Antialiasing Filter Capacitor-ADC Right Channel.
AFILT2	30	0	Antialiasing Filter Capacitor-ADC Left Channel.
FILT_R	31	0	AC-Coupling Filter Capacitor-ADC Right Channel.
FILT_L	32	0	AC-Coupling Filter Capacitor-ADC Left Channel.
RX3D	33	0	3D Phat Stereo Enhancement-Capacitor.
CX3D	34	I	3D Phat Stereo Enhancement-Capacitor.

Figure 8. Block Diagram Register Map

LPBK available in test mode only. (Needs modification)

PRODUCT OVERVIEW

The AD1881 is the first audio Codec to meet the Audio Codec '97 2.0 and 2.1 Extensions. In addition, the AD1881 SoundMAX Codec is designed to meet all requirements of the Audio Codec '97, Component Specification, Revision 1.03, © 1996, Intel Corporation, found at www.Intel.com. The AD1881 also includes some other Codec enhanced features such as communicating to three Codecs on the same link, a DSP serial port mode, modem sample rates and filtering, and built-in Phat Stereo 3D enhancement.

The AD1881 is an analog front end for high performance PC audio, modem, or DSP applications. The AC '97 architecture defines a 2-chip audio solution comprising a digital audio controller, plus a high quality analog component that includes Digital-to-Analog Converters (DACs), Analog-to-Digital Converters (ADCs), mixer and I/Q.

The main architectural features of the AD1881 are the high quality analog mixer section, two channels of $Z\Delta$ ADC conversion, two channels of $\Sigma\Delta$ DAC conversion and Data Direct Scrambling (D²S) rate generators. The AD188U's left channel ADC and DAC are compatible for modern applications supporting irrational sample rates and modern filtering requirements.

FUNCTIONAL DESCRIPTION

This section overviews the functionality of the AD1881 and i intended as a general introduction to the capabilities of the device. Detailed reference information may be found in the descriptions of the Indexed Control Registers.

Analog Inputs

The Codec contains a stereo pair of $\Sigma\Delta$ ADCs. Inputs to the ADC may be selected from the following analog signals: telephony (PHONE_IN), mono microphone (MIC1 or MIC2), stereo line (LINE_IN), auxiliary line input (AUX), stereo CD ROM (CD), stereo audio from a video source (VIDEO) and post-mixed stereo or mono line output (LINE_OUT).

Analog Mixing

PHONE_IN, MIC1 or MIC2, LINE_IN, AUX, CD and VIDEO can be mixed in the analog domain with the stereo output from the DACs. Each channel of the stereo analog inputs may be independently gained or attenuated from +12 dB to -34.5 dB in 1.5 dB steps. The summing path for the mono inputs (PHONE_IN, MIC1, and MIC2 to LINE_OUT) duplicates mono channel data on both the left and right LINE_OUT. Additionally, the PC attention signal (PC_BEEP) may be mixed with the line output. A switch allows the output of the DACs to bypass the Phat Stereo 3D enhancement.

Digital Audio Mode

The AD1881 is designed with a Digital Audio Mode (DAM) that allows mixing of all analog inputs independent of the DAC output signal path. Mixed analog input signals may be sent to the ADCs for processing by the controller or the host, and may be used during simultaneous capture and playback at different sample rates.

Analog-to-Digital Signal Path

The selector sends left and right channel information to the programmable gain amplifier (PGA). The PGA following the selector allows independent gain control for each channel entering the ADC from 0 dB to +22.5 dB in 1.5 dB steps. Each channel of the ADC is independent, and can process left and right channel data at different sample rates.

Sample Rates and D²S

The AD1881 default mode sets the Codec to operate at 48 kHz sample rates. The converter pairs may process left and right channel data at different sample rates. The AD1881 sample rate generator allows the Codec to instantaneously change and process sample rates from 7 kHz to 48 kHz with a resolution of 1 Hz. The in-band integrated noise and distortion artifacts introduced by rate conversions are below –90 dB. The AD1881 uses a 4-bit D/A structure and Data Directed Scrambling (D²S) to enhance noise immunity on motherboards and in PC enclosures, and to suppress idle tones below the device's quantization noise floor. The D²S process pushes noise and distortion artifacts caused by errors in the multibit DAC to frequencies beyond the auditory response of the human ear and then filters them.

Digital-to-Analog Signal/Path

The analog output of the DAC may be gained or attenuated from +12 dB to -34.5 dB in 1.5 dB steps, and summed with any of the analog input signals. The summed analog signal enters me Master Volume stage where each channel of the mixer output may be attenuated from 0 dB to -94.5 dB in 1.5 dB steps or muted.

Line-Level Outputs

The AD1881 offers a true line-level output for notebook docking station and home theater applications. The line-level output does not change with master volume settings.

Host-Based Echo Cancellation Support

The AD1881 supports time correlated I/O data format by presenting MIC data on the left channel of the ADC and the mono summation of left and right output on the right channel. The ADC is splittable; left and right ADC data can be sampled at different rates.

Power Management Modes

The AD1881 is designed to meet ACPI power consumption requirements through flexible power management control of all internal resources.

Indexed C	Control	Registers
-----------	---------	-----------

Reg Num	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
00h	Reset	x	SE4	SE3	SE2	SE1	SE0	ID9	ID8	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	0100h
02h	Master Volume	MM	x	LMV5	LMV4	LMV3	LMV2	LMV1	LMV0	x	x	RMV5	RMV4	RMV3	RMV2	RMV1	RMV0	8000h
)4h	Reserved	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
)6h	Master Volume Mono	MMM	x	x	x	x	x	x	х	x	x	x	MMV 4	MMV 2	MMV 2	MMV 1	MMV 0	8000h
)8h	Reserved	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Ah	PC Beep Volume	PCM	x	x	x	x	x	x	x	x	x	x	PCV3	PCV2	PCV1	PCV0	x	8000h
OCh	Phone In Volume	PHM	x	x	x	x	x	x	x	x	x	x	PHV4	PHV 3	PHV 2	PHV 1	PHV 0	8008h
Eh	MIC Volume	MCM	x	x	x	x	x	x	x	x	M20	x	MCV4	MCV3	MCV2	MCV1	MCV0	8008h
h	Line In Volume	IM	x	x	LLV4	LLV3	LLV2	LLV1	LLV0	x	x	x	RLV4	RLV3	RLV2	RLV1	RLV0	8808h
12h	CD Volume	CVM	x	X	LCV4	LCV3	LCV2	LCV1	LCV0	x	x	x	RCV4	RCV3	RCV2	RCV1	RCV0	8808h
4h	Video Volume	VM	* (x	LVV4	LVV3	LVV2	LVV1	LVV0	x	x	x	RVV4	RVV3	RVV2	RVV1	RVV0	8808h
6h	Aux Volume	AM	x	X	LAV4	LAV3	LAV2	LAV1	LAV0	х	x	x	RAV4	RAV3	RAV2	RAV1	RAV0	8808h
18h	PCM Out Vol	0/1	х	X	LOV4	10V3	LOV2	LOV1	Love	x	x	х	ROV4	ROV3	ROV2	ROV1	ROV0	8808h
Ah	Record Select	х	x	x	k	ĸ	LS2	LSI	LSC	x	x	ř	x	ř-	RS2	RS1	RS0	0000h
lCh	Record Gain	IM	x	X	x	LIM3	LIM2	LIM	LIM0	x	x	x	x	RIA13	RIM2	RHM1	RIM0	8000h
1Eh	Reserved	x	x	x	x	x	x	x	×	x	7 1	×	x	x	x	x	x	X
20h	General Purpose	POP	x	3D	x	x	x	MIX	MS	LPEK	k L	х	x	x	¥	x	k	0000h
22h	3D Control	x	x	x	x	x	x	x	x	x	х	x	Ŧ	DP3	DP2	DP1	DP0	0000h
26h	Power-Down Cntrl/Stat	EAPD	x	PR5	PR4	PR3	PR2	PR1	PRO	x	x	x	x	REF	ANL	PAC	ADC	000Xh
28h	Extended Audio ID	ID1	ID0	x	x	x	x	x	x	x	x	x	x	x	x	x	VRA	0001h
2Ah	Extended Audio Stat/Ctrl	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	VRA	0000h
2Ch/ (7Ah)*	PCM DAC Rate (SR1)	SR15	SR14	SR13	SR12	SR11	SR10	SR9	SR8	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0	BB80h
32h / (78h)*	PCM ADC Rate (SR0)	SR15	SR14	SR13	SR12	SR11	SR10	SR9	SR8	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0	BB80h
34h	Reserved	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
72h	Reserved	x	x	х	x	x	x	x	х	x	x	x	x	x	x	x	x	x
74h	Serial Configuration	SLOT 16	REG M2	REG M1	REG 0	DRQ EN	DLR Q2	DLR Q1	DLR Q0	х	x	x	x	x	DRRQ 2	DRRQ 1	DRRQ 0	7X0Xh
76h	Misc. Control Bits	DAC Z	LPMI X	x	DAM	DMS	DLSR	x	ALSR	MOD EN	SRX1 0D7	SRX8 D7	X	x	DRSR	x	ARSR	0404h
7Ch	Vendor ID1	F7	F6	F5	F4	F3	F2	F1	F0	S 7	S6	S5	S:4	S3	S2	S1	SO	4144h
7Eh	Vendor ID2	T7	T6	T5	T4	Т3	T2	T1	Т0	REV7	REV6	REV5	REV4	REV3	REV2	REV1	REV0	5340h
																1		

NOTES All registers not shown and bits containing an X are assumed to be reserved. Odd register addresses are aliased to the next lower even address. Reserved registers should not be written. Zeros should be written to reserved bits. *Indicates Aliased register for AD1819, AD1819A backward compatibility.

Reset (Index 00h)

Reg Num	Name	D15	D 14	D13	D12	D11	D1 0	D9	D8	D7	D6	D5	D 4	D3	D2	D1	DO	Default
00h	Reset	х	SE4	SE3	SE2	SE1	SE0	ID9	ID8	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	040 0h

Note: Writing any value to this register performs a register reset, which causes all registers to revert to their default values (except 74h, which forces the serial configuration). Reading this register returns the ID code of the part and a code for the type of 3D Stereo Enhancement.

ID[9:0] Identify Capability. The ID decodes the capabilities of AD1881 based on the following:

	Bit = 1	Function	AD1881*
	ID0	Dedicated MIC PCM In Channel	0
	ID1	Modem Line Codec Support	0
	ID2	Bass and Treble Control	0
	ID3	Simulated Stereo (Mono to Stereo)	0
$(\frown) \frown$	ID4	Headphone Out Support	1
	ID5	Loudness (Bass Boost) Support	0
	ID6	18-Bit DAC Resolution	0
	107 /	20-Bit DAC Resolution	0
	IDS	18-Bit ADC Resolution	0
	ND9	20-Bit ADC Resolution	0
	*The AID 1881	contains none of the optional features identified by thes	c bits.
SE[4:0] Stereo Enhancem	ent. The 3D s	sree enhancement identifies the Analog Dev	ices 3D stereo enhancement.
Master Volume Registers (Index 02h)		
Reg			

Reg Num	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	04	D3	D2	DI	DO	Default	
02 h	Master Volume	мм	х	LMV5	LMV4	LMV3	LMV2	LMV1	LMV0	x	x	RMV	PMV	RMV3	RMV2	кму	1 RMV0	8000 h	$ \rightarrow $

RMV[5:0] Right Master Volume Control. The least significant bit represents 1.5 dB. This register controls the output from 0 dB to a maximum attenuation of -94.5 dB.

MM Master Volume Mute. When this bit is set to "1," the channel is muted.

MM	xMV5 xMV0	Function
0	00 0000	0 dB Attenuation
0	01 1111	-46.5 dB Attenuation
0	11 1111	-94.5 dB Attenuation
1	XX XXXX	> dB Attenuation

Master Volume Mono (Index 06h)

Reg Num	Name	D 15	D14	D13	D12	D 11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
06 h	Master Volume Моло	ммм	x	x	x	x	x	x	x	x	x	x	MMV4	MMV3	MMV2	MMV1	MMV0	8000 h

MMV[4:0] Mono Master Volume Control. The least significant bit represents 1.5 dB. This register controls the output from 0 dB to a maximum attenuation of -46.5 dB.

MMM

Mono Master Volume Mute. When this bit is set to "1," the channel is muted.

LMV[5:0] Left Master Volume Control. The least significant bit represents 1.5 dB. This register controls the output from 0 dB to a maximum attenuation of -94.5 dB.

PC Beep Register (Index 0Ah)

Reg Num	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
0A h	PC_BEEP Volume	РСМ	x	x	x	x	x	x	x			x	PCV3	PCV2	PCV1	PCV0	x	800 0h

PCV[3:0] PC Beep Volume Control. The least significant bit represents 3 dB attenuation. This register controls the output from 0 dB to a maximum attenuation of -45 dB. The PC Beep is routed to Left and Right Line outputs even when the RESET pin is asserted. This is so that Power on Self-Test (POST) codes can be heard by the user in case of a hardware problem with the PC.

PCM

PC Beep Mute. When this bit is set to "1," the channel is muted.

				F	PCM	F	PCV3.	P	PCV0		Fun	ction						
				0)	0	000				0 dI	Atte	nuatio	n				
	\sim			0	+	1	111				-45	dB A	ttenuat	ion				
/		-	$\overline{}$	1		x	XXX					dB At	tenuat	ion				
Phone	e Volume (In	ndex 0C	ъ))															
Reg Num	Name		45 TE)14 E	D13 I)17 T	010	D9	D8	D7	D6 1	D5 D	4 D3	D2	D1	D0	Defaul
0 Ch	Phone Volus	ne PI	нм х		~ y	·) 1	2 3	¢	x	* /	7	3	K P	HV4 PH	73 PHV2	PHV1	PHV0	8008h
PHV[4		Phone V range is												s. The LS	Brepre	ents 1.5	5 dB, ar	nd the
PHM	1	Phone l	Mute.	When	n this	bit is s	et to	1,"	the ch	nanne	is m	ated.	1 г	\square		\square	/ _ _	
										~		7	1 1		1	1	1 1	
MIC V	Volume (Ind	ex 0Eh))									$\neg l$				/	14	
MIC V Reg Num	Volume (Ind	ex 0Eh) D15) D14	D13	D12	D11	D10	D9	D8	D 7	D6	 D5	D4	D3	D2	D 1	DO	Defau
Reg	, 	D15	D14	D13 X	D12 X	D11 X	D10 X	D9 X	D8 X	D7 X	D6 M20		D4 MCV		D2 MCV2	D1 MCV1	1	Defau 8008h
Reg Num	Name Mic Volume [4:0]	D15 MCM	D14 X	x Gain.	x . Allov	X vs setti	x ing the	x e MIC	x C Vol	x ume a	M20	x ator in	MCV		MCV2	MCV1	MCV0	\square

0 = Disabled; Gain = 0 dB.

1 = Enabled; Gain = 20 dB.

MCM MIC Mute. When this bit is set to "1," the channel is muted.

Line In Volume (Index 10h)

Reg Num	Name	D15	D14	D13	D12	D 11	D 10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
10 h	Line InVolume	LM	x	x	LLV4	LLV3	LLV2	LLV1	LLV0	x	x	x	RLV4	RLV3	RLV2	RLV1	RLV0	8808h
RLV[4													nuator i te enab		ps. The	LSB re	presents	s 1.5 dB,

LLV[4:0] Line In Volume Left. Allows setting the Line In left channel attenuator in 32 steps. The LSB represents 1.5 dB, and the range is +12 dB to -34.5 dB. The default value is 0 dB, mute enabled.

LM Line In Mute. When this bit is set to "1," the channel is muted.

CD Volume (Index 12h)

CV[4:0] CV[4:0]	1	CVM			D12	D11	D10	D9	D8	D 7	D6	D5	D4	D 3	D2	D1	D0	Default
.CV[4:0]	1		x	x	LCV4	LCV3	LCV2	LCV1	LCV0	x	x	x	RCV4	RCV3	RCV2	RCV1	RCV0	8808h
CVM		-			. Allows B to -34		<u> </u>	~					-	os. The	e LSB r	epreser	nts 1.5	dB, and
	-				Allows -34.5	-								The L	SB rep	resents	1.5 dB	, and the
ideo Vo	(CD Vo	lume	Mute	. When	this bi	t is set	to "1,'	' the ch	nanne	l is m	uted.						
	olume (Ind	lex 14	h)															
Reg Num Na	ame	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
14h Vi	ideo Volum	e VM	x	×	LVV4	LVV3	LVV2	LVV1	LVV0	x	x	x	RVV4	RVV3	RVV2	RVV1	RVV0	8808h
VV(4:0]		Pidht S	L	Volun	ne Allo	eett	ing the	Video	right (hann	el atte	eniiato	or in 32	steps	The I	SB rep	resents	1.5 dB,
W V 4.0	- / /	ind the	e rang		12 dB t										THE L	SD ICP	l cociilo	1.5 ub,
.VV[4.0]														eps. T	he LSB	repres	ents 1.5	5 dB, an
		he ran		/	1 1		1 1	lefault	value is	s 0 dI	s, mu	te ena	bled	_				
/M		7: 1																
		video .	Mute.	When	n this bi	it is set	to "1,"	the c	hannel	is m	ited.			\sim				
UX Vol	lume (Ind			When	n this bi	it is set	to "1,"	the c	hannel	is m	ited.		[
Reg	lume (Ind			When D13	D12	it is set	to "1," D10	the c	hannel D8	is mu 107	nted.	125	[D4[D3			Do	Deflamit
Reg Num Na		ex 16h)		D12	D11	D10	D9	\int	67		D5 X		D3 RAV3		P1 RAV1	D0 RAV0	Default
Reg Num Na	ame ux Volume	ex 16h D15 AM Right A	D14 X Aux. V	D13 X	D12 LAV4 e. Allov	D11 LAV3 ws settin	D10 LAV2	D9 LAV1 Aux rij	D8 LAV0 ght cha	D7 X	D6 X	x ator i	RAV4 n 32 ste	RAV3	RAV2		RAVO	4
Reg Num Na 16h Au RAV[4:0]	ame ux Volume)]]	ex 16h D15 AM Right A	D14 X Aux. V age is -	D13 X Volume +12 d	D12 LAV4 e. Allov B to -34	D11 LAV3 vs settin 4.5 dB	D10 LAV2 ng the .	D9 LAV1 Aux rig lefault	D8 LAV0 ght cha value is	x nnel : s 0 dI	D6 X attenu 3, mu	x lator i te ena	n 32 ste bled.	RAV3 eps. T	RAV2	repres	RAV0	ssosh dB, an
Reg Num 16h Au	ame ux Volume)]] 1)]]	ex 16h D15 AM Right A he ran	D14 X Aux. V age is -	D13 X Volume +12 di	D12 LAV4 e. Allov B to -34	D11 LAV3 vs settin 4.5 dB s settin;	D10 LAV2 . The c g the A	D9 LAV1 Aux right default .ux left	D8 LAV0 ght cha value is channe	nnel : s 0 dH el atte	D6 X attenu 3, mu enuato	x ator i te ena	n 32 ste bled.	RAV3 eps. T	RAV2	repres	RAV0	8808h
Reg Num Na 16h Au RAV[4:0]	ame ux Volume)]] t 1 1	ex 16h D15 AM Right A he ran Left Au	D14 X Aux. V age is - ux. V s +12	Volume +12 db blume. dB to	D12 LAV4 e. Allow B to -34 Allows	D11 LAV3 vs settin 4.5 dB s settin dB. Th	D10 LAV2 . The c g the A ae defau	D9 LAV1 Aux right default aux left alt valu	D8 LAV0 ght cha value is channe is 0 c	x nnel : s 0 dH el atte dB, m	D6 X attenu 3, mu enuato aute en	x ator i te ena	n 32 ste bled.	RAV3 eps. T	RAV2	repres	RAV0	ssosh dB, an
Reg Num 16h Au AV[4:0] AV[4:0]	ame ux Volume)]] t 1 1	ex 16h D15 AM Right A he ran Left An range i Aux. N	D14 X Aux. V age is - ux. V s +12 Aute. V	D13 X Volume +12 dl blume. dB to When	D12 LAV4 e. Allows B to -34 Allows -34.5	D11 LAV3 vs settin 4.5 dB s settin dB. Th	D10 LAV2 . The c g the A ae defau	D9 LAV1 Aux right default aux left alt valu	D8 LAV0 ght cha value is channe is 0 c	x nnel : s 0 dH el atte dB, m	D6 X attenu 3, mu enuato aute en	x ator i te ena	n 32 ste bled.	RAV3 eps. T	RAV2	repres	RAV0	ssosh dB, an
Reg Na 16h Au 2AV[4:0] AM PCM Ou	ame ux Volume)]]]]]	ex 16h D15 AM Right A he ran Left An range i Aux. N	D14 X Aux. V age is - ux. V s +12 Aute. V	D13 X Volume +12 dl blume. dB to When	D12 LAV4 e. Allows B to -34 Allows -34.5	D11 LAV3 vs settin 4.5 dB s settin dB. Th	D10 LAV2 . The c g the A ae defau	D9 LAV1 Aux right default aux left alt valu	D8 LAV0 ght cha value is channe is 0 c	x nnel : s 0 dH el atte dB, m	D6 X attenu 3, mu enuato aute en	x ator i te ena	n 32 ste bled.	RAV3 eps. T	RAV2	repres	RAV0	ssosh dB, an

LOV[4:0] Left PCM Out Volume. Allows setting the PCM left channel attenuator in 32 steps. The LSB represents 1.5 dB, and the range is +12 dB to -34.5 dB. The default value is 0 dB, mute enabled.

OM PCM Out Volume Mute. When this bit is set to "1," the channel is muted.

Volume	Table	(Index	0Ch	to	18h)	
--------	-------	--------	-----	----	------	--

MM	x 4 x 0	Function
0	00000	+12 dB Gain
0	01000	0 dB Gain
0	11111	-34.5 dB Gain
1	XXXXXX	-∞ dB Gain

Record Select Control Register (Index 1Ah)

Reg Num	Name	D15	D 14	D13	D12	D11	D10	D9	D8	D 7	D6	D5	D4	D3	D2	D1	DO	Default
1Ah	Record Select	x	x	х	x	x	LS2	LS1	LS0	x	x	x	x	x	RS2	RS1	RS0	0000 h

RS[2:0] Right Record Select

LS[2:0] Left Record Select.

Used to select the record source independently for right and left. See table for legend.

The default value is 0000h, which corresponds to MIC in.

Reg Num	Name	D15	D 14	D13	D12	D 11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
1Ch	Record Gain	LM	x	x	x	LIM3	LIM2	LIM1	LIM0	x	x	x	x	RIM3	RIM2	RIM1	RLM0	8000 h

RIM[3:0]Right Input Mixer Gain Control. Each LSB represents 1.5 dB, 0000 = 0 dB and the range is 0 dB to +22.5 dB.LIM[3:0]Left Input Mixer Gain Control. Each LSB represents 1.5 dB, 0000 = 0 dB and the range is 0 dB to +22.5 dB.

IM

Input Mute. 0 = Unmuted,

 $1 = Muted \text{ or } -\infty \text{ dB gain.}$

IM	xIM3 xIM0	Function
0	1111	+22.5 dB Gain
0	0000	0 dB Gain
1	XXXXXX	-∞ dB Gain

General Purpose Register (Index 20h)

Reg Num	Name	D15	D14	D13	D12	D 11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
20 h	General Purpose	POP	x	3D	х	x	х	MIX	MS	LPBK	x	x	x	x	x	x	x	0000h

Note: This register should be read before writing to generate a mask for only the bit(s) that need to be changed. The function default value is 0000h which is all off.

LPBK	L La	opback	Cont	rol. A	DC/D	AC D	igital	Looph	back N	Iode														
MS		IC Sele 0 = MI 1 = MI	C1.																					
MIX		ono Ou 0 = Min N = MI	κ.	elect																				
3D	ЗІ	$1 = Ph_i$	t Ster	eo is o eo is o	off.	\bigcirc	\sum																277.5	
POP		CM Out CM out 0 = pre 1 = pos	paths 3D.				e POP 1sive)	bit co	ntrols	the of	otiona	1 PCI	vI out	3E) byp	ass	path	n (the	e pre	- an	d po	st-3I)	
3D Co	ontrol Register	(Index	22h)			\sim		/						/	\square				7	<u> </u>	7			
3D Co Reg Num	ontrol Register	D15	22h)	D13	D12	D11	D10	D9	D8	D7	D6	D5	- P	/	D3		2	D1	7	00	De	fault		\Box
Reg				D13 X	D12 X	D11 X	D10 X	D9 X	D8 X	D7	D6 X	D5 X		4	D3 DP3	-	2 0P2	D1 DP		D0	+	efault 00h		コ ィ
Reg Num	Name 3D Control	D15	D14 X	x	x	x	x	x	x	x	x	x	7 [4	DP3						+	L		コ フ
Reg Num 22h*	Name 3D Control	D15 X	D14 X	x	x D "D	x	X Phat S	x Stereo	x	x	x	x	7 [4	DP3						+	L]] ,
Reg Num 22h*	Name 3D Control	D15 X	D14 X	x	x D "D	x epth"	X Phat S	x Stereo	x	x	x nt acco	x ordin	7 [4	DP3						+	L] ז ו
Reg Num 22h*	Name 3D Control	D15 X	D14 X	x	x D "D	x DP3.	X Phat S	x Stereo	x	x	x nt acco Dep 0%	x ordin	7 [4	DP3						+	L] ז ו

1111

100%

Subsection Ready Register (Index 26h)

Reg Num	Name	D 15	D 14	D 13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
26h	Power-Down Cntrl/Stat	EAPD	x	PR5	PR4	PR3	PR2	PR1	PR0	x	x	x	x	REF	ANL	DAC	ADC	N/A

Note: The ready bits are read only, writing to REF, ANL, DAC, ADC will have no effect. These bits indicate the status for the AD1881 subsections. If the bit is a one, then that subsection is "*ready*." Ready is defined as the subsection able to perform in its nominal state.

ADC	ADC section ready to transmit data.							
DAC	DAC section ready to accept data.							
ANL	Analog gainuators, attenuators, and mixers ready.							
REF	Voltage References, VREF and VREFOUT up to nomina	al level.						
R[5:0]	AD1881 Power-Down Modes. The first three bits are to other. The last bit PR3 can be used in combination with powered down via PR3 unless the ADCs and DACs are a the reference is up PR5 has no effect unless all ADCs, DACs, and the AC-L be either up or down, but all power-up sequences must be both set In multiple codec systems the master codec's PR5 and P the slave codec in the master's PI5 bit is clear but the PI	PR2 or also pow ink are e allowe	by itself vered do powered ed to run control	f. The r. wn. No l down. n to com	nixer ar thing el The re pletion	nd refere se can b ference : before I . PR5 is	ence can be power and the PR5 and s also eff	not be ed up until mixer can PR4 are Fective in
EAPD	External Audio Amp Power Down, Available when prog 0 = Pin 47 set to LO state (default), 1 = Pin 47 set to HI state.		i as an A	C '97 c	odec.	7 [
	Power-Down State	PR5	PR4	PR3	PR2	PR1	PRO	
	ADC Power-Down DAC Power-Down	0 0	0 0	0 0	0 0	\int_{1}^{0}	1 L	
	ADC and DAC Power-Down Mixer Power-Down	0	0	0	0	1	1	
	ADC + Mixer Power-Down	0	0	0	1	0	0	
	DAC + Mixer Power-Down	0	0	0	1	0	0	
	ADC + DAC + Mixer Power-Down	0	0	0	1	1	1	
	Standby	1	1	1	1	1	1	

Extended Audio ID Register (Index 28h)

Reg Num	Name	D15	D14	D13	D12	D11	D10	D9	D8	D 7	D6	D5	D4	D3	D2	D1	D0	Default
28h	Extended Audio ID	ID1	ID0	х	х	x	x	x	x	x	x	x	x	x	x	x	VRA	N/A

Note: The Extended Audio ID is a read only register.

VRA Variable Rate Audio. VRA = 1 enables Variable Rate Audio.

ID[1:0] ID1, ID0 is a 2-bit field that indicates the codec configuration: Primary is 00; Secondary is 01, 10, or 11.

Extended Audio Status and Control Register (Index 2Ah)

Reg Num	Name	D 15	D 14	D 13	D 12	D 11	D 10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
2Ah	Extended Audio St/Ctrl	х	х	х	х	х	х	х	х	x	x	x	х	х	x	x	VRA	na

Note: The Extended Audio Status and Control Register is a read/write register that provides status and control of the extended audio features.

VRA Variable Rate Audio. VRA = 1 enables Variable Rate Audio mode (sample rate control registers and SLOTREQ signaling.

PCM DAC Rate Register (Index 2Ch)

Reg Num	Name	D15	D14	D 13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
2CU(7Ah)	PCM DAC Rate	SR15	SR14	SR13	SR12	SR11	SR10	SR9	SR8	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SRO	BB80h
	n is an alias for 7A eset to 48k. Writing t	\bigcirc) (\sim	\mathcal{A}													h sample B80h) in
	1 Hzinci odec to	ement saturat	s. Pro to 48	gramm 8 kHz ii	ing a va f a rate	alvie ou greater	tside o than	f the 1 48 kH	z is p	7040 rograi	Hz (l b80h l or to	i) to 4 7 kH	8000 Iz if a	Hz (l rate l	ob80h ess th	n) cau an 71	ses the kHz is
	programmer read, oth	erwise	the clo	\ ·	/ / /				gister	is suj	pporte	ed, th	at val	ue wil	l be e	choed	d back	when
PCM ADO	C Rate Register (Index	32h)	\sim		$\langle \ \rangle$			/ /		/			- 1			$\overline{}$	
Reg Num	Name	D15	D14	D 13	D12	D11	D10	D9	D8	Ð7	D6	105	D4	Dз	D2	101	DO	Default

Note: 32h is an alias for 78h. The VRA bit in register 2Ah must be set for the alias to work; if a zero is written to VRA both sample rates are reset to 48k.

SR6

SR5

SR4

SR3

SR2 SR1

SEO

BB801

SR[15:0] Writing to this register allows programming of the sampling frequency from 7 kHz (1B58h) to 48 kHz (BB80h) in 1 Hz increments. Programming a value outside of the range 7040 Hz (1b80h) to 48000 Hz (bb80h) causes the codec to saturate to 48 kHz if a rate greater than 48 kHz is programmed, or to 7 kHz if a rate less than 7 kHz is programmed. For all rates, if the value written to the register is supported, that value will be echoed back when read, otherwise the closest rate supported is returned.

Serial Configuration (Index 74h)

32h/(78h)

Reg Num	Name	D15	D14	D13	D12	D 11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
74h	Serial Configuration	SLOT 16	REGM2	REGM1	REGM0	DRQEN	DLRQ2	DLRQ1	DLRQ0	x	x	x	x	x	DRRQ2	DRRQ1	DRRQ0	x

Note: This register is not reset when the reset register (register 00h) is written.

PCM ADC Rate SR15 SR14 SR13 SR12 SR11 SR10 SR9 SR8 SR7

DRRQ0	Master Codec DAC right request.
DRRQ1	Slave 1 Codec DAC right request.
DRRQ2	Slave 2 Codec DAC right request.
DLRQ0	Master Codec DAC left request.
DLRQ1	Slave 1 Codec DAC left request.
DLRQ2	Slave 2 Codec DAC left request.
DRQEN	Enable DAC request bits in status address and data slot.
REGM0	Master Codec register mask.
REGM1	Slave 1 Codec register mask.
REGM2	Slave 2 Codec register mask.
SLOT16	Enable 16-bit slots.

DRQEN and DxRQx are retained only for compatibility with the AD1819. New controller designs should use the VRA bit in register 2Ah and the request bits in the status address slot instead.

If your system uses only a single AD1881, you can ignore the register mask and the slave 1/slave 2 request bits. If you write to this register, write ones to all of the register mask bits. The DxRQx bits are read-only.

The Codec asserts the DxRQx bit when the corresponding DAC channel can accept data in the next frame. These bits are snapshots of the Codec state taken when the current frame began (effectively, on the rising edge of SYNC), but they also take notice of DAC samples sent in the current frame.

If you set the DRQEN bit, the AD1881 will fill all; otherwise, unused AC Link status address and data slots with the contents of register 74h. That makes it somewhat simpler to access the information because you don't need to continually issue AC Link read commands to obtain the register contents.

Also, the DAC requests are reflected in Slot 1, bits (11...6).

SLOT16 makes all AC Link slots 16 bits in length, formatted into 16 slots.

Miscellaneous Control Bits (Index 76h)

Sample Rate 0 (Index 78h)

Reg Num	Name	D15	D14	D13	D12	D11	D10	D9	D8	D 7	D6	D5	D4	D3	D2	D 1	D0	Default
78 h	Sample Rate 0	SR015	SR014	SR013	SR012	SR011	SR010	SR 09	SR08	SR07	SR06	SR05	SR04	SR03	SR02	SR01	SR00	BB80H

Note: 32h is an alias for 78h. The VRA bit in register 2Ah must be set for the alias to work; if a zero is written to VRA then both sample rates are reset to 48k.

SR0[15:0]Writing to this register allows the user to program the sampling frequency from 7 kHz (1B58h) to 48 kHz (BB80h)in 1 Hertz increments. Programming a value greater than 48 kHz or less than 7 kHz may cause unpredictable
results.

Sample Rate 1 (Index 7Ah)

Reg Num	Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
7Ah	Sample Rate 1	SR115	SR114	SR113	SR 112	SR111	SR110	SR19	SR18	SR1 7	SR 16	SR 15	SR14	SR13	SR12	SR11	SR10	BB80h

Note: 2Ch is an alias for 7Ah. The VRA bit in register 2Ah must be set for the alias to work; if a zero is written to VRA, both sample rates are reset to 48k

SR1[15:0] Writing to this register allows the user to program the sampling frequency from 7 kHz (1B58h) to 48 kHz (BB80h) in 1 Hertz increments. Programming a value greater than 48 kHz or less than 7 kHz may cause unpredictable results.

Vendor ID Registers (Index 7Ch-7Eh)

Register Differences

- Reserved register bits always yield zero when read. -
- Writes to odd registers have no effect, instead of writing preceding even register. Reads of odd registers always return zero instead of value of preceding even register.
- Writing ones to bits 5 or 13 of register 02h no longer forces bits 4:0 or 12:8 to ones.
- Registers 04h and 08h are now reserved.
- It is no longer required that the mixer not be powered down in order to power up the DACs, and the mixer can be powered down without also powering down the DACs.
- Aliases 2Ch (7Ah) and 32h (78h) have been added with AC '97 2.0 behavior.
- Registers 28h and 2Ah have been added; writing a zero to the LSB of register 2Ah resets registers 2Ch (7Ah) and 32h (78h).
- Register 76h default value is 0404h instead of 0000h; DAM, DMS and LPMIX bits have been added.
- LSB of register 7Eh is 40h instead of 00h-03h.

Analog Differences

- CD to LINE_OUT path noninverting instead of inverting.
- Mixer feed through when powered off eliminated.

APPLICATIONS CIRCUITS

The AD1881 has been designed to require a minimum amount of external circuitry. The recommended applications circuits are shown in Figures 9 and 10. Reference designs for the AD1881 are available and may be obtained by contacting your local Analog Devices' sales representative or authorized distributor. Example shell programs for establishing a communications path between the AD1881 and an ADSP-21xx are also available.

AD1881

Figure 9. Recommended One Codec Application Circuit

"SELECT MIC1 AND MAX GAIN 20dB +12dB for 10mV RMS MICROPHONE OUTPUT.

Figure 10. Microphone Input

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

48-Lead Thin Plastic Quad Flatpack (LQFP) (ST-48)

