INTEGRATED CIRCUITS

DATA SHEET

74LV139Dual 2-to-4 line decoder/demultiplexer

Product specification Supersedes data of 1997 Feb 12 IC24 Data Handbook

Dual 2-to-4 line decoder/demultiplexer

74LV139

FEATURES

- Wide operating voltage: 1.0 to 5.5 V
- Optimized for low voltage applications: 1.0 to 3.6 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Typical V_{OLP} (output ground bounce) < 0.8 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C$
- Typical V_{OHV} (output V_{OH} undershoot) > 2 V at V_{CC} = 3.3 V, $T_{amb} = 25^{\circ}C$
- Demultiplexing capability
- Two independent 2-to-4 decoders
- Multifunction capability
- Active LOW mutually exclusive outputs
- Output capability: standard
- I_{CC} category: MSI

APPLICATIONS

- Memory decoding or data-routing
- Code conversion

DESCRIPTION

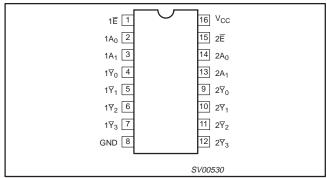
The 74LV139 is a low-voltage Si-gate CMOS device that is pin and function compatible with 74HC/HCT139.

The 74LV139 is a dual 2-to-4 line decoder/demultiplexer. This device has two independent decoders, each accepting two binary weighted inputs (nA₀ and nA₁) and providing four mutually exclusive active LOW outputs ($n\overline{Y}_0$ to $n\overline{Y}_3$). Each decoder has an active LOW enable input $(n\overline{E})$.

When nE is HIGH, every output is forced HIGH. The enable can be used as the data input for a 1-to-4 demultiplexer application.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5 \text{ ns}$


SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay nA_n to $n\overline{Y}_n$, $n\overline{E}$ to $n\overline{Y}_n$	C _L = 15 pF; V _{CC} = 3.3 V	11 10	ns
C _I	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per multiplexer	$V_{CC} = 3.3 \text{ V}$ $V_I = \text{GND to V}_{CC}^1$	42	pF

NOTES:

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
16-Pin Plastic DIL	–40°C to +125°C	74LV139 N	74LV139 N	SOT38-4
16-Pin Plastic SO	-40°C to +125°C	74LV139 D	74LV139 D	SOT109-1
16-Pin Plastic SSOP Type II	–40°C to +125°C	74LV139 DB	74LV139 DB	SOT338-1
16-Pin Plastic TSSOP Type I	-40°C to +125°C	74LV139 PW	74LV139PW DH	SOT403-1

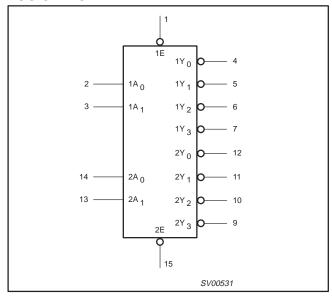
PIN CONFIGURATION

PIN DESCRIPTION

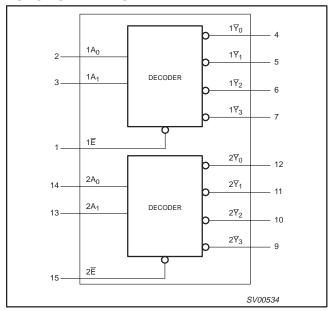
PIN NUMBER	SYMBOL	FUNCTION
1, 15	1Ē, 2Ē	Enable inputs (active LOW)
2, 3	1A ₀ , 1A ₁	Address inputs
4, 5, 6, 7	$1\overline{Y}_0$ to $1\overline{Y}_3$	Outputs (active LOW)
8	GND	Ground (0 V)
12, 11, 10, 9	$2\overline{Y}_0$ to $2\overline{Y}_3$	Outputs (active LOW)
14, 13	2A ₀ , 2A ₁	Address inputs
16	V _{CC}	Positive supply voltage

^{1.} C_{PD} is used to determine the dynamic power dissipation (P_D in μW) $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

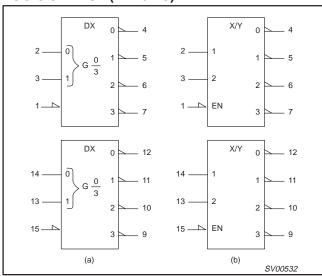
 f_i = input frequency in MHz; C_L = output load capacitance in pF;


 f_0 = output frequency in MHz; V_{CC} = supply voltage in V;

 $[\]sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of the outputs.}$


Dual 2-to-4 line decoder/demultiplexer

74LV139


LOGIC DIAGRAM

FUNCTIONAL DIAGRAM

LOGIC SYMBOL (IEEE/IEC)

FUNCTION TABLE

	INPUTS		OUTPUTS						
nΕ	nA ₀	nA ₁	n₹ ₀	n₹ ₁	n₹ ₂	n₹₃			
Н	Х	Х	Н	Н	Н	Н			
L	L	L	L	Н	Н	Н			
L	Н	L	Н	L	Н	Н			
L	L	Н	Н	Н	L	н			
L	Н	Н	Н	Н	Н	L			

NOTES:

H = HIGH voltage level L = LOW voltage level

X = don't care

Dual 2-to-4 line decoder/demultiplexer

74LV139

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	DC supply voltage	See Note 1	1.0	3.3	5.5	V
VI	Input voltage		0	_	V _{CC}	V
Vo	Output voltage		0	_	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times	$\begin{array}{c} V_{CC} = 1.0V \text{ to } 2.0V \\ V_{CC} = 2.0V \text{ to } 2.7V \\ V_{CC} = 2.7V \text{ to } 3.6V \\ V_{CC} = 3.6V \text{ to } 5.5V \end{array}$	- - - -	- - - -	500 200 100 50	ns/V

NOTE

ABSOLUTE MAXIMUM RATINGS^{1, 2}

In accordance with the Absolute Maximum Rating System (IEC 134). Voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
± I _{IK}	DC input diode current	$V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5V$	20	mA
± I _{OK}	DC output diode current	$V_{O} < -0.5 \text{ or } V_{O} > V_{CC} + 0.5 V$	50	mA
± I _O	DC output source or sink current – standard outputs	$-0.5V < V_O < V_{CC} + 0.5V$	25	mA
±I _{GND} , ±I _{CC}	DC V _{CC} or GND current for types with – standard outputs		50	mA
T _{stg}	Storage temperature range		-65 to +150	°C
Р _{ТОТ}	Power dissipation per package – plastic DIL – plastic mini-pack (SO) – plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12 mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTES:

^{1.} The LV is guaranteed to function down to V_{CC} = 1.0V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2V to V_{CC} = 5.5V.

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the
device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to
absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

Dual 2-to-4 line decoder/demultiplexer

74LV139

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

					LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	-40	°C to +8	5°C	-40°C to	+125°C	UNIT
			MIN	TYP ¹	MAX	MIN	MAX	
		V _{CC} = 1.2 V	0.9			0.9		
1/	HIGH level Input	V _{CC} = 2.0 V	1.4			1.4		
V_{IH}	voltage	V _{CC} = 2.7 to 3.6 V	2.0			2.0		1 °
		V _{CC} = 4.5 to 5.5 V	0.7 * V _{CC}			0.7 * V _{CC}		1
		V _{CC} = 1.2 V			0.3		0.3	
	LOW level Input	V _{CC} = 2.0 V			0.6		0.6	
V_{IL}	voltage	V _{CC} = 2.7 to 3.6 V			0.8		0.8	1 '
		V _{CC} = 4.5 to 5.5			0.3 * V _{CC}		0.3 * V _{CC}	1
		$V_{CC} = 1.2 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 100 \mu A$		1.2				
		$V_{CC} = 2.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 100 \mu A$	1.8	2.0		1.8		1
V_{OH}	HIGH level output voltage; all outputs	$V_{CC} = 2.7 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 100 \mu A$	2.5	2.7		2.5		V
	Voltago, all outputo	$V_{CC} = 3.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 100 \mu\text{A}$	2.8	3.0		2.8		1
		$V_{CC} = 4.5 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 100 \mu A$	4.3	4.5		4.3		1
V _{OH}	HIGH level output voltage;	$V_{CC} = 3.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 6\text{mA}$	2.40	2.82		2.20		V
VОН	STANDARD outputs	$V_{CC} = 4.5 \text{ V}; V_I = V_{IH} \text{ or } V_{IL;} -I_O = 12\text{mA}$	3.60	4.20		3.50		
		$V_{CC} = 1.2 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu\text{A}$		0				
		$V_{CC} = 2.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu\text{A}$		0	0.2		0.2	
V_{OL}	LOW level output voltage; all outputs	V_{CC} = 2.7 V; V_I = V_{IH} or V_{IL} ; I_O = 100 μ A		0	0.2		0.2	V
		$V_{CC} = 3.0 \text{ V}$; $V_I = V_{IH} \text{ or } V_{IL}$; $I_O = 100 \mu A$		0	0.2		0.2	
		$V_{CC} = 4.5 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu\text{A}$		0	0.2		0.2	
V _{OL}	LOW level output voltage;	$V_{CC} = 3.0 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; I_O = 6\text{mA}$		0.25	0.40		0.50	V
VOL	STANDARD outputs	$V_{CC} = 4.5 \text{ V}; V_I = V_{IH} \text{ or } V_{IL}; I_O = 12\text{mA}$		0.35	0.55		0.65	V
I _I	Input leakage current	$V_{CC} = 5.5 \text{ V}; V_I = V_{CC} \text{ or GND}$			1.0		1.0	μА
I _{CC}	Quiescent supply current; MSI	$V_{CC} = 5.5 \text{ V}; V_I = V_{CC} \text{ or GND}; I_O = 0$			20.0		160	μА
Δl _{CC}	Additional quiescent supply current per input	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}; V_{I} = V_{CC} - 0.6 \text{ V}$			500		850	μА

5

NOTE:
1. All typical values are measured at T_{amb} = 25°C.

Dual 2-to-4 line decoder/demultiplexer

74LV139

AC CHARACTERISTICS

GND = 0V; $t_r = t_f \le 2.5 ns$; $C_L = 50 pF$; $R_L = 1 K\Omega$

			CONDITION			LIMITS			
SYMBOL	PARAMETER	WAVEFORM	CONDITION	_	40 to +85 °	С	-40 to -	+125 °C	UNIT
			V _{CC} (V)	MIN	TYP ¹	MAX	MIN	MAX	
			1.2		70				
			2.0		24	31		39	
t _{PHL} /t _{PLH}	Propagation delay nA _n to \overline{Y}_n	Figures 1, 2	2.7		18	23		29	ns
	41 10 1 11		3.0 to 3.6		13 ²	18		23	
			4.5 to 5.5			15		19	
			1.2		60				
			2.0		20	27		34	
t _{PHL} /t _{PLH}	Propagation delay nE to Y _n	Figures 1, 2	2.7		15	20		25	ns
			3.0 to 3.6		11 ²	16		20	
			4.5 to 5.5			13		16	

NOTES:

- 1. Unless otherwise stated, all typical values are measured at $T_{amb} = 25^{\circ}C$
- 2. Typical values are measured at $V_{CC} = 3.3 \text{ V}$.

AC WAVEFORMS

$$\begin{split} &V_M = 1.5 \text{ V at V}_{CC} \geq 2.7 \text{ V and} \leq 3.6 \text{ V}; \\ &V_M = 0.5 \text{ V} \times V_{CC} \text{ at V}_{CC} < 2.7 \text{ V and} \geq 4.5 \text{ V}. \end{split}$$

 $V_{\mbox{\scriptsize OL}}$ and $V_{\mbox{\scriptsize OH}}$ are the typical output voltage drop that occur with the output load.

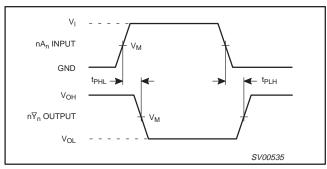


Figure 1. Address input (nA_n) to output $(n\overline{Y}n)$ propagation delays.

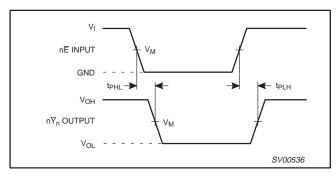
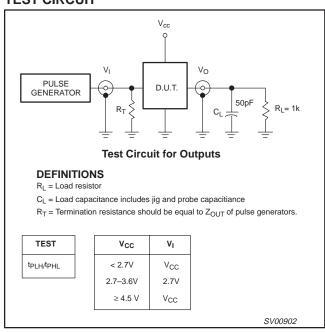
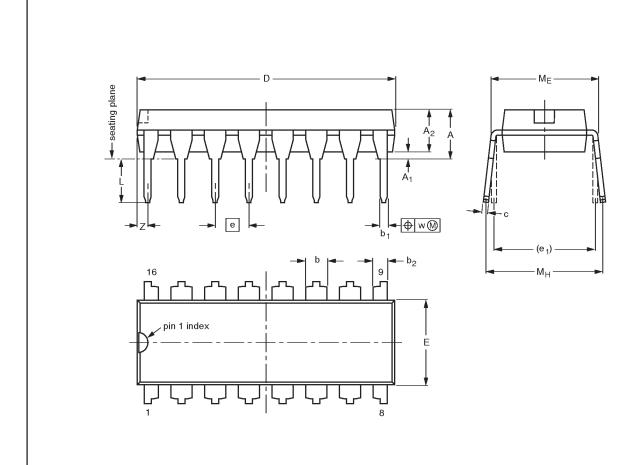


Figure 2. Enable input $(n\overline{E})$ to output $(n\overline{Y}_n)$ propagation delays.

TEST CIRCUIT




Figure 3. Load circuitry for switching times.

Dual 2-to-4 line decoder/demultiplexer

74LV139

DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	C	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.030

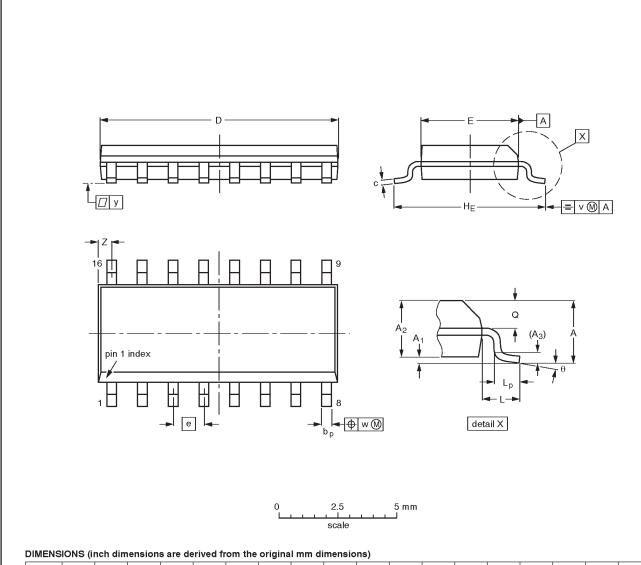
scale

10 mm

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	SION IEC JEDEC EIAJ		PROJECTION	ISSUE DATE	
SOT38-4				□ •	92-11-17 95-01-14


1998 Apr 28 7

Dual 2-to-4 line decoder/demultiplexer

74LV139

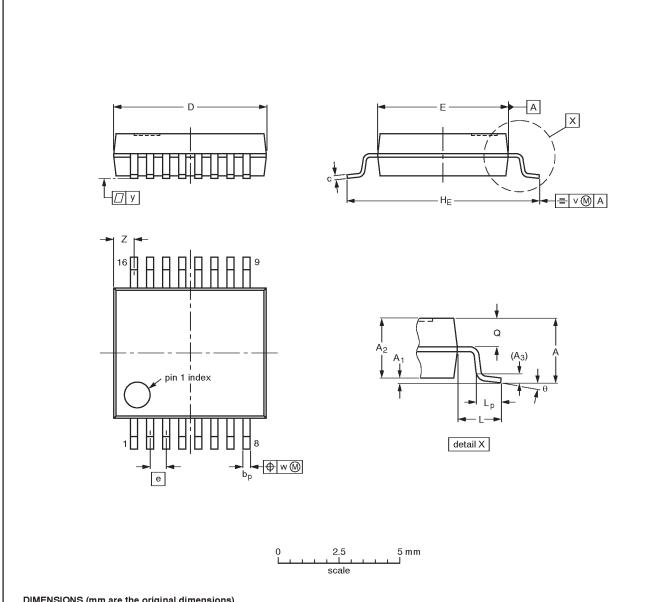
SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

UNIT	A max.	Α1	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.0098 0.0039		0.01	0.019 0.014	0.0098 0.0075	0.39 0.38	0.16 0.15	0.050	0.24 0.23	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.


OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT109-1	076E07S	MS-012AC			91-08-13 95-01-23

Dual 2-to-4 line decoder/demultiplexer

74LV139

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

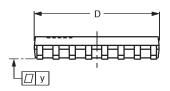
SOT338-1

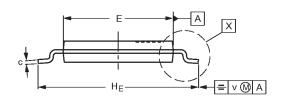
DIMENSIONS (mm are the original dimensions)

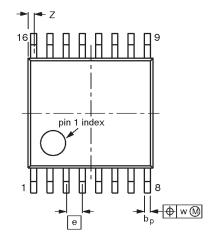
UNIT	A max.	A ₁	A ₂	A ₃	рb	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Ø	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°

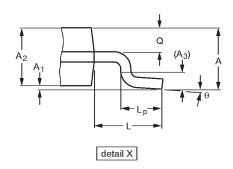
Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT338-1		MO-150AC				94-01-14 95-02-04	


Dual 2-to-4 line decoder/demultiplexer


74LV139


TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm


SOT403-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	Α1	A ₂	A ₃	bр	c	D ⁽¹⁾	E ⁽²⁾	Φ	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	1.10	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1.0	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT403-1		MO-153				-94-07-12 95-04-04

1998 Apr 28 10

Dual 2-to-4 line decoder/demultiplexer

74LV139

NOTES

Dual 2-to-4 line decoder/demultiplexer

74LV139

DEFINITIONS						
Data Sheet Identification	Product Status	Definition				
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.				
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.				
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.				

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 05-96

Document order number: 9397-750-04424

Let's make things better.

Philips Semiconductors

