INTEGRATED CIRCUITS ## DATA SHEET # **74LV573**Octal D-type transparent latch (3-State) Product specification Supersedes data of 1997 Jun 06 IC24 Data Handbook ### Octal D-type transparent latch (3-State) 74LV573 #### **FEATURES** - Wide operating voltage: 1.0 to 5.5V - Optimized for Low Voltage applications: 1.0V to 3.6V - Accepts TTL input levels between V_{CC} = 2.7V and V_{CC} = 3.6V - Typical V_{OLP} (output ground bounce) < 0.8V at V_{CC} = 3.3V, T_{amb} = 25°C - Typical V_{OHV} (output V_{OH} undershoot) > 2V at V_{CC} = 3.3V, T_{amb} = 25°C - Inputs and outputs on opposite sides of package allowing easy interface with microprocessors - Useful as input or output port for microprocessors/microcomputer - Common 3-State output enable input - Output capability: bus driver - I_{CC} category: MSI #### **DESCRIPTION** The 74LV573 is a low-voltage Si-gate CMOS device that is pin and function compatible with 74HC/HCT573. The 74LV573 is an octal D-type transparent latch featuring separate D-type inputs for each latch and 3-State outputs for bus oriented applications. A latch enable (LE) input and an output enable (\overline{OE}) input are common to all internal latches. The '573' consists of eight D-type transparent latches with 3-State true outputs. When LE is HIGH, data at the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change each time its corresponding D-input changes. When LE is LOW the latches store the information that was present at the D-inputs a set-up time preceding the HIGH-to-LOW transition of LE. When $\overline{\text{OE}}$ is LOW, the contents of the eight latches are available at the outputs. When $\overline{\text{OE}}$ is HIGH, the outputs go to the high impedance OFF-state. Operation of the $\overline{\text{OE}}$ input does not affect the state of the latches. The '573' is functionally identical to the '563' and the '373', but the '563' has inverted outputs and the '373' has a different pin arrangement. #### **QUICK REFERENCE DATA** GND = 0V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5 \text{ ns}$ | SYMBOL | PARAMETER | CONDITIONS | TYPICAL | UNIT | |------------------------------------|---|---|----------|------| | t _{PHL} /t _{PLH} | Propagation delay
Dn to Qn
LE to Qn | C _L = 15pF
V _{CC} = 3.3V | 12
13 | ns | | C _I | Input capacitance | | 3.5 | pF | | C _{PD} | Power dissipation capacitance per latch | Notes 1, 2 | 26 | pF | #### NOTES: - 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW) $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum_i (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz; C_L = output load capacity in pF; f_o = output frequency in MHz; V_{CC} = supply voltage in V; $\sum_i (C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs. - 2. The condition is $V_I = GND$ to V_{CC} . #### ORDERING AND PACKAGE INFORMATION | PACKAGES | TEMPERATURE RANGE | OUTSIDE NORTH
AMERICA | NORTH AMERICA | PKG. DWG. # | |-----------------------------|-------------------|--------------------------|---------------|-------------| | 20-Pin Plastic DIL | -40°C to +125°C | 74LV573 N | 74LV573 N | SOT146-1 | | 20-Pin Plastic SO | -40°C to +125°C | 74LV573 D | 74LV573 D | SOT163-1 | | 20-Pin Plastic SSOP Type II | -40°C to +125°C | 74LV573 DB | 74LV573 DB | SOT339-1 | | 20-Pin Plastic TSSOP Type I | -40°C to +125°C | 74LV573 PW | 74LV573PW DH | SOT360-1 | #### **PIN DESCRIPTION** | PIN NUMBER | SYMBOL | FUNCTION | |-----------------------------------|--------|-----------------------------------| | 1 | ŌĒ | Output enabled input (active LOW) | | 2, 3, 4, 5,
6, 7, 8, 9 | D0-D7 | Data inputs | | 19, 18, 17, 16,
15, 14, 13, 12 | Q0-Q7 | Data outputs | | 10 | GND | Ground (0V) | | 11 | LE | Latch enable input (active HIGH) | | 20 | VCC | Positive supply voltage | ## Octal D-type transparent latch (3-State) 74LV573 #### **FUNCTION TABLE** | OPERATING MODES | | INPUTS | | INTERNAL | OUTPUTS | |---|----|--------|----|----------|----------| | OPERATING MODES | ŌĒ | LE | Dn | LATCHES | Q0 to Q7 | | Enable and read register (transparent mode) | L | H | L | L | L | | | L | H | H | H | H | | Latch and read register | L | L | l | L | L | | | L | L | h | H | H | | Latch register and disable outputs | H | L | l | L | Z | | | H | L | h | H | Z | H = HIGH voltage level #### **PIN CONFIGURATION** #### LOGIC SYMBOL h = HIGH voltage level one set-up time prior to the HIGH-to-LOW LE transition ⁼ LOW voltage level I = LOW voltage level one set-up time prior to the HIGH-to-LOW LE transition Z = High impedance OFF-state ## Octal D-type transparent latch (3-State) 74LV573 #### LOGIC SYMBOL (IEEE/IEC) #### **FUNCTIONAL DIAGRAM** #### **LOGIC DIAGRAM** ## Octal D-type transparent latch (3-State) 74LV573 #### **ABSOLUTE MAXIMUM RATINGS^{1, 2}** In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V) | SYMBOL | PARAMETER | CONDITIONS | RATING | UNIT | |---|--|--|-------------------|------| | V _{CC} | DC supply voltage | | -0.5 to +7.0 | V | | ±I _{IK} | DC input diode current | $V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5V$ | 20 | mA | | ±I _{OK} | DC output diode current | $V_{O} < -0.5 \text{ or } V_{O} > V_{CC} + 0.5V$ | 50 | mA | | ±lo | DC output source or sink current – bus driver outputs | $-0.5V < V_O < V_{CC} + 0.5V$ | 35 | mA | | ±l _{GND} ,
±l _{CC} | DC V _{CC} or GND current for types with –bus driver outputs | | 70 | mA | | T _{stg} | Storage temperature range | | -65 to +150 | °C | | P _{tot} | Power dissipation per package -plastic DIL -plastic mini-pack (SO) -plastic shrink mini-pack (SSOP and TSSOP) | for temperature range: –40 to +125°C above +70°C derate linearly with 12mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K | 750
500
400 | mW | #### NOTES: #### **RECOMMENDED OPERATING CONDITIONS** | SYMBOL | PARAMETER | CONDITIONS | MIN | TYP. | MAX | UNIT | |---------------------------------|---|---|------------|------------------|-------------------------|------| | V _{CC} | DC supply voltage | See Note 1 | 1.0 | 3.3 | 5.5 | V | | VI | Input voltage | | 0 | - | V _{CC} | V | | Vo | Output voltage | | 0 | _ | V _{CC} | V | | T _{amb} | Operating ambient temperature range in free air | See DC and AC characteristics | -40
-40 | | +85
+125 | °C | | t _r , t _f | Input rise and fall times | $V_{CC} = 1.0V \text{ to } 2.0V$ $V_{CC} = 2.0V \text{ to } 2.7V$ $V_{CC} = 2.7V \text{ to } 3.6V$ $V_{CC} = 3.6V \text{ to } 5.5V$ | | -
-
-
- | 500
200
100
50 | ns/V | #### NOTE: ^{1.} Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed. ^{1.} The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 5.5V. ## Octal D-type transparent latch (3-State) 74LV573 #### DC CHARACTERISTICS FOR THE LV FAMILY Over recommended operating conditions voltages are referenced to GND (ground = 0V) | | | | | | LIMITS | | | | |------------------|---|---|---------------------|------------------|---------------------|---------------------|---------------------|----------------| | SYMBOL | PARAMETER | TEST CONDITIONS | -40 |)°C to +8 | 5°C | -40°C to | +125°C | דואט [| | | | | MIN | TYP ¹ | MAX | MIN | MAX | 1 | | | | V _{CC} = 1.2V | 0.9 | | | 0.9 | | | | V_{IH} | HIGH level Input | V _{CC} = 2.0V | 1.4 | | | 1.4 | |] | | VIН | voltage | V _{CC} = 2.7 to 3.6V | 2.0 | | | 2.0 | | 1 ° | | | | $V_{CC} = 4.5 \text{ to } 5.5 \text{V}$ | 0.7*V _{CC} | | | 0.7*V _{CC} | | | | | | V _{CC} = 1.2V | | | 0.3 | | 0.3 | | | V_{IL} | LOW level Input | V _{CC} = 2.0V | | | 0.6 | | 0.6 |] | | ۷IL | voltage | $V_{CC} = 2.7 \text{ to } 3.6 \text{V}$ | | | 0.8 | | 0.8 |] ` | | | | $V_{CC} = 4.5 \text{ to } 5.5$ | | | 0.3*V _{CC} | | 0.3*V _{CC} | | | | | $V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 100 \mu A$ | | 1.2 | | | | | | | LUCI Laval autout | $V_{CC} = 2.0V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 100\mu A$ | 1.8 | 2.0 | | 1.8 | | | | | HIGH level output voltage; all outputs | $V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 100 \mu A$ | 2.5 | 2.7 | | 2.5 | | | | V_{OH} | l voltago, all outputo | $V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 100\mu A$ | 2.8 | 3.0 | | 2.8 | |] _v | | - 011 | | $V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 100 \mu A$ | 4.3 | 4.5 | | 4.3 | |] | | | HIGH level output voltage; BUS driver | $V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 8mA$ | 2.40 | 2.82 | | 2.20 | |] | | | outputs | $V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 16\text{mA}$ | 3.60 | 4.20 | | 3.50 | |] | | | | $V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$ | | 0 | | | | | | | | $V_{CC} = 2.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$ | | 0 | 0.2 | | 0.2 | 1 | | | LOW level output voltage; all outputs | $V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$ | | 0 | 0.2 | | 0.2 | 1 | | V_{OL} | Voltago, all outputo | $V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$ | | 0 | 0.2 | | 0.2 | 1 ~ | | • OL | | $V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$ | | 0 | 0.2 | | 0.2 | 1 ` | | | LOW level output voltage; BUS driver | $V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 8\text{mA}$ | | 0.20 | 0.40 | | 0.50 | 1 | | | outputs | $V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 16\text{mA}$ | | 0.35 | 0.55 | | 0.65 |] | | I _I | Input leakage current | $V_{CC} = 5.5V$; $V_I = V_{CC}$ or GND | | | 1.0 | | 1.0 | μА | | I _{OZ} | 3-State output
OFF-state current | V_{CC} = 5.5V; V_I = V_{IH} or V_{IL} ; V_O = V_{CC} or GND | | | 5 | | 10 | μА | | I _{CC} | Quiescent supply current; MSI | $V_{CC} = 5.5V; V_I = V_{CC} \text{ or GND}; I_O = 0$ | | | 20.0 | | 160 | μА | | Δl _{CC} | Additional quiescent supply current per input | $V_{CC} = 2.7V$ to 3.6V; $V_I = V_{CC} - 0.6V$ | | | 500 | | 850 | μА | #### NOTE: ^{1.} All typical values are measured at $T_{amb} = 25$ °C. ## Octal D-type transparent latch (3-State) 74LV573 #### **AC CHARACTERISTICS** $GND = 0V; \ t_f = t_f \leq 2.5 ns; \ C_L = 50 pF; \ R_L = 1 K\Omega$ | SYMBOL | PARAMETER | WAVEFORM | CONDITION | | LIMITS
40 to +85 | °C | | /IITS
+125 °C | UNIT | | |--|-------------------------------|--------------|---------------------|----------|---------------------|----------|----------|-------------------------|------|--| | | | l [| V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | | | | | | | 1.2 | - | 75 | - | - | - | | | | | | l [| 2.0 | - | 26 | 39 | _ | 49 | | | | t _{PHL} /t _{PLH} | Propagation delay
Dn to Qn | Figures 1, 5 | 2.7 | - | 19 | 29 | _ | 36 | ns | | | | 2 | [| 3.0 to 3.6 | - | 14 ² | 23 | _ | 29 | | | | | | | 4.5 to 5.5 | _ | _ | 19 | _ | 24 | | | | | | | 1.2 | _ | 80 | _ | _ | _ | | | | | Dona a series deles | l [| 2.0 | _ | 27 | 43 | _ | 53 | | | | t _{PHL} /t _{PLH} | Propagation delay
LE to Qn | Figures 2, 5 | 2.7 | - | 20 | 31 | _ | 34 | ns | | | | 22 10 411 | ĺ | 3.0 to 3.6 | - | 15 ² | 25 | _ | 31 | | | | | | l [| 4.5 to 5.5 | - | _ | 21 | _ | 26 | | | | | | | 1.2 | - | 70 | - | _ | - | | | | | 3-State output | l [| 2.0 | - | 24 | 37 | _ | 48 | | | | t _{PZH} /t _{PZI} enable time | Figures 3, 5 | 2.7 | - | 18 | 28 | - | 35 | ns | | | | | OE to Qn | l [| 3.0 to 3.6 | - | 13 ² | 22 | - | 28 | | | | | | l [| 4.5 to 5.5 | - | _ | 18 | _ | 23 | | | | | | | 1.2 | - | 80 | - | _ | - | | | | | 3-State output | | | 2.0 | - | 29 | 39 | - | 48 | | | t _{PHZ} /t _{PLZ} | disable time | Figures 3, 5 | 2.7 | - | 22 | 29 | - | 36 | ns | | | | OE to Qn | l f | 3.0 to 3.6 | - | 17 ² | 24 | <u> </u> | 29 | | | | | | l [| 4.5 to 5.5 | - | _ | 20 | - | 24 | | | | | | | 2.0 | 34 | 9 | i - | 41 | - 1 | | | | t _W | LE pulse width HIGH | Figure 2 | 2.7 | 25 | 6 | i - | 30 | - | ns | | | | | l t | 3.0 to 3.6 | 20 | 5 ² | T - | 24 | - | | | | | | | 1.2 | - | 25 | i - | - | - 1 | | | | | Catura tima Da ta I F | Figure 4 | 2.0 | 17 | 9 | i - | 20 | - 1 | 20 | | | t _{su} | Setup time Dn to LE | Figure 4 | 2.7 | 13 | 6 | T - | 15 | - 1 | ns | | | | | l t | 3.0 to 3.6 | 10 | 5 ² | T - | 12 | - | | | | | | | 1.2 | - | 5 | - | - | - | | | | | Hold time Do to L | l Figure 4 | 2.0 | 8 | 2 | <u> </u> | 8 | - | | | | t _h | Hold time Dn to LE | Figure 4 | 2.7 | 8 | 2 | - | 8 | - | ns | | | | | | 3.0 to 3.6 | 8 | 12 | - | 8 | - | | | #### NOTES: All typical values are measured at $T_{amb} = 25^{\circ}C$ 1. Typical values are measured at $V_{CC} = 3.3V$ ## Octal D-type transparent latch (3-State) 74LV573 #### AC WAVEFORMS $V_M = 1.5V$ at $V_{CC} \ge 2.7V$ and $\le 3.6V$ V_{M} = 0.5 * V_{CC} at V_{CC} < 2.7V and \geq 4.5V $V_{\mbox{\scriptsize OL}}$ and $V_{\mbox{\scriptsize OH}}$ are the typical output voltage drop that occur with the output load. $V_X = V_{OL} + 0.3V$ at $V_{CC} \ge 2.7V$ and $\le 3.6V$ $V_X = V_{OL} + 0.1 V_{CC}$ at $V_{CC} < 2.7 V$ and $\geq 4.5 V$ $V_Y = V_{OH} - 0.3 V$ at $V_{CC} \geq 2.7 V$ and $\leq 3.6 V$ $V_Y = V_{OH} - 0.1V_{CC}$ at $V_{CC} < 2.7V$ and $\geq 4.5V$ Figure 1. Data input (D_n) to output (Q_n) propagation delays and the output transition times Figure 2. Latch enable input (LE) pulse width, the latch enable input to output (Q_n) propagation delays and the output transition times. Figure 3. 3-State enable and disable times Figure 4. Data set-up and hold times for the D_n input to the LE input #### NOTE: The shaded areas indicate when the input is permitted to change for predictable output performance. #### **TEST CIRCUIT** Figure 5. Load circuitry for switching times 74LV573 #### DIP20: plastic dual in-line package; 20 leads (300 mil) SOT146-1 #### DIMENSIONS (inch dimensions are derived from the original mm dimensions) | UNIT | A
max. | A ₁
min. | A ₂
max. | b | b ₁ | С | D ⁽¹⁾ | E ⁽¹⁾ | е | e ₁ | L | ME | Мн | w | Z ⁽¹⁾
max. | |--------|-----------|------------------------|------------------------|----------------|----------------|----------------|------------------|------------------|------|----------------|--------------|--------------|--------------|-------|--------------------------| | mm | 4.2 | 0.51 | 3.2 | 1.73
1.30 | 0.53
0.38 | 0.36
0.23 | 26.92
26.54 | 6.40
6.22 | 2.54 | 7.62 | 3.60
3.05 | 8.25
7.80 | 10.0
8.3 | 0.254 | 2.0 | | inches | 0.17 | 0.020 | 0.13 | 0.068
0.051 | 0.021
0.015 | 0.014
0.009 | 1.060
1.045 | 0.25
0.24 | 0.10 | 0.30 | 0.14
0.12 | 0.32
0.31 | 0.39
0.33 | 0.01 | 0.078 | #### Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | RENCES | EUROPEAN | ISSUE DATE | |----------|-----|-------|--------|------------|---------------------------------| | VERSION | IEC | JEDEC | EIAJ | PROJECTION | ISSUE DATE | | SOT146-1 | | | SC603 | | 92-11-17
95-05-24 | 74LV573 #### SO20: plastic small outline package; 20 leads; body width 7.5 mm SOT163-1 #### DIMENSIONS (inch dimensions are derived from the original mm dimensions) | UNIT | A
max. | A ₁ | A ₂ | A ₃ | bp | O | D ⁽¹⁾ | E ⁽¹⁾ | е | HE | L | Lp | Q | ٧ | w | у | z ⁽¹⁾ | θ | |--------|-----------|----------------|----------------|----------------|----------------|----------------|------------------|------------------|-------|----------------|-------|----------------|----------------|------|------|-------|------------------|----| | mm | 2.65 | 0.30
0.10 | 2.45
2.25 | 0.25 | 0.49
0.36 | 0.32
0.23 | 13.0
12.6 | 7.6
7.4 | 1.27 | 10.65
10.00 | 1.4 | 1.1
0.4 | 1.1
1.0 | 0.25 | 0.25 | 0.1 | 0.9
0.4 | 8° | | inches | 0.10 | 0.012
0.004 | 0.096
0.089 | 0.01 | 0.019
0.014 | 0.013
0.009 | 0.51
0.49 | 0.30
0.29 | 0.050 | 0.42
0.39 | 0.055 | 0.043
0.016 | 0.043
0.039 | 0.01 | 0.01 | 0.004 | 0.035
0.016 | o° | #### Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. | OUTLINE | | REFER | RENCES | EUROPEAN | ISSUE DATE | |----------|--------|----------|--------|------------|----------------------------------| | VERSION | IEC | JEDEC | EIAJ | PROJECTION | 1330E DATE | | SOT163-1 | 075E04 | MS-013AC | | | -92-11-17
95-01-24 | 74LV573 #### SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm SOT339-1 #### DIMENSIONS (mm are the original dimensions) | UNIT | A
max. | Α1 | A ₂ | А3 | р _р | O | D ⁽¹⁾ | E ⁽¹⁾ | е | HE | ٦ | Lp | Ø | v | w | у | Z ⁽¹⁾ | θ | |------|-----------|--------------|----------------|------|----------------|--------------|------------------|------------------|------|------------|------|--------------|------------|-----|------|-----|------------------|----------| | mm | 2.0 | 0.21
0.05 | 1.80
1.65 | 0.25 | 0.38
0.25 | 0.20
0.09 | 7.4
7.0 | 5.4
5.2 | 0.65 | 7.9
7.6 | 1.25 | 1.03
0.63 | 0.9
0.7 | 0.2 | 0.13 | 0.1 | 0.9
0.5 | 8°
0° | #### Note 1. Plastic or metal protrusions of 0.20 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | | |----------|-----|----------|----------|------------|------------|---------------------------------|--| | VERSION | IEC | JEDEC | EIAJ | | PROJECTION | 1990E DATE | | | SOT339-1 | | MO-150AE | | | | 93-09-08
95-02-04 | | 74LV573 TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm SOT360-1 #### DIMENSIONS (mm are the original dimensions) | UNIT | A
max. | Α1 | A ₂ | A ₃ | bр | С | D ⁽¹⁾ | E ⁽²⁾ | е | HE | L | Lp | Q | v | w | у | Z ⁽¹⁾ | θ | |------|-----------|--------------|----------------|----------------|--------------|------------|------------------|------------------|------|------------|-----|--------------|------------|-----|------|-----|------------------|----------| | mm | 1.10 | 0.15
0.05 | 0.95
0.80 | 0.25 | 0.30
0.19 | 0.2
0.1 | 6.6
6.4 | 4.5
4.3 | 0.65 | 6.6
6.2 | 1.0 | 0.75
0.50 | 0.4
0.3 | 0.2 | 0.13 | 0.1 | 0.5
0.2 | 8°
0° | #### Notes - 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. - 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. | OUTLINE | | REFER | EUROPEAN | ISSUE DATE | | | | |----------|-----|----------|----------|------------|------------|-----------------------------------|--| | VERSION | IEC | JEDEC | EIAJ | | PROJECTION | 1990E DATE | | | SOT360-1 | | MO-153AC | | | | -93-06-16-
95-02-04 | | ## Octal D-type transparent latch (3-State) 74LV573 **NOTES** ## Octal D-type transparent latch (3-State) 74LV573 | DEFINITIONS | | | | | | | |---------------------------|------------------------|--|--|--|--|--| | Data Sheet Identification | Product Status | Definition | | | | | | Objective Specification | Formative or in Design | This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice. | | | | | | Preliminary Specification | Preproduction Product | This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. | | | | | | Product Specification | Full Production | This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product. | | | | | Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. #### LIFE SUPPORT APPLICATIONS Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale. Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A. print code Date of release: 05-96 Document order number: 9397-750-04453 Let's make things better. Philips Semiconductors