Octal D-type flip-flop with data enable; positive-edge trigger Rev. 02 — 12 June 2008 Product data she

Product data sheet

General description 1.

The 74AHC377; 74AHCT377 is a high-speed Si-gate CMOS device and is pin compatible with Low-power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard No. 7-A.

The 74AHC377; 74AHCT377 has eight edge-triggered, D-type flip-flops with individual D inputs and Q outputs. A common clock input (CP) loads all flip-flops simultaneously when the data enable input (\overline{E}) is LOW. The state of each D input, one set-up time before the LOW-to-HIGH clock transition, is transferred to the corresponding output (Qn) of the flip-flop. The E input is only required to be stable one set-up time prior to the LOW-to-HIGH transition for predictable operation.

For versions associated with the 74AHC377; 74AHCT377, refer to the following:

- For the master reset version, see 74AHC273; 74AHCT273
- For the transparent latch version, see 74AHC373; 74AHCT373
- For the 3-state version, see 74AHC374; 74AHCT374

Features 2.

- Balanced propagation delays
- All inputs have Schmitt-trigger actions
- Inputs accept voltages higher than V_{CC}
- Ideal for addressable register applications
- Data enable for address and data synchronization
- Eight positive-edge triggered D-type flip-flops
- Input levels:
 - For 74AHC377: CMOS level
 - For 74AHCT377: TTL level
- **ESD** protection:
 - HBM EIA/JESD22-A114E exceeds 2000 V
 - MM EIA/JESD22-A115-A exceeds 200 V
 - CDM EIA/JESD22-C101C exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

nexperia

Octal D-type flip-flop with data enable; positive-edge trigger

3. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74AHC377	'			
74AHC377D	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-7
74AHC377PW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-7
74AHCT377				
74AHCT377D	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-7
74AHCT377PW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-7

4. Functional diagram

Nexperia

74AHC377; 74AHCT377

Octal D-type flip-flop with data enable; positive-edge trigger

Octal D-type flip-flop with data enable; positive-edge trigger

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
Ē	1	data enable input (active LOW)
Q0	2	flip-flop output
D0	3	data input
D1	4	data input
Q1	5	flip-flop output
Q2	6	flip-flop output
D2	7	data input
D3	8	data input
Q3	9	flip-flop output
GND	10	ground (0 V)
CP	11	clock input (LOW-to-HIGH, edge triggered)
Q4	12	flip-flop output
D4	13	data input
D5	14	data input
Q5	15	flip-flop output
Q6	16	flip-flop output
D6	17	data input
D7	18	data input
Q7	19	flip-flop output
V _{CC}	20	supply voltage

Octal D-type flip-flop with data enable; positive-edge trigger

6. Functional description

Table 3.Function table^[1]

Operating mode	Control		Input	Output
	Ē	СР	Dn	Qn
Load 1	I	\uparrow	h	Н
Load 0	I	Ŷ	I	L
Hold (do nothing)	h	\uparrow	Х	no change
	Н	Х	Х	no change

[1] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition;

L = LOW voltage level;

I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition;

 \uparrow = LOW-to-HIGH CP transition;

X = don't care.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
VI	input voltage		-0.5	+7.0	V
I _{IK}	input clamping current	V _I < -0.5 V	<u>[1]</u> –20	-	mA
I _{OK}	output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> –20	+20	mA
lo	output current	$V_{O} = -0.5 \text{ V}$ to (V_{CC} + 0.5 V)	-25	+25	mA
I _{CC}	supply current		-	+75	mA
I _{GND}	ground current		-75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C	[2] _	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SO20 packages: above 70 °C the value of Ptot derates linearly at 8 mW/K.

For TSSOP20 packages: above 60 °C the value of Ptot derates linearly at 5.5 mW/K.

Octal D-type flip-flop with data enable; positive-edge trigger

8. Recommended operating conditions

Table 5. **Operating conditions** Symbol Parameter Conditions Min Тур Max Unit 74AHC377 V V_{CC} supply voltage 2.0 5.0 5.5 VI 5.5 V input voltage 0 -0 Vo output voltage -V_{CC} V °C ambient temperature -40 +125 Tamb +25 input transition rise and fall rate $V_{CC} = 3.0 \text{ V}$ to 3.6 V $\Delta t / \Delta V$ --100 ns/V $V_{CC} = 4.5 \text{ V}$ to 5.5 V 20 ns/V --74AHCT377 Vcc supply voltage 4.5 5.0 5.5 V VI input voltage 0 _ 5.5 V 0 V Vo output voltage -V_{CC} Tamb ambient temperature -40 +25 +125 °C $\Delta t / \Delta V$ input transition rise and fall rate $V_{CC} = 4.5 V \text{ to } 5.5 V$ _ -20 ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		−40 °C t	o +85 °C	–40 °C to	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74AHC3	77									
V _{IH}	HIGH-level	$V_{CC} = 2.0 V$	1.5	-	-	1.5	-	1.5	-	V
	input voltage	$V_{CC} = 3.0 V$	2.1	-	-	2.1	-	2.1	-	V
		$V_{CC} = 5.5 V$	3.85	-	-	3.85	-	3.85	-	V
V _{IL}	LOW-level	$V_{CC} = 2.0 V$	-	-	0.5	-	0.5	-	0.5	V
	input voltage	$V_{CC} = 3.0 V$	-	-	0.9	-	0.9	-	0.9	V
		$V_{CC} = 5.5 V$	-	-	1.65	-	1.65	-	1.65	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_O = -50 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	1.9	2.0	-	1.9	-	1.9	-	V
		I_{O} = –50 $\mu A;$ V_{CC} = 3.0 V	2.9	3.0	-	2.9	-	2.9	-	V
		$I_O = -50 \ \mu\text{A}; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		I_{O} = -4.0 mA; V_{CC} = 3.0 V	2.58	-	-	2.48	-	2.40	-	V
		I_{O} = -8.0 mA; V_{CC} = 4.5 V	3.94	-	-	3.80	-	3.70	-	V
V _{OL}	LOW-level	$V_I = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_{O} = 50 \ \mu\text{A}; \ V_{CC} = 2.0 \ \text{V}$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 50 \ \mu\text{A}; \ V_{CC} = 3.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 50 \ \mu\text{A}; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
		$I_0 = 8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V

Octal D-type flip-flop with data enable; positive-edge trigger

Symbol Parameter		Conditions		25 °C		_40 °C t	o +85 °C	–40 °C to	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
I	input leakage current	$V_1 = 5.5 V \text{ or GND};$ $V_{CC} = 0 V \text{ to } 5.5 V$	-	-	0.1	-	1.0	-	2.0	μA
lcc	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{CC} \text{ or } GND; \ I_{O} = 0 \ A; \\ V_{CC} = 5.5 \ V \end{array}$	-	-	4.0	-	40	-	80	μA
Cı	input capacitance	$V_{I} = V_{CC} \text{ or } GND$	-	3	10	-	10	-	10	pF
74AHCT	377									
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	-	-	2.0	-	2.0	-	V
VIL	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	-	0.8	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -50 μA	4.4	4.5	-	4.4	-	4.4	-	V
		I _O = -8.0 mA	3.94	-	-	3.80	-	3.70	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = 50 μA	-	0	0.1	-	0.1	-	0.1	V
		I _O = 8.0 mA	-	-	0.36	-	0.44	-	0.55	V
I	input leakage current	$V_1 = 5.5 V \text{ or GND};$ $V_{CC} = 0 V \text{ to } 5.5 V$	-	-	0.1	-	1.0	-	2.0	μΑ
I _{CC}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{CC} \text{ or } GND; \ I_{O} = 0 \ A; \\ V_{CC} = 5.5 \ V \end{array}$	-	-	4.0	-	40	-	80	μΑ
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1$ V; other pins at V_{CC} or GND; $I_O = 0$ A; $V_{CC} = 4.5$ V to 5.5 V	-	-	1.35	-	1.5	-	1.5	mA
Cı	input capacitance	$V_1 = V_{CC}$ or GND	-	3	10	-	10	-	10	pF

Table 6. Static characteristics ... continued

Octal D-type flip-flop with data enable; positive-edge trigger

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8.

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C to	o +125 °C	Unit
			Min	Typ[1]	Max	Min	Max	Min	Max	
74AHC3	77									
t _{pd}		CP to Qn; see Figure 6 [2]								
	delay	$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$								
		C _L = 15 pF	-	5.6	12.8	1.0	15.0	1.0	16.0	ns
		C _L = 50 pF	-	8.0	16.0	1.0	18.0	1.0	20.0	ns
		V_{CC} = 4.5 V to 5.5 V								
		C _L = 15 pF	-	3.9	9.0	1.0	10.5	1.0	11.5	ns
		C _L = 50 pF	-	5.6	10.5	1.0	12.0	1.0	13.5	ns
f _{max}	maximum	see Figure 6								
	frequency	$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$								
		C _L = 15 pF	80	125	-	70	-	70	-	MHz
		C _L = 50 pF	50	75	-	45	-	45	-	MHz
		V_{CC} = 4.5 V to 5.5 V								
		C _L = 15 pF	125	175	-	110	-	110	-	MHz
		C _L = 50 pF	85	120	-	75	-	75	-	MHz
t _W	pulse width	CP HIGH or LOW; see Figure 6								
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	5.0	-	-	5.0	-	5.0	-	ns
		V_{CC} = 4.5 V to 5.5 V	5.0	-	-	5.0	-	5.0	-	ns
t _{su}	set-up time	Dn, \overline{E} to CP; see Figure 7								
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	5.0	-	-	5.0	-	5.0	-	ns
		$V_{CC} = 4.5 V \text{ to } 5.5 V$	4.5	-	-	4.5	-	4.5	-	ns
t _h	hold time	Dn, \overline{E} to CP; see Figure 7								
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1.5	-	-	1.5	-	1.5	-	ns
		V_{CC} = 4.5 V to 5.5 V	2.0	-	-	2.0	-	2.0	-	ns
C _{PD}	power dissipation capacitance	$f_i = 1 \text{ MHz}; V_1 = \text{GND to } V_{\text{CC}}$ [3]	-	20	-	-	-	-	-	pF

Octal D-type flip-flop with data enable; positive-edge trigger

Table 7. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8.

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	-40 °C te	o +125 °C	Unit
				Typ <mark>[1]</mark>	Max	Min	Max	Min	Max	
74AHCT	377; V _{CC} = 4.	5 V to 5.5 V								
t _{pd}	propagation	CP to Qn; see Figure 6	<u>2]</u>							
	delay	C _L = 15 pF	-	4.0	9.0	1.0	10.5	1.0	11.5	ns
		C _L = 50 pF	-	5.7	10.5	1.0	12.0	1.0	13.5	ns
f _{max}	maximum	see Figure 6								
	frequency	C _L = 15 pF	90	140	-	80	-	80	-	MHz
		C _L = 50 pF	85	130	-	75	-	75	-	MHz
t _W	pulse width	CP HIGH or LOW; see Figure 6	5.0	-	-	5.0	-	5.0	-	ns
t _{su}	set-up time	Dn, E to CP; see Figure 7	4.5	-	-	4.5	-	4.5	-	ns
t _h	hold time	Dn, E to CP; see Figure 7	2.0	-	-	2.0	-	2.0	-	ns
C _{PD}	power dissipation capacitance	$f_i = 1 \text{ MHz}; V_I = \text{GND to } V_{\text{CC}}$	3] _	23	-	-	-	-	-	pF

[1] Typical values are measured at nominal supply voltage ($V_{CC} = 3.3$ V and $V_{CC} = 5.0$ V).

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma(C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs.

Octal D-type flip-flop with data enable; positive-edge trigger

11. Waveforms

The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig 7. Data set-up and hold times

Table 8. Measurement points

Туре	Input	Output
	V _M	V _M
74AHC377	$0.5 imes V_{CC}$	$0.5 \times V_{CC}$
74AHCT377	1.5 V	$0.5 \times V_{CC}$

Nexperia

74AHC377; 74AHCT377

Octal D-type flip-flop with data enable; positive-edge trigger

Table 9.Test data

Туре	Input L		Load	Test
	VI	t _r , t _f	CL	
74AHC377	V _{CC}	≤ 3.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}
74AHCT377	3.0 V	≤ 3.0 ns	15 pF, 50 pF	t _{PLH} , t _{PHL}

Octal D-type flip-flop with data enable; positive-edge trigger

12. Package outline

Fig 9. Package outline SOT163-1 (SO20)

Octal D-type flip-flop with data enable; positive-edge trigger

Fig 10. Package outline SOT360-1 (TSSOP20)

Octal D-type flip-flop with data enable; positive-edge trigger

13. Abbreviations

Table 10.	Abbreviations
Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
LSTTL	Low-power Schottky Transistor-Transistor Logic
MM	Machine Model

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74AHC_AHCT377_2	20080612	Product data sheet	-	74AHC_AHCT377_1		
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 					
	 Legal texts h 	gal texts have been adapted to the new company name where appropriate.				
	• Table 6: the	conditions for input leakage c	urrent have been cha	nged.		
74AHC_AHCT377_1	20000815	Product specification	-	-		

15. Legal information

15.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of

use of such information. **Short data sheet** — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales

office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

Nexperia

74AHC377; 74AHCT377

Octal D-type flip-flop with data enable; positive-edge trigger

17. Contents

1	General description 1
2	Features 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 4
5.1	Pinning 4
5.2	Pin description 4
6	Functional description 5
7	Limiting values 5
8	Recommended operating conditions 6
9	Static characteristics 6
10	Dynamic characteristics 8
11	Waveforms 10
12	Package outline 12
13	Abbreviations 14
14	Revision history 14
15	Legal information 15
15.1	Data sheet status 15
15.2	Definitions 15
15.3	Disclaimers
15.4	Trademarks15
16	Contact information 15
17	Contents 16