ACPL-M43T Wide Operating Temperature Automotive Digital Optocoupler with R²Coupler[™] Isolation and 5-Pin SMT Package

Data Sheet

Description

The ACPL-M43T is a single channel, high temperature, high CMR, high speed digital optocoupler in a five lead miniature footprint specifically used in the automotive applications. The SO-5 JEDEC registered (MO-155) package outline does not require "through holes" in a PCB. This package occupies approximately one-fourth the footprint area of the standard dual-in-line package. The lead profile is designed to be compatible with standard surface mount processes.

This digital optocoupler uses an insulating layer between the light emitting diode and an integrated photon detector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output transistor collector increase the speed up to a hundred times over that of a conventional photo-transistor coupler by reducing the base-collector capacitance.

The ACPL-M43T has an increased common mode transient immunity of $30kV/\mu s$ minimum at $V_{CM} = 1500V$ over extended temperature range.

Avago R²Coupler isolation products provide the reinforced insulation and reliability needed for critical in automotive and high temperature industrial applications.

Functional Diagram

Features

- High Temperature and Reliability IPM Driver for Automotive Application.
- 30 kV/ μ s High Common-Mode Rejection at V_{CM} = 1500 V (typ)
- Compact, Auto-Insertable SO5 Packages
- Wide Temperature Range: -40°C ~ 125°C
- High Speed: 1MBd (Typ)
- Low LED Drive Current: 10mA (typ)
- Low Propagation Delay: 300ns (typ)
- Qualified to AEC-Q100 Test Guidelines
- Worldwide Safety Approval:
 - UL1577 recognized, 4000Vrms/1min
 - CSA Approved
 - IEC/EN/DIN EN 60747-5-2 Approved

Applications

- Automotive IPM Driver for DC-DC converters and motor inverters
- CANBus Communications Interface
- High Temperature Digital/Analog Signal Isolation
- Power Transistor Isolation

Pin Connections

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Ordering Information

	Option					
Part number	RoHS Compliant	Package	Surface Mount	Tape & Reel	IEC/EN/DIN EN 60747-5-2	Quantity
ACPL-M43T	-000E	SO-5	Х			100 per tube
	-060E		Х		Х	100 per tube
	-500E		Х	Х		1500 per reel
	-560E		Х	Х	Х	1500 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

ACPL-M43T-500E to order product of Mini-flat Surface Mount 5-pin package in Tape and Reel packaging with RoHS compliant.

Example 2:

ACPL-M43T to order product of Mini-flat Surface Mount 5-pin package in tube packaging and non RoHS compliant. Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings

ACPL-M43T Small Outline SO-5 Package (JEDEC MO-155)

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision).

Note: Non-halide flux should be used.

Regulatory Information

The ACPL-M43T is approved by the following organizations:

UL	IEC/EN/DIN EN 60747-5-2
Approved under UL 1577, component recognition pro-	Approved under:
gram up to V _{ISO} = 4000 V _{RMS}	IEC 60747-5-5:2007
	EN 60747-5-2:2001 + A1
CSA	DIN EN 60747-5-2 (VDE 0884 Teil 2)

Approved under CSA Component Acceptance Notice #5.

IEC/EN/DIN EN 60747-5-2 Insulation Characteristics*

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110/1.89, Table 1			
for rated mains voltage \leq 150 V _{rms}		I – IV	
for rated mains voltage ≤ 300 Vrms		-	
for rated mains voltage \leq 600 V _{rms}		I – II	
Climatic Classification		55/125/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	VIORM	567	V_{peak}
Input to Output Test Voltage, Method b*	V _{PR}	1063	Vpeak
V_{IORM} x 1.875= V_{PR} , 100% Production Test with t _m =1 sec, Partial discharge < 5 pC			
Input to Output Test Voltage, Method a*	V _{PR}	907	Vpeak
$V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test, t _m =10 sec, Partial discharge < 5 pC			1
Highest Allowable Overvoltage (Transient Overvoltage t _{ini} = 60 sec)	V _{IOTM}	6000	V _{peak}
Safety-limiting values – maximum values allowed in the event of a failure.			
Case Temperature	Ts	175	°C
Input Current	I _{S, INPUT}	230	mA
Output Power	Ps, output	600	mW
Insulation Resistance at T_S , $V_{IO} = 500 V$	R _S	>109	Ω

* Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/ DIN EN 60747-5-2) for a detailed description of Method a and Method b partial discharge test profiles.

Insulation and Safety Related Specifications

Parameter	Symbol	ACPL-M43T	Units	Conditions
Minimum External Air Gap (Clearance)	L(101)	5	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	5	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Tracking Resistance (Comparative Tracking Index)	СТІ	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group (DIN VDE0109)		Illa		Material Group (DIN VDE 0109)

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Units	Note
Storage Temperature		Ts	-55	150	°C	
Operating Temperature		TA	-40	125	°C	
Lead Soldering Cycle	Temperature			260	°C	
	Time			10	S	
Average Forward Input C	Current	I _{F(avg)}		20	mA	
Peak Forward Input Curr (50% duty cycle, 1ms pu		l _{F(peak)}		40	mA	
Peak Transient Input Cur (<= 1us pulse width, 300		I _{F(trans)}		100	mA	
Reversed Input Voltage		V _R		5	V	Pin 3 - 1
Input Power Dissipation		P _{IN}		30	mW	
Output Power Dissipatio	n	Po		100	mW	
Average Output Current		IO		8	mA	
Peak Output Current		lo(pk)		16	mA	
Supply Voltage (Pins 6-4))	V _{CC}	-0.5	30	V	
Output Voltage (Pins 5-4)	Vo	-0.5	20	V	
Solder Reflow Temperatu	ure Profile	See Reflow	Temperature P	Profile		

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Supply Voltage	V _{CC}	3.0	20.0	V	
Operating Temperature	T _A	-40	125	°C	

Electrical Specifications (DC)

Parameter	Sym.	Min.	Тур.	Max.	Units		Conditions		Fig.	Note
Current Transfer	CTR	32	45	80	%	T _A =25°C	Vo=0.4V	Vcc=4.5V	1,2,4	1
Ratio		20	45		%		Vo=0.5V	I _F =10mA		
Logic Low	V _{OL}		0.1	0.4	V	T _A =25°C	lo=3mA			
Output Voltage				0.5	V		lo=2.4mA			
Logic High Output Current	I _{OH}			0.5	μΑ	T _A =25°C	Vo=Vcc=5.5V	I _F =0mA	11, 12	
Output Current				1	μΑ	T _A =25°C	Vo=Vcc=20V			
				5	μΑ					
Logic Low Supply Current	I _{CCL}		50	200	μΑ		I _F =10mA, Vo=open, Vcc=20V			7
Logic High Supply Current	I _{CCH}		0.02	1	μΑ	T _A =25°C	I _F =0mA, Vo=open,			7
Supply current				2.5	μA		Vcc=20V			
Input Forward	V _F	1.45	1.5	1.75	V	T _A =25°C	I _F =10mA		3	
Voltage		1.25	1.5	1.85	V		I _F =10mA			
Input Reversed Breakdown Voltage	BV _R	5			V		I _R =10μΑ			
Temperature	$\Delta V/$		-1.5		mV/°C		I _F =10mA			
Coefficient of Forward Voltage	ΔT_A									
Input Capacitance	C _{IN}		90		рF		F=1MHz, V _F =0			

Switching Specifications (AC)

Over recommended operating ($T_A = -40^{\circ}C$ to 125°C), $I_F = 10$ mA, $V_{CC} = 5.0$ V unless otherwise specified.

Parameter	Symbol	Min	Тур	Мах	Units		Test Conditions	Fig.	Note
Propagation Delay	T _{PHL}	0.08	0.2	0.8	μs	T _A =25°C		5,6,7,	5
Time to Logic Low at Output		0.06		1.0	μs		$I_F = 10 \text{mA}, V_{CC} = 5.0 \text{ V}, R_L = 1.9 \text{k}\Omega, C_L = 15 \text{pF} \text{ V}_{\text{THHL}} = 1.5 \text{V}$	8,9, 10,13	
Propagation Delay	T _{PLH}	0.15	0.3	0.8	μs	T _A =25°C	Pulse: f=10kHz, Duty cycle =50%,	5,6,7,	5
Time to Logic High at Output		0.03		1.0	μs		$I_F = 10mA$, $V_{CC} = 5.0 V$, $R_L = 1.9 k\Omega$ $C_L = 15 pF V_{THLH} = 2.0 V$	8,9, 10,13	
Pulse Width	PWD	0	0.4	0.45	μs	T _A =25°C	Pulse: f=10kHz, Duty cycle =50%,		8
Distortion		0		0.85	μs		I _F =10mA, V _{CC} =5.0V, R _L =1.9kΩ, C _L =15pF, V _{THHL} =1.5V, V _{THLH} =2.0V		
Propagation Delay	t _{PLH} -t _{PHL}	0	0.4	0.5	μs	T _A =25°C	Pulse: f=10kHz, Duty cycle =50%,		9
Difference Between Any 2 Parts		0		0.9	μs		I_F =10mA, V _{CC} =5.0V, R _L =1.9kΩ, C _L =15pF, V _{THHL} =1.5V, V _{THLH} =2.0V		
Common Mode Transient Immunity at Logic High Output	CM _H	15	30		kV/µs		V_{CM} =1500Vp-p, I _F =0mA, T _A =25°C, R _L =1.9k Ω	14	4, 5
Common Mode Transient Immunity at Logic Low Output	CM _L	15	30		kV/µs		V_{CM} =1500Vp-p, I _F =10mA, T _A =25°C, R _L =1.9k Ω	14	

Package Characteristics

*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating.

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage*	V _{ISO}	4000			V _{RMS}	$\label{eq:RH} \begin{array}{l} RH \leq 50\%, t=1 \text{min}; \\ T_{A} = 25^\circ C \end{array}$		2, 3
Input-Output Resistance	R _{I-O}		10 ¹⁴		Ω	$V_{I-O} = 500 \text{ Vdc}$		2
Input-Output Capacitance	CI-O		0.6		pF	$f = 1 MHz; V_{I-O} = 0 Vdc$		2

Notes:

- 1. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, I₀, to the forward LED input current, I_F, times 100.
- 2. Device considered a two terminal device: pins 1 and 3 shorted together, and pins 4, 5 and 6 shorted together.
- 3. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage \geq 4800 V_{RMS} for 1 second.
- 4. Common transient immunity in a Logic High level is the maximum tolerable (positive) dV_{CM}/dt on the rising edge of the common mode pulse, V_{CM} , to assure that the output will remain in a Logic High state (i.e., $V_O > 2.0 V$). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dV_{CM}/dt on the falling edge of the common mode pulse signal, V_{CM} to assure that the output will remain in a Logic Low state (i.e., $V_O > 0.8 V$).
- 5. The 1.9 $k\Omega$ load represents 1 TTL unit load of 1.6 mA and the 5.6 $k\Omega$ pull-up resistor.
- 6. The frequency at which the ac output voltage is 3 dB below its mid-frequency value.
- 7. Use of a 0.1 μF bypass capacitor connected between pins 4 and 6 is recommended.
- 8. Pulse Width Distortion (PWD) is defined as $|t_{PHL} t_{PLH}|$ for any given device.
- 9. The difference between t_{PLH} and t_{PHL} between any two parts under the same test condition.

Figure 1. DC and Pulsed Transfer Characteristics.

Figure 2. Current Transfer Ratio vs Input Current

Figure 3. Input Current vs Forward Voltage

Figure 5. Propagation Delay vs Temperature

Figure 4. Current Transfer Ratio vs Temperature

Figure 6. Propagation Delay vs Temperature

Figure 7. Propagation Delay Time vs Load Resistance

Figure 8. Propagation Delay Time vs Load Resistance

Figure 9. Propagation Delay Time vs Input Current

Figure 11. Logic High Output Current vs Supply Voltage

Figure 10. Propagation Delay Time vs Input Current

Figure 12. Logic High Output Current vs Temperature

Figure 13. Switching Test Circuit

Figure 14. Test Circuit for Transient Immunity and Typical Waveforms.

For product information and a complete list of distributors, please go to our web site:

www.avagotech.com

Avago, Avago Technologies, the A logo and R²Coupler[™] are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved. Obsoletes AV01-0458EN AV02-0565EN - December 1, 2011

